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Abstract: The ongoing revolution in Deep Learning is redefining the nature of computing that is
driven by the increasing amount of pattern classification and cognitive tasks. Specialized digital
hardware for deep learning still holds its predominance due to the flexibility offered by the software
implementation and maturity of algorithms. However, it is being increasingly desired that cognitive
computing occurs at the edge, i.e., on hand-held devices that are energy constrained, which is
energy prohibitive when employing digital von Neumann architectures. Recent explorations in
digital neuromorphic hardware have shown promise, but offer low neurosynaptic density needed
for scaling to applications such as intelligent cognitive assistants (ICA). Large-scale integration of
nanoscale emerging memory devices with Complementary Metal Oxide Semiconductor (CMOS)
mixed-signal integrated circuits can herald a new generation of Neuromorphic computers that will
transcend the von Neumann bottleneck for cognitive computing tasks. Such hybrid Neuromorphic
System-on-a-chip (NeuSoC) architectures promise machine learning capability at chip-scale form factor,
and several orders of magnitude improvement in energy efficiency. Practical demonstration of such
architectures has been limited as performance of emerging memory devices falls short of the expected
behavior from the idealized memristor-based analog synapses, or weights, and novel machine
learning algorithms are needed to take advantage of the device behavior. In this article, we review
the challenges involved and present a pathway to realize large-scale mixed-signal NeuSoCs, from
device arrays and circuits to spike-based deep learning algorithms with ‘brain-like’ energy-efficiency.

Keywords: cognitive computing; deep learning; Neuromorphic System-on-a-Chip (NeuSoC); NVM;
RRAM; silicon neurons; spiking neural networks (SNNs)

1. Introduction

A recent grand challenge in semiconductor technology urges researchers to “Create a new type of
computer that can proactively interpret and learn from data, solve unfamiliar problems using what
it has learned, and operate with the energy efficiency of the human brain [1].” Artificial Intelligence
(AI) techniques such as deep neural networks, or deep learning, have found widespread success when
applied to several problems including image and video interpretation, speech and natural language
processing, and medical diagnostics [2]. At present, much of cognitive computing is performed on
digital graphics processing units (GPUs), accelerator application-specific integrated circuits (ASICs), or
field-programmable gate arrays (FPGAs), mostly at the data center end of the Cloud infrastructure.
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However, the current explosion in widespread deployment of deep-learning applications is expected
to hit a power-performance wall with—(1) plateauing in Complementary Metal Oxide Semiconductor
(CMOS) scaling, and (2) limits set for energy consumption in the Cloud. These deep learning
implementations take long computing cluster days to train a network for realistic applications. Even
with remarkable progress made in computing, the agile human brain provides an existential proof that
learning can be more sophisticated while allowing compactness and energy-efficiency. Furthermore,
there is a growing interest in edge computing and intelligent cognitive assistants (ICAs), where deep
learning and/or inference will be available on energy-constrained mobile platforms, autonomous
drones, and internet-of-things sensor nodes, which not only eliminate the reliance on cloud-based AI
service, but also ensure privacy of user data.

In contrast to the predominant von Neumann computers where memory and computing
elements are separated, a biological brain retains memories and performs ‘computing’ using largely
homogeneous neural motifs. In a brain, neurons perform computation by propagating spikes
and storing memories in the relative strengths of synapses, and by forming new connections
(or morphogenesis) [3]. By repeating these simple cortical columnar organization of neurons and
synapses, a biological brain realizes a highly energy-efficient cognitive computing motif. Inspired by
biological nervous systems, artificial neural networks (ANNs) were developed that have achieved
remarkable success in a few specific applications. In the past decade, by leveraging parallel GPUs,
ASICs [4], or FPGAs, power consumption of artificial neural networks has been reduced but yet remains
significantly higher than their biological counterpart developed through millions of years of evolution.
The discovery of spike-timing-dependent-plasticity (STDP) local learning rule [5,6] and mathematical
analysis of spike-based winner-take-all (WTA) motifs have opened new avenues in spike-based neural
network research. Recent studies have suggested that STDP, and its neural-inspired variants, can be
used to train spiking neural networks (SNNs) in situ without trading off their parallelism [7,8].

The current-art in neuromorphic computing has been recently reviewed with focus on the device
aspects [9] or high-level system architectures [10,11]. The unique contribution of this review article is
the focus on the interfacing of mixed-signal circuits with emerging synaptic devices and discussion
on the resulting design considerations that impact the overall energy-efficiency and scalability of
large-scale NeuSoCs. In addition, a survey of recent learning algorithms and their associated challenges
is presented for the realizing of deep learning in NeuSoCs. This article is organized as follows. Section 2
presents an overview of existing neuromorphic computing platforms and the potential for employing
nanoscale emerging memory devices. Section 3 presents a review on mixed-signal approaches to
neuromorphic computing leveraging crossbar arrays of emerging memory devices and details on
neural circuits and learning algorithms followed by challenges associated with emerging memory
devices. Section 4 makes an argument for bio-plausible dendritic processing using compound stochastic
synapses. Section 5 discusses energy-efficiency implications of device properties on neuromorphic
SoCs. Section 6 presents the direction for algorithm development for large-scale deep learning using
neurmorphic substrates followed by conclusions.

2. Neuromorphic Computing and Emerging Devices

2.1. Digital Neuromorphic Platforms

Recent progress in neuromorphic hardware has led to development of asynchronous event-driven,
as opposed to synchronous or clock-driven, integrated circuits (ICs) that process and communicate
information using spatio-temporal voltage spike signals. Most pertinent examples of a digital
neuromorphic hardware are IBM’s TrueNorth [12], SpiNNaker system from the Human Brain Project
and the University of Manchester (Manchester, UK) [13], and recently Loihi chip from Intel (Hillsboro,
OR, USA) [14]. IBM’s (San Jose, CA, USA) TrueNorth ASIC comprises of 4096 cores, with 1 million
programmable neurons and 256 million programmable synapses as communication channels between
the digital neurons, and consumes ≈100 mW for pattern classification tasks [12]. However, the
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networks are trained offline as the chip does not allow in situ learning. On the other hand, Intel’s
Loihi ASIC implements on-chip learning with flexibility in neuron and synapse behavior, but trades
off learning with reduced neurosynaptic density [14]. Purely digital implementations have low
neurosynaptic density and large die area that can limit the scalability and cost of the resulting
neuromorphic systems. Furthermore, leakage power in static random access memory (SRAM)-based
digital synapses can limit the overall energy-efficiency.

2.2. Subthreshold Analog Neuromorphic Platforms

Advances in analog neuromorphic circuits include subthreshold bio-mimetic CMOS circuits that
were developed to reproduce ion-channel dynamics occurring in biological neural networks [15].
These implementations leveraged the fact that the brain performs analog-like spike-based computation
with a massive number of imprecise components. However, the fundamental limitation of such
architectures was that the weights were dynamically stored and updated on capacitors, which leak
away in a few milliseconds, limiting any long-term learning [16,17]. Bistability of analog weights has
been used as an intermittent solution for long-term storage of weights [16,18–24]. However, recent
studies on deep SNNs have determined that at least 4-bit resolution is needed for the synaptic weights
to attain classification accuracy comparable to conventional deep learning [25,26]. Storing the weights
digitally and converting them to analog synapses using a Digital-to-Analog Converter (DAC) is also a
possibility and has been implemented on wafer-scale hardware in [27,28]. However, such architectures,
even though extremely beneficial for neuroscience research, preclude high synaptic density envisioned
for NeuSoCs.

2.3. Neuromorphic Platforms Using Floating-Gate and Phase Change Memories

Other solutions include using non-volatile memories (NVMs) such as the floating gate (or Flash
memory) devices [29,30] and phase change memory (PCM) [9,31] for implementing synaptic weights.
The endurance of floating-gate devices is typically 100–500k cycles due to the high voltages used for
program and erase operations [32]. This will preclude on-chip training of neural networks where
millions of program/erase operations need to be supported. Flash memory is best suited for low-power
inference applications [33] or for scenarios where learning concludes within the endurance limit of
the devices. Recently, IBM’s neuromorphic group has shown encouraging results by employing PCM
devices employed as synapses in SNNs [9,34]. PCM devices can provide incremental states in the
program direction by controlling the amount of crystallization on the memory cell. However, the erase
can be abrupt as the device undergoes a melt-and-quench phase when brought to the amorphous
state [9,35].

2.4. Nanoscale Emerging Devices

In the last decade, there has been a renewed interest in two-terminal resistive memory devices,
including the elusive memristor, as these resistive random access memory (RRAM), Mott memory [36],
and similar devices promise very high memory density (Terabits/cm2) [37,38]. These devices
have demonstrated biologically plausible STDP plasticity behavior in several experiments [38,39]
and therefore have emerged as an ideal candidate for realizing electronic equivalent of synapses.
In addition, recent advances in these devices have shown low-energy consumption to change their
states with sub-100fJ switching energy and very compact layout footprint (F = 10 nm pitch with
4F2 cell size [40–42]. Following this trend, hybrid CMOS-RRAM analog very-large-scale integrated
(VLSI) circuits have been proposed [43,44] to achieve dense integration of CMOS neurons with these
emerging devices for neuromorphic computing chips by leveraging the contemporary nanometer
silicon processing technology. Furthermore, three-terminal synaptic transistors based on liquid ion,
lithium-ion and transition metal oxides have been reported and can be promising candidates for
neuromorphic computing in the future [36,45,46].
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The author also introduced a first compact CMOS memristor emulator circuit [47,48] and the
resulting dynamic synapse circuits [24] but concluded that non-volatile synapses are needed for
long-term retention of weights, high synaptic density and low leakage power in trained neural
networks. Consequently, the Neuromorphic computing architecture development requires synergistic
development in devices, circuits and learning algorithms to take advantage of the high synaptic density
while not being oblivious to the challenges at the device-circuit interface. Following four necessary
criterion have been identified for realizing large scale NeuSoCs capable of deep learning:

1. Non-volatility and high-resolution of the synaptic weights
2. High neurosynaptic density, approaching billions of synapses and millions of neurons per chip
3. Massively-parallel learning algorithms with localized updates (or in-memory computing)
4. Event-driven ultra-low-power neural computation and communication

3. Mixed-Signal Neuromorphic Architecture

Mixed-signal neuromorphic ICs promise the potential for embedded learning and pattern
classification with orders of magnitude lower energy consumption than the von Neumann processors.
As discussed in the previous section, this is feasible due to the densely-integrated non-volatile
memory devices that include RRAM [49,50], phase-change random access memory (PCRAM),
conductive-bridge random access memory (CBRAM) [51], Spin-Transfer Torque Random Access
Memory (STTRAM) [52] and 3D crosspoint memory [53]. These are also referred to as memristors or
memristive devices in literature [38,54].

3.1. Crossbar Networks

CMOS neurons and RRAM synapses are organized in a crossbar network to realize a single-level
of neural interconnections as shown in Figure 1. In this architecture, each input neuron is connected
to another output neuron through a two-terminal RRAM to form a crossbar, or cross-point, array.
By cascading and/or stacking such crossbars, a deep neural network can be realized in hardware.
Furthermore, maximum synaptic density is achieved by minimizing or eliminating the overheads
associated with the synapse, while transferring the complexity to the peripheral neurons. The crossbar
architecture is tolerant to sneak-paths in the array as all devices are concurrently used in the neural
network, as opposed to the random access case where individual RRAM bit(s) are accessed and read
out one at a time [55]. Consequently, the sneak paths are absorbed into the network weights with
tolerable performance degradation. Furthermore, advanced packaging techniques such as through
silicon via (TSV) for multiple chips and flip-chip integration can be leveraged to realize 3D stacking of
such networks.

3.2. Analog Synapses Using RRAM/Memristors

Several nano-scale RRAM or memristors in literature have shown that their conductance
modification characteristics are similar to the STDP rule from neurobiology [42,56,57] and thus are
potentially an ideal candidate for implementing electronic synapses. STDP states that the synaptic
weight w is updated according to the relative timing of the pre- and post-synaptic neuron firing. This
is a form of Hebbian learning that postulates that “neurons that fire together, wire together [58].”
As illustrated in Figure 2a, a spike pair with the pre-synaptic spike arrives before the post-synaptic
spike results in increasing the synaptic strength, or long-term potentiation (LTP); a pre-synaptic spike
after a post-synaptic spike results in decreasing the synaptic strength, or long-term depression (LTD).
Changes in the synaptic weight plotted as a function of the relative arrival timing of the post-synaptic
spike with respect to the pre-synaptic spike is called the STDP learning function or learning window.
Furthermore, during the inference mode, only the pre-spikes with the positive rectangular pulse are
used for carrying the feedforward inputs through the SNN. The post-spikes and the negative tails are
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activated during the training mode only to enable on-chip learning. This not only saves energy but
also avoids undesirable changes to the synaptic weights [44,59].
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Figure 1. Neuromorphic System-on-a-chip architecture (NeuSoC): (a) a fully-connected spiking
neural network (SNN) showing input, hidden and output layers of spiking neurons. Here, synaptic
connections shown for the input receptive field of a single neuron in the hidden and output layers; (b) a
section of the neural network architecture implemented using resistive random access memory (RRAM)
crossbar array and column/rows of mixed-signal complementary metal oxide semiconductor (CMOS)
neurons; (c) a possible chip floorplan showing 2D arrays and peripheral circuits layout common in
memory chips to build high-density SNN hardware. Scaling of NeuSoCs requires network-on-chip
(NoC) and interconnect architecture for spatiotemporal data communication; (d) a single multi-bit
synapse between the input (pre-synaptic) and output (post-synaptic) neurons that adjusts its weight
using spike-timing dependent plasticity (STDP).
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Figure 2. Pairwise STDP with resistive random access memory (RRAM) devices: (a) graphical
illustration of the pairwise STDP learning window with change in weight ∆w plotted as a function of
time difference ∆t between the pre and post spikes. A spike pair creates net potential difference Vnet

across the RRAM. (b) when Vnet > V+
th , Long-term potentiation (LTP) occurs and RRAM conductance is

increased (program operation). (c) For Vnet < V−th , LTD occurs and the RRAM conductance is decreased
(erase operation). During the inference mode, only positive head of the pulse is enabled with amplitude
A+ < V+

th so that the RRAM state is not disturbed; (d) simulated pairwise STDP learning window
for modeled RRAM device. The change in conductance is around 1 µs conductance with 5 µs relative
time range.

In pair-wise STDP learning, spikes sent from pre- and post-synaptic have their voltage amplitudes
below the program and erase switching thresholds (V+

th and V−th ) of a bipolar RRAM device. RRAM
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switching events may occur only if this spike pair overlaps and creates a net potential (Vnet) greater
than the switching threshold, as illustrated in Figure 2b,c. Here, for Vnet > V+

th , RRAM is incrementally
programmed (conductance is increased) causing long-term potentiation (LTP) in the synapse. On the
other hand, for the case Vnet < V−th , the RRAM is incrementally erased (conductance is decreased) and
long-term depression (LTD) occurs in the synapse. In case of no temporal overlap, the pre-synaptic
pulse is integrated in the neuron and thus should have a net positive area and smaller amplitude
than the program or erase thresholds. This in turn sets a constraint for the voltage spikes that
V−th < Vspk(t) < V+

th must always be ensured to avoid disturbing the RRAM state. This scheme
effectively converts the time overlap (∆t) of pre and post spikes into program or erase voltage pulses
Vnet [59–62]. During the inference (or read-only) mode, only positive head of the spike pulse is enabled
with an amplitude A+ < V+

th so that the RRAM state is not inadvertently written. The simulated
STDP learning window for an RRAM device modeled in [44] is shown in Figure 2d. For experimental
pairwise STDP results from similar RRAM devices, the reader is referred to [35,38,56].

3.3. Event-Driven Neurons with Localized Learning

There is a significant body of work over the past several decades on low-power spiking neurons
using subthreshold CMOS that are documented in [15] and references therein. However, driving
thousands of resistive devices in parallel while maintaining desired energy-efficiency presents difficult
challenges for CMOS neurons. This difficulty is further analyzed later in Section 5. For RRAM-based
NeuSoC, neurons need to generate voltage spike pulses that are specific to the device characteristics and
plasticity mechanisms, and then drive several thousands of these in a crossbar array. Numerous recent
spiking neurons in literature are not equipped to provide the current drive that is necessary to drive low
resistance loads offered by the resistive (i.e., RRAM, PCRAM, STTRAM, etc.) synapses [63–67]. Some
of the recent neuron designs that interface with RRAMs need additional circuitry to implement in situ
learning [43,65,68]. An opamp-based neuron design was introduced in [69] to provide the necessary
current drive for resistive synapse. In continuation, authors of this article demonstrated low-power
integrate-and-fire neuron circuits that can drive memristor/RRAM synapses with in situ STDP based
learning [59]. This is illustrated in Figure 3 where a single opamp-based design is employed so that
the neuron can drive the resistive load presented by the RRAM synapses [44,59]. The neuron operates
in four event-driven modes as shown in Figure 4. In the normal integrating mode during training or
inference, they are biased with very low current (<1 µA) and integrate the incoming spikes weighted
by the RRAM conductance (ii = ∑j wij ·Vspk,j(t)). When the integrated membrane potential, Vmem,i,
crosses the threshold Vthr, a firing event occurs whereby the neuron is reconfigured as a voltage buffer
and dynamically biased with large current so as to drive the RRAM synapses [59].

During the training phase, i.e., when the signal T = 1, the voltage spikes with positive pulse and
negative tail are propagated in the forward (pre spikes) as well as the backward direction (post spikes).
This enables learning by adjusting the synaptic weights (wkj) using STDP based program or erase
mechanism seen in Figure 2. During inference (i.e., when T = 0), only the pre-spikes are propagated in
the forward direction, and those too with the positive header. Here, no learning takes place and the
synaptic weights are preserved while ‘reading’ them. This modification to the neuron circuit, where
the negative tail is turned off during inference, is presented for the first time in this article.
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Figure 4. Event-driven operation of the proposed leaky integrate-and-fire neuron during training
and inference.

After the spike event concludes, the neuron returns to the background integration mode after a
refractory period τre f r. A fourth mode, called discharge mode, allows competition between neurons.
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All the neurons are connected using a shared WTA bus; if a winner neuron fires first, other neurons are
discharged to discourage them from spiking, forming a powerful neural learning motif [44]. A chip was
designed using an earlier version of this neuron where associative learning (Pavlov’s dog experiment)
was demonstrated [59]. In this chip fabricated in 180-nm CMOS, neurons generated voltage spikes
with configurable parameters to be interfaced with a wide variety of RRAMs. A possible interfacing
with CBRAM is shown in Figure 5. The CBRAM device chip was obtained from Prof. Mitkova’s
group [70–72].

Figure 5. RRAM-compatible CMOS Neuron: (a) a CMOS-RRAM experimental prototype with
(b) 180-nm CMOS spiking neuron chips with digital reconfigurability, and (c) possible interfacing with
conductive bridge random access memory (CBRAM) devices [70–72]; (d) measured spike output for
one of the settings; (e) pre- and post-spike voltage difference applied across a synapse [59].

3.4. Spike-Based Neural Learning Algorithms

SNNs are gaining momentum due to their biological plausibility as well as the potential for
low-power hardware implementation. Recently, it was analytically shown that WTA with exponential
STDP realizes a powerful unsupervised learning motif that implements expectation maximization;
network weights converge to the log probability of the hidden input cause [8,73]. The authors
developed algorithms that were compatible with the presented circuits to demonstrate general-purpose
pattern recognition engine that consumes ultra-low energy, and were applied to handwritten digit
recognition tasks [44,60]. A WTA shared bus architecture with novel event-driven switched-capacitor
CMOS neurons was demonstrated. The architecture allows unsupervised as well as supervised
competitive learning with significant reduction in hardware complexity and chip area [44]. This
two-layer network was simulated with transistor-level circuits using Cadence Spectre for classification
of the University of California Irvine (UCI) 8× 8 handwritten digits dataset. Here, a teacher signal
was used that only allows the desired neuron to fire based on WTA structure and STDP mechanism for
a given output label in the training set.

This semi-supervised spiking network achieved a classification accuracy of 94% for four digits
and 83% on all ten digits with around 1000 training samples for each image label. Here, Figure 6 shows
the evolution of synaptic weights for each of the ten output neurons as the learning progresses during
the training period. Here, we can see that each neuron specializes in detecting only one of the digits
and multilevel weights allow higher classification accuracy by emphasizing on critical features of the
digits. In the same experiments with binary synapse models, the classification accuracy drops below
80% [44].
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Figure 6. Evolution of simulated synaptic weights (normalized to the color scale) in the SNN for
8× 8 handwritten character classification.

Deep Learning Using SNNs: Higher classification accuracy can be potentially achieved by
increasing the number of competing neurons [74] and/or stacking these spiking WTA motifs with
backpropagation (or backprop) algorithm adapted to the SNNs, a challenging task due to the
non-differentiable nature of spiking neurons. Recently, there was a successful demonstration of transfer
learning whereby first a standard deep ANN was trained and its weights were then transferred to
an equivalent SNN achieving close to 99% accuracy on the MNIST handwritten digits dataset [75].
In comparison, the state-of-the-art classification accuracies for the same dataset using conventional deep
learning are 99.6% [76] and 99.79% (DropConnect) [77]. Demonstration of transfer learning in SNNs
was followed by attempts at spike-based backprop that used membrane potential as a differentiable
function [78] or developed differential stochastic neuron models [79]. In parallel, unsupervised deep
spike-based convolutional neural networks (ConvNets) based on sparse-coded spikes with WTA and
STDP have claimed >98% classification accuracy for the MNIST handwritten digit dataset [80,81].

Backprop for Deep SNNs: There is a growing interest in developing backprop for deep SNNs
with some success [79,82]. The reader is referred to the lucid treatment of conventional deep learning
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using backprop provided in [83] for context and mathematical background. Backprop essentially
assigns credits across the neural network layers, which minimizes the overall classification error at
the output layer. Standard backprop algorithm relies on the availability of network-wide weights
and activation function output and slope information that is stored in high-precision memory. This
high-precision memory is accessed using von Neumann bottlenecks, which is precisely the problem
we are trying to solve using neuromorphic computing [79]. Implementation of standard backprop
on neuromorphic substrates is challenging due to: (1) the weight transport problem as the transpose
of the weight matrix, WT , must be available for computing weight updates at each layer, (2) precise
computations of the derivatives of activations functions and multiplications are needed, and (3) the
SNN must alternate between forward and backward propagation phases during training [79]. Since the
input–output characteristics of a spiking neuron is not differentiable, computing the derivative of its
activation function is not directly feasible.

The weight transport bottleneck was mitigated by the development of Random Backprop (RBP)
algorithm by Lillicrap [84], where fixed random weight matrix (B) and the output layer error are used
for computing all the weight updates in the intermediate layers. Switching to the fixed matrix B from
WT significantly simplifies computation with performance comparable to standard backprop and the
backward pass is avoided.

Next, Neftci [79] adapted RBP by recasting it for event-driven SNNs and developed a simplified
differentiable model for stochastic spiking neurons. By modeling the membrane potential of the
integrate-and-fire neuron with noisy inputs (a valid assumption with circuit noise and/or noisy
spike inputs) as a type of Brownian motion, a closed-form expression to relate the input and output
firing rates of the neuron was determined, and thus its derivative. Combining RBP with differential
stochastic neuron model led to the event-driven random backprop (eRBP) algorithm in [79] resulting
in an accuracy of 97.4% for the MNIST handwritten characters dataset. However, the eRBP algorithm
abandoned WTA with STDP motifs for local competitive learning, digressing from the understanding
derived from computational neuroscience [8,85]. In another parallel work, the WTA motif was
included in order to derive backprop equations for SNNs, but STDP was not included [78]. The best
case classification accuracy reported in this work for the MNIST handwritten digits dataset was 98.71%.

Even though spike-based backprop, in its current form, may not be the actual algorithm
responsible for computation occurring in a biological brain. Nevertheless, it provides an intermittent
solution to cognitive applications desired by the computing community. Needless to say, development
of learning algorithms for SNN is a promising area of research and, together with developments in
the field of computational neuroscience, it may lead to better understanding of brain computation.
However, going forward with the development of large-scale NeuSoC architectures, these algorithms
must be re-casted based upon the behavior of the synaptic devices such as in the work from
IBM [31], where STDP was modified to accommodate abrupt reset or erase operation in (LTD) in
PCM-based synapses.

3.5. Challenges with Emerging Devices as Synapses

Contemporary memristive or RRAM devices exhibit several limitations when considered for
realizing neuromorphic computing:

(1) Resistive Loading: Resistive loads are typically avoided in CMOS circuits due to the resulting
static power consumption. Consequently, large load resistance range is desirable to minimize power
consumption in the CMOS neuron circuits that would drive a large number of such resistive devices
in parallel. As analyzed later in Section 5, a value of >10 MΩ for the low-resistance state (LRS) or
‘On’ state is needed for obtaining orders of magnitude improvement in energy-efficiency over GPUs.
On the other extreme, a very large LRS resistance, say 1 GΩ, will result in extremely low signal-to-noise
ratio (SNR) in presence of circuit noise. Thus, the design of resistive memory device structure and the
material stack needs to take these trade-offs into consideration.
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(2) Variability and Stochasticity: RRAM devices exhibit significant variations (across different devices)
and stochasticity (in the same device) in their behavior. This is observed as the program/erase
threshold voltages (Vth+/− ) exhibit stochasticity and variability that in turn depends upon: (1) the
initial ‘electroforming’ or ‘breaking-in’ step where the filament is formed in a pristine RRAM cell [86].
The program threshold voltage required for creating a filament (or phase change in the bulk) depends
upon the compliance current (ICC) and consequently the range of resistance for the LRS state.
For example, a low compliance of ICC = 50 nA creates a narrow and weak filament which displays
analog-like incremental resistance change behavior, concomitant with large variation in the LRS
resistance. Furthermore, these analog-like states may relax to another value within seconds to hours.
On the other hand, a large compliance current, say ICC = 5 µA, results in a thick filament that exhibits
bistable switching behavior with lower variance in the LRS range. Moreover, independently setting the
compliance current in a crossbar array in a NeuSoC is unwieldy due to large circuit overhead incurred.
(3) Resolution and Retention: Experimental studies have shown that it can be challenging to obtain
stable weights for more than a single-bit resolution in RRAMs, especially without applying compliance
current. In some studies, multi-level resistance in oxide-based memristive devices has been observed
by fine-tuning the device fabrication and/or electrical pulses for program and erase [86,87]. Analog
state retention in actual crossbar circuit configuration of these multi-level RRAMs is presently being
studied [87]. Multi-level states have been demonstrated when programming PCM devices; however,
the erase operation is abrupt [9,31]. Fundamentally, realizing multiple stable resistance states can be
challenging due to the fact that a sufficiently large energy barrier is needed to separate two adjacent
resistance states, which is not overcome by thermal energy, leakage or disturbance during the read
(inference) operation.

Furthermore, we recently showed, using a simple CMOS emulator circuit, that the pinched
hysteresis characteristics of a conceptual memristor doesn’t guarantee analog state retention [24,48].
Based on this discussion, we can assume the worst case scenario that many such RRAM devices
in crossbar arrays, with or without setting compliance current, may end up as bistable nonvolatile
memory cells.
(4) Polarity: RRAM devices can exhibit either bipolar or unipolar switching characteristics depending
upon their material composition. Most RRAMs are employed with bipolar switching where program
(Set) and erase (Reset) operations require positive and negative voltage polarity to be applied across
the device. On the other hand, unipolar switching devices only use single voltage polarity for program
and erase operations [37]. Several filament-based RRAM and CBRAM devices exhibit asymmetric
bipolar switching (i.e., the erase threshold Vth− is much smaller in magnitude than the program
threshold Vth+ ). This is due to the fact that only a small amount of negative voltage can break or
dissolve the filament and erase the device to its high resistance state (HRS) [37,70]. Unipolar and
asymmetric bipolar switching characteristics may not be compatible with the STDP scheme shown
earlier in Figure 3 and requires circuit modification at the neuron–synapse interface.
(5) Endurance: Since training algorithms continually update network weights while being trained on
massive amount of data, synaptic device endurance ultimately governs the in situ on-chip learning
capability in a NeuSoC chip. For example, floating-gate or Flash devices are better suited for inference
tasks [33] due to <105 cycles of write endurance [32] , while suitably engineered phase-change memory
devices can last for >108 write cycles [35]. On the other hand, RRAM devices are expected to endure
more than 109 write cycles, which makes them promising for continuous online learning on a chip [37].

4. Bio-Inspiration for Higher-Resolution Synapses

Presynaptic and postsynaptic neural activity enables the chemical synapses to change their
weights or strengths of connection via biological mechanisms such as LTD and LTP in an adult human
brain. This activity dependent synaptic plasticity is evidently the basis of learning and memory in
the human brain [3,88]. As evidence of the role played by activity dependent synaptic plasticity in
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learning and memory is gathered, our understanding of the underlying ‘algorithm’ for cognition in
the brain also evolves.

As shown in Figure 7, a biological neuron cell has a body called ‘soma’ with a long axonal tail.
The axon branches into axonal terminals or ‘telodendria.’ The soma has projections called dendrites.
Synapses are created at the junction between axon terminal of presynaptic neuron and the dendrite on
the postsynaptic neuron (soma). Each axonal terminal comprises of thousands of synaptic vesicles,
which in turn each contain thousands of neurotransmitter molecules [3]. Neurotransmitters are
biochemical molecules that play a vital role in signal transduction between the neurons. In response to
an electrical stimulation and resulting Ca2+ influx in the pre-synaptic axon terminal, neurotransmitters
are released from synaptic vesicles where they are stored into the synaptic cleft. These biochemical
molecules then bind to their specific receptors in the dendrites of the post-synaptic neuron that
eventually lead to the opening of ligand-gated ion channels and thus generating an action potential.
The whole process takes under two milliseconds of time [3]. The timing between presynaptic and
postsynaptic action potential determines the synaptic plasticity and is mediated through biological
events such as long-term potentiation and depression of synaptic transmission. The action potential
that travels across the axon of postsynaptic neuron is also responsible for initiating a voltage spike in
dendrites from which it originated, known as backpropagating action potential (spike). This is now
known to be a critical step in synaptic plasticity and involves calcium influx into the dendritic spine.
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Figure 7. Synapses are present at the junction of axonal terminal and dendrites of the biological neurons.
Some of the known neurotransmitter (νTx) signaling mechanisms are illustrated.

The timing of the spike, amount of calcium influx and distance of dendrites from neuron body
determines the degree of the LTP. Dendrites also play a role in neural signal processing through signal
attenuation and potentially modification of STDP. The LTD mechanism is still not yet well established.
The signal transduction pathways activated by calcium transients in dendrites can impact plasticity by
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gene activation and synthesis of new proteins that can further modify neurotransmitter release from
presynaptic membrane and the number of receptors at the post synaptic membrane. These biological
processes are known to affect synaptic plasticity and has been a source of continued research and insight
for understanding the learning rules at the individual synaptic level. An axon terminal can contain
more than one type of neurotransmitter. The small molecule neurotransmitters such as glutamate,
glycine mediate the fast responses of synaptic transmission, whereas the neuropeptide transmitters,
as well as the biogenic amines like (DA) and acetylcholine (Ach) and some other small-molecule
neurotransmitters, are involved in regulation of neuronal activity and thus the learning rate [3].
Thus, the principle neuromodulatory effect is to gate plasticity by modifying the STDP learning
window [89].

Further understanding of neuromodulation mechanisms will help us determine the actual learning
mechanism in the brain at the abstraction level of large networks. We now know that dendrites also
have a role through nonlinear spike processing and potential modification of STDP [90]. Conclusions
from experimental studies are divided over the assertion whether synaptic plasticity is discrete [91] or
analog [92] in short-term and long-term dynamics [88]. The difficulty in experimental verification of
the discrete plasticity hypothesis arises from the fact that the neurotransmitter release is a stochastic
phenomenon and the associated noise can render the discretized step to look continuously varying.
In addition, it is known that: (1) synapses are located at varying distances on the soma, (2) spikes
undergo a varying amount of nonlinear post-synaptic dendritic filtering, and (3) multiple synaptic
connections exist between two neurons in the brain. Consequently, the overall synaptic weight would
appear to be analog due to averaging in experiments. For further details, the reader is referred to [88]
and the references therein. Further discussion in this article relies upon the bio-plausible hypothesis of
discrete, stochastic synapses with dendritic attenuation to realize compound synapses using bistable
RRAM devices in parallel.

There is a continual flow of ideas from the computational neuroscience community where they
mathematically model and analyze the underlying principles behind neural computing and the
role of plasticity, neuromodulation and inhibition. Novel insights lead to refinement of learning
algorithms with an ultimate goal of replacing backpropagation by a more biology-like unsupervised
and lifelong learning. Implementation of these ideas in circuits follows naturally. At this point, the role
of supporting neural cells such as glia and astrocytes, which is comprised of almost half the neural
mass, are not well understood; they are ignored in neuromorphic computing until their role becomes
clear and significant.

4.1. Compound Synapse with Axonal and Dendritic Processing

The limitations of current memristive or RRAM devices pose a challenge to the realization of
continuous-valued synaptic weights with reasonable resolution. Recent work has demonstrated
binary-weighted SNNs with 1% to 3% drop in classification accuracy [93]. Other SNN studies
have established that synaptic weights with ≥4 bit resolution are required for no significant loss
of accuracy [25]. In order to obtain more than binary resolution with the worst-case scenario of bistable
RRAM devices, compound synapses were introduced in [94]. Here, several (say M = 16) stochastic
memristors were employed in parallel to obtain an approximate resolution of log2M = 4 bits on
average. This concept was extended to include presynapstic axonal attenuation with parallel stochastic
switching RRAMs [95,96]. Recently, the concept was further expanded to combine axonal (presynaptic)
as well as dendritic (postsynaptic) processing [55]. This is shown in Figure 8 where parallel RRAM
devices are organized in a 2D sub-array structure with spike attenuation being introduced in pre as
well as postsynaptic paths. The postsynaptic path is analogous to dendritic processing in biology,
while axonal processing is an artificial modification. Fundamentally, in this configuration for the same
pre- and post-spike delay (∆t), each stochastic RRAM device is subjected to a different pulse voltage
across it and thus has distinct probability of switching. A smaller ∆t causes more individual RRAMs
to switch than a larger value of ∆t, thus providing flexibility in controlling the STDP behavior.
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Figure 8. (a) A compound synapse in a 4× 4 dendritic configuration with M = 16 parallel bistable
RRAMs; (b) a possible layout configuration for the compound synapse.

The compound synapse concept with dendritic processing is biologically plausible as the STDP
updates can be hypothesized to be discrete and stochastic, similar to the probabilistic release of
the neurotransmitters. When averaged over a large number of synapses with individual dendritic
attenuation, the discrete probabilistic plasticity emulates continuous analog-like behavior. Figure 9
shows the simulation results for the proposed concept. In this simulation, M = 16 RRAMs
are employed with pre and post synaptic attenuations. Assuming Gaussian distribution of the
program/erase threshold voltages, the stochastic switching behavior of the bistable RRAM device is
given by cumulative probability p(V) = P(|V| > |Vth+/− |) for a voltage drop of V across the device.
This is expressed as [95,96]

p(|V|) =
∫ |V|
−∞

1√
2πσ2

e
−(x−V

th+/− )2

2σ2 dx = 1−Q(
|V| − |Vth+/− |

σ
). (1)

Vth+/− is the mean threshold voltages with σ as the standard deviation. In this simulation, we
have chosen program and erase threshold mean values as Vth+ = 0.1 V and Vth− = −0.1 V, respectively,
with the same σ = 0.1 V. Here, Q() is the tail distribution of the standard normal distribution. The LRS
conductance of a bistable RRAM is of one unit and HRS conductance is assumed to be zero.

In the compound synapse, the conductance of individual bistable RRAMs will add up to form
multi-level weight given by wij = ΣM

k=1Gijk, where Gijk is the conductance of the individual bistable
RRAM device between pre-neuron i and post-neuron j, and M is the total number of RRAMs in the
synapse. The post-synaptic neuron integrates the current given by ij = wij ·Vspk,i(t), where Vspk,i(t)
are the spikes from pre-neurons. If m < M RRAM devices are always stuck in their LRS state due to
low threshold voltage corner (based on process or electroforming variations), those particular devices
may not switch, but other (M−m) devices will continue to provide stochastic switching. Thus, it is
important to ensure that the RRAMs are always operated in the stochastic regime based on extensive
statistical device characterization and tunable voltage spike parameters on chip.

In this setup, both axonal attenuations αi and dendritic attenuations β j are set to a pre-selected
range of varying attenuations from 0.8 to 1. These produce 16 positive and 16 negative voltage
levels shown in Figure 9a. Due to this staggering of pulse voltages, each RRAM experiences distinct
switching probability as a function of ∆t as in Figure 9b. Figure 9c shows the STDP learning window
with normalized change in the conductance (Dw) of the compound synapse with dendrites.
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Figure 9. (a) Simulated spike waveforms with dendritic attenuations; (b) effective potential difference
Ve f f across parallel devices versus ∆t; 16 levels are created over program and erase thresholds Vth+

and Vth− ; (c) simulated STDP learning window with dendritic processing.

The plots in Figure 9c demonstrate 16 levels of ∆w = ∆G , both in the LTP (positive) and LTD
(negative) side of the STDP window. These 16 levels result in 4-bit resolution on average. Each dot
in the plots represents the probability density of the particular ∆w transition between −16 and 16.
With dendritic processing, a double exponential curve is fitted to the simulated STDP window with
<1-unit fitting error; STDP window without dendrites has approximately 4-unit error when fitted to the
double exponential [95,96]. Moreover, the axonal and dendrite coefficients, αi and β j, and potentially
their respective time delays, can be customized to implement a wide range of STDP learning windows.
In future work, in addition to including nonlinear processing, tuning of coefficients during training
can allow inclusion of neuromodulation effects, where global error feedback signals can modulate
local synaptic plasticity. In summary, combining dendritic processing schemes with stochastic RRAMs
can allow a high degree of freedom in implementing high-resolution STDP weights.

4.2. Modified CMOS Neuron with Dendritic Processing

An event-driven integrate-and-fire neuron circuit is adapted from the discussion in Section 3 and
shown in Figure 10. Here, dendritic processing is realized by allowing parallel outputs with different
gains/attenuations. The dendrites can be implemented using self-biased source follower (SF) based
buffers with varying attenuations. The output impedance of the source follower buffers is designed to
be smaller than the equivalent LRS resistance of the devices in parallel (RLRS/M). Since the buffers
external to the opamp in the CMOS neuron drive the resistive synapses, the power consumption of the
opamp is considerably reduced. Consequently, single-stage opamp with ≈40 dB gain and large input
swing is sufficient to realize the neuron. Furthermore, splitting the buffers needed to drive the RRAM
synapses for each dendrite allows larger synaptic fan-outs. The pre-synaptic buffers in the axonal path,
needed for backpropagating the spikes, require some thought. During the integration phase, these
buffers should allow the input current to be summed at the opamp’s virtual ground and integrated in
the membrane capacitance. Thus, the axonal buffers are bypassed when the neuron is in the integration
phase as shown in Figure 10. In the future, nonlinearity in the dendritic circuits can be explored for
realizing higher resolution with bistable RRAM synapses, as observed in neurobiology experiments.
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Figure 10. A simplified schematic of a spiking CMOS neuron modified to accommodate pre-synaptic
axonal and post-synaptic dendritic attenuations.

5. Energy-Efficiency of Neuromorphic SoCs

The fundamental reason for investigating NVM or RRAM based NeuSoC architectures is to realize
several orders of magnitude improvement in energy-efficiency over the digital ASICs and GPUs, and
significantly higher neurosynaptic density when compared to contemporary neuromorphic chips that
use digital SRAM synapses. As discussed earlier, resistive loading of CMOS neuron circuits by the
resistive synapses poses severe limitations on the achievable energy-efficiency of the NeuSoCs. In the
discussed NeuSoC architecture, two factors primarily determine the energy-efficiency at the circuit
level, namely the spike shape parameters (i.e., voltage and pulse width) and the range of the LRS, RLRS.
The HRS range RHRS is typically order(s) of magnitude higher than RLRS and thus can be ignored
in the energy-efficiency calculations. The off/on ratio RHRS

RLRS
is an important parameter that denotes

the range over which the device can be programmed and impacts the resulting SNR during inference
operation. The spike pulse shapes were shown in Figure 3. The spike pulse shape has an amplitude
A+ and pulse-width of τ+ during the inference mode. Thus, the current input signal is Isyn = A+

RM
and

the energy consumed in driving a synapse is given by [24]

Espk =
A+2τ+

RM
<

A+2τ+ ·M
RLRS

, (2)

where RM is the resistance of the synapse with a range RLRS
M < RM < RHRS

M . In this calculation,
compound synapses with dendritic processing and M = 16 RRAM devices in parallel are employed to
achieve an equivalent analog synapse with 4-bit resolution. Learning algorithm considerations such as
the input encoding, neuron sparsity (i.e., the percentage of synapses in LRS state), neuron spike-rate
adaptation and homeostasis also determine the energy-efficiency of the overall NeuSoC. For a single
instance of training or inference on an input pattern, the energy, ESNN , consumed in the spiking neural
network is approximated as [96]

ESNN = ηspηLRSNsEspk + NnPnτ+, (3)

where Nn is the total number of neurons, Ns is the total number of synaptic connections in the
SNN, ηLRS is the fraction of synapses in the LRS state, Pn is the neuron static power consumption
and the neuron sparsity factor is ηsp. Furthermore, energy dissipated in the peripheral circuits and
interconnects outside the neurosynpatic array is ignored for the benefit of analytical simplicity.
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For benchmarking the NeuSoC architecture performance, we employ AlexNet deep Convolutional
Neural Network (CNN) that was the winner of the Imagenet Computer Vision Challenge [97] in
2012. Alexnet neural network was trained on then state-of-the-art Nvidia P4 GPU (Santa Clara,
CA, USA), had 640 k neurons with 61 million synapses and a classification energy-efficiency of
170 images/second/Watt [98]. In this analysis, we envisage an equivalent SNN that can achieve
classification accuracy within 1% error as that of the deep neural network trained on a GPU. We
assume that this can be achieved by leveraging transfer learning [75] in an SNN, and/or by employing
spike-based equivalent of the backpropagation or similar algorithms [79]. Thus, the overall circuit
architecture is essentially the same as that of the standard ANN but implemented using mixed-signal
neurons and RRAM synapse arrays.

The numerical estimates are based on: (1) our RRAM-compatible spiking neuron chip described
in [59], (2) 4-bit compound memristive synapses [55,94,95], and (3) RLRS ranging from 0.1–10 MΩ.
The energy consumption for processing (training or classification) of one image is shown in Table 1.
By comparing with the contemporary GPU Nvidia P4 [98] (170 images/s/W), a memristive architecture
with RLRS = 100 kΩ provides a meager 14× improvement in energy-efficiency. However, the energy
consumption can be significantly reduced if the LRS resistance of the memristive devices can be
increased to high-MΩ regime, leading to a potential 1000× range performance improvement; high
LRS also helps reduce the power consumption in the opamp-based neuron circuits [24,59,96,99]. This
analysis suggests that the energy-efficiency can be improved solely by increasing the LRS resistance of
the RRAM devices. However, there has been less focus on realizing high-LRS-resistance devices as the
multi-valued memristive devices are still under development. High-LRS-resistance could potentially
be achieved by controlling the compliance current, optimizing material stoichiometry in transition
oxide RRAMs [86,87], or by engineering entirely new type of devices.

Table 1. Energy estimation for a NeuSoC employing compound resistive random access memory
(RRAM) compound synapse with M = 16 parallel devices.

Low Medium High

Spike Width τ+ 100 ns
Spike Amplitude A+ 300 mV
LRS Resistance RLRS 100 kΩ 1 MΩ 10 MΩ

Single Spike Energy Espk 1.4 pJ 140 fJ 14 fJ
Neuron Energy EN 1.56 pJ 260 fJ 43.3 fJ
Neuron Sparsity ηsp 0.6

Fraction of RRAMs in LRS ηLRS 0.5
Single Event Energy ESNN 422.6 µJ 42.33 µJ 4.24 µJ

Images/sec/watt 2.4 k 23.6 k 235 k
Acceleration over GPU ×14 ×139 ×1.38k

6. Towards Large-Scale Neuromorphic SoCs

We have described the underlying device design and operation trade-offs for the emerging
memory devices in NeuSoC applications. The write (Program/Erase) and read pulse voltages and
temporal profile govern the fundamental trade-offs between performance parameters such as the
state retention, stochasticity, crossbar array size and impact of sneak-paths, device endurance, and
energy consumption. The LRS resistance governs the energy-efficiency of the NeuSoC. However, the
synapse resistance range trades off with the available SNR during inference; a higher HRS resistance
would result in the current being integrated to be of the same order as the thermal and flicker noise
in the CMOS neuron. The synapse resistance range (or the RHRS

RLRS
ratio), synapse stochasticity, and the

inference SNR ultimately determine the learning and classification performance of the deep learning
architectures. For example, we may require higher endurance if the NeuSoC continually trains while
in operation or weight updates exceeding the write cycle endurance are desired during the chip life
time. This may require applying lower stress to the devices that can result in higher stochasticity. The
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amount of stochasticity directly impacts the state retention (more state leakage or relaxation for higher
stochasticity). Thus, it is imperative that the device optimization cannot be decoupled from the circuit
and system-level requirements driven by the application.

Furthermore, stochastity provides a viable approach for multi-bit synpase realization using
realistic devices. In the near-term, the crossbar circuit architecture will continually advance to
realize ConvNets and implement the emerging learning algorithms where error feedback (such as
in backprop) can be implemented using evolving mechanisms such as neuromodulated STDP [89],
random backprop [79,84], or through explicit computation of gradients.

Another major challenge for neuromorphic computing is continuous on-device learning with
smaller amount of data, as opposed to Big Data, similar to biological brains. Contemporary deep
learning requires a large amount of data for training neural networks using stochastic gradient
descent with mini-batches [83]. Gradient descent or backprop-based approaches inherently suffer
from catastrophic forgetting in sequential learning as later weight updates cause the network to forget
the previously learned representations [100]. Recent solutions to catastrophic learning employ elastic
weight consolidation (EWC) [100] or neuron selection for selective weight updates [101]. On the
other hand, STDP-based unsupervised deep learning approaches [7,80] that do not use backprop are
promising and an active area of investigation. However, further research is needed to consistently
achieve performance comparable to deep learning.

Finally, large scale NeuSoCs require development across the entire system hierarchy—(1) densely
integrated nonvolatile devices with long-term retention and endurance and higher LRS resistance,
(2) ultra-low-power event-driven mixed-signal circuits that can interface with crossbar devices and
scale to multiple layers of deep spiking neural networks as seen in Figure 1, and (3) learning algorithms
that can train the on-chip neural networks with localized learning within the write endurance
limit of the underlying devices. Energy-efficiency analysis of the NeuSoC architecture for realizing
large-scale neural networks in Section 5 provides guidance for the target specifications for devices
and circuits, and the sparsity for the spiking activity (algorithms) so that the devices don’t wear out
quickly. The on-chip data flow can be managed by juxtaposition of crossbar arrays. However, as the
neural networks scale to large chips or across several chips, high-bandwidth interconnects become
indispensable. Asynchronous Address-event representation (AER) interconnects were developed
to interface neuromorphic devices and chips [15,102] before the advent of deep learning. However,
AER-based interconnects need to be revisited and adapted to the high-throughput, lower latency and
connectivity demanded by deep spiking neural networks. Recent advances in interconnects include
asynchronous network-on-chip communication used in TrueNorth [12], Loihi [14] and SpiNNaker [13],
and time-domain multiplexing [103].

7. Conclusions

This article provides a review of the application of RRAM synapses to mixed-signal neuromorphic
computing and challenges involved in their interfacing with CMOS neuron circuits. The interplay
of devices, circuits and algorithm is important and their co-development is critical in optimizing the
overall energy-efficiency of large-scale NeuSoC architectures and bringing it closer to the brain-like
efficiency. With continued progress, such neuromorphic architectures pave the path for computing
beyond the limitations set by the Moore’s scaling of CMOS transistors and the energy bottleneck
of von Neumann computers. Moreover, such NeuSoCs open the possibility of realizing general
purpose Artificial Intelligence in portable devices instead of always relying upon the energy-intensive
Cloud infrastructure. In doing so, NeuSoCs provide a newer avenue for novel memory technology
development, where memory itself can be the next generation platform, integral to computing.

Author Contributions: X.W. and V.S. conceived and designed the experiments; X.W. designed the chip and
performed the experiments; X.W. and V.S. analyzed the data; I.S. contributed analysis on bio-plausibility of
methods; K.Z. helped with the chip design and tests. V.S. coordinated the writing of the paper.



J. Low Power Electron. Appl. 2018, 8, 34 19 of 24

Funding: The authors gratefully acknowledge partial support through U.S. National Science Foundation (NSF)
awards CCF-1320987 and EECS-1454411, and Micron Foundation for the Micron Endowed Professorship for
Vishal Saxena.

Acknowledgments: The authors also thank John Chiasson and Ruthvik Vaila for technical discussions on spiking
neural networks and learning algorithms. We are also extremely grateful to Maria Mitkova and her research group
for samples, discussions and experimental insights on CBRAM devices.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial Neural Network
ASIC Application Specific Integrated Circuit
CBRAM Conductive Bridge Random Access Memory
CMOS Complementary Metal Oxide Semiconductor
CNN Convolutional Neural Network
DAC Digital-to-Analog Converter
eRBP Event-Driven Random Backpropagation
FPGA Field Programmable Gate Array
GPU Graphics Processing Unit
HRS High-Resistance State
IC Integrated Circuit
ICA Intelligent Cognitive Assistants
LRS Low-Resistance State
LTD Long-Term Depression
LTP Long-Term Potentiation
NVM Non-Volatile Memory
PCM Phase Change Memory
PCRAM Phase Change Random Access Memory
RRAM Resistive Random Access Memory
SF Source Follower
RBP Random Backpropagation
SRAM Static Random Access Memory
SNN Spiking Neural Networks
SNR Signal-to-Noise Ratio
STDP Spike-Timing Dependent Plasticity
STTRAM Spin-Transfer Torque Random Access Memory
TSV Through-Silicon Via
NeuSoC Neuromorphic System-on-a-Chip
VLSI Very Large Scale Integrated Circuits
WTA Winner Take All
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