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Abstract: This paper presents an on-chip temperature sensor circuit for dynamic thermal management
in VLSI systems. The sensor directly senses the threshold voltage that contains temperature
information using a single PMOS device. This simple structure enables the sensor to achieve an
ultra-compact footprint. The sensor also exhibits high accuracy and voltage-scalability down to
0.4 V, allowing the sensor to be used in dynamic voltage frequency scaling systems without requiring
extra power distribution or regulation. The compact footprint and voltage scalability enables our
proposed sensor to be implemented in a digital standard-cell format, allowing aggressive sensor
placement very close to target hotspots in digital blocks. The proposed sensor frontend prototyped in
a 65 nm CMOS technology has a footprint of 30.1 µm2, 3σ-error of ±1.1 ◦C across 0 to 100 ◦C after
one temperature point calibration, marking a significant improvement over existing sensors designed
for dynamic thermal management in VLSI systems.

Keywords: temperature sensor; dynamic thermal management; dense thermal monitoring; ultra-dynamic
voltage scaling; threshold voltage

1. Introduction

In today’s microprocessors and Systems-on-Chips (SoC), a temperature sensor is essential for dynamic
thermal management (DTM). In DTM, multiple temperature sensors are typically embedded on a chip to
monitor and control chip’s thermal behavior so as to ensure performance and reliability [1,2]. Small and
accurate temperature sensor design is desired since temperature sensing accuracy is directly dependent
on the distance between sensors and hotspots and sensor’s circuit-level accuracy [1–3]. Existing sensors
achieve impressive area and accuracy [4–20]. However, emerging technology trends toward multicore
architectures, 3D-IC, and ultra-dynamic-voltage-scaling (UDVS) make sensor designs to be even more
demanding with the following requirements.

First, ultra-compact sensors are required to monitor the increasing number of hotspots and to
improve flexibility in placement. The number of thermal hotspots and the degree of thermal gradients
have increased with a higher level of transistor integration. This has led modern high-performance
microprocessors to embed tens of temperature sensors (e.g., 48 sensors in [21–23]). The emerging
technology trends toward multicore architectures and 3D-IC can create even more hotspots due to
the thermal coupling between cores and 3D layers [1]. To monitor all of hotspots at low hardware
overhead, sensor footprint needs to be extremely small [1–3]. Further on, the hotspots are often only
identified in the later stages of design. Thus, it is highly desirable to make sensors small for maximal
flexibility in placement.

The remote sensing approach, as proposed in [8,16,17], can help meet this size requirement.
In this approach, each frontend is remotely placed very close to hotspots, yet the backend is shared by
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multiple frontends and placed in a location away from hot digital-heavy area, the latter being able to
simplify the design of the backend as well. In this approach, a frontend of the size of digital standard
cells (e.g., 10s of µm2) is ideal to closely monitor hotspots.

Second, while minimizing the sensor size, the sensors need to maintain a small circuit-level
error across process and voltage variations to improve thermal sensing accuracy. Overestimating
the temperature of the system can cause unnecessary performance throttling. On the other hand,
underestimating can raise a reliability concern. This demands high accuracy temperature sensor
circuits. Furthermore, such high accuracy is desired to require simple and inexpensive post-silicon
calibration, e.g., one temperature point calibration (OPC).

Finally, voltage scalability is important for supporting dynamic voltage frequency scaling (DVFS)
systems [24,25]. DVFS systems can provide peak performance when workload is heavy by operating
a processor at nominal supply voltage (VDD). DVFS systems can achieve low power by scaling VDD

down to near threshold voltage when the workload is moderate or low. For the sensors to be employed
without extra voltage distribution or local regulation in such systems, they need to operate across a
wide range of VDD.

Classical BJT based sensors [4,5] targeting general temperature sensing applications (e.g., RFID
tags) achieves high accuracy (e.g., ±0.15 ◦C 3σ-error), however, their large area and high supply
voltage requirement limit their usage in DTM. Recent BJT based sensor designs [6–9,17] successfully
miniaturize their frontend footprint (as low as 360 µm2 [17]) while meeting a relaxed accuracy
requirement for DTM application. However, BJT based sensor designs have limited voltage scalability
(e.g., minimum VDD > 1 V) and their size is still one or two orders of magnitude larger than digital
standard cells (e.g., 10’s of µm2 or less). Also, BJT is not available in many advanced technologies.
As compared to the standard BJT sensors, MOSFET threshold voltage (VTH) based sensors typically
achieve a smaller footprint and better voltage scalability [10–18]. However, the linearity of VTH against
temperature is dependent on the characteristics of the process technology which raises the concern on
technology portability of such design. Contrarily, BJT based sensors are less dependent on process
technology. As presented in [19,20], thermal-diffusivity (TD) sensors that use diffusivity of bulk silicon
for temperature sensing can also achieve less dependency on process technology. Another possible
challenge for MOSFET based sensor is aging effects (e.g., negative biasing temperature instability
[NBTI]) which can cause long-term accuracy degradation.

In Figure 1, we choose the recent designs from [26], which (i) report less than or close to 1000 µm2

per frontend area (or die photos from which the frontend areas are estimated to that level) and
(ii) reports accuracy with OPC or no calibration. Note that, the frontend area is the area of the sensing
element only and excludes the read-out circuitries (i.e., backend). As shown in the figure, those sensors
indeed pose a trade-off between frontend area and accuracy. In [15], the MOSFET based sensor achieves
among the smallest 279 µm2 footprint and the voltage-scalability down to 0.6 V with the acceptable
(<8 ◦C error, according to the typical requirement outlined in [12]) 3σ-error of +3.4 ◦C/−3.2 ◦C after
OPC. In [16], the MOSFET based sensor achieves among the lowest supply voltage scaling down to
0.45 V with the acceptable (<8 ◦C error, according to the typical requirement outlined in [12]) 3σ-error
of ±2 ◦C. However, each frontend footprint is 1058 µm2. On the other hand, the TD sensor [19]
demonstrates improved area and accuracy trade-off: 400 µm2 frontend footprint (the area is estimated
from the die photo) and 3σ-error of ±0.75 ◦C after OPC. To meet the emerging demands, however,
we need a sensor that is smaller, more voltage scalable, and more accurate.

In this work, we propose a MOSFET-based temperature frontend circuit for remote sensing that
meets the aforementioned requirements [27]. Our proposed sensor uses a single sensing PMOS device
and directly samples its VTH which is typically linear to temperature. Since the sensor uses only one
transistor for sensing, the sensor area is extremely compact.

We design and prototype 8 × 8 array of sensor frontends together with a readout circuitry
in 65 nm CMOS. Multiple sensor frontends can be combined to experiment different sensor sizes.
The measurement of our proposed sensor with an optimal configuration, called SS16 or Sensor-Size-16,
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has a 30.1 µm2 footprint and achieves ±1.1 ◦C 3σ-error after OPC. The proposed sensor also achieves
near-constant accuracy across VDD = 0.4 V to 1 V. The proposed sensor is 9× smaller than the previous
smallest sensor [15] while achieving 3× higher accuracy (Figure 1). The sensor also demonstrates
among the lowest voltage scalability down to 0.4 V. As compared to the sensor with lowest voltage
scalability [16], it achieves 35× smaller area, 1.4× lower error, and 50 mV lower minimum VDD.
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Figure 1. Area, error, and VDD,min comparisons of recent compact thermal sensors. 

Additionally, we experiment the robustness of our sensor operation while being embedded in 
digital circuits. Embedding sensors inside digital blocks raises the concern on coupling noise incurred 
by nearby gates that are actively-switching. We layout our proposed sensor in a digital standard-cell 
format and place and route it in a digital multiplier. Then, we simulate the parasitic-extracted netlists 
of the sensor and multiplier. The results show that it is feasible to mitigate the impact of coupling 
noise of digital gates with the design efforts such as shielding, larger sampling capacitors, and post-
measurement data processing (e.g., averaging).  

The paper is organized as follows. In Section 2, we discuss the operating principle of the 
proposed sensor and the design methodology to optimize accuracy. In Section 3, we discuss the test 
chip design and noise simulation results. We then discuss the measurement results of the test chip in 
Section 4. In Section 5, the experiment with the proposed sensor in digital standard-cell format is 
described. Also, techniques to mitigate the effect of coupling noise are presented. Finally, we 
conclude the paper in Section 6.  

2. Proposed Temperature Sensor Design 

2.1. Operating Principle 

The proposed frontend directly samples the VTH of a PMOS device P1 (Figure 2). VTH is well-known 
to have a strong and well-defined linear relationship with temperature and can be formulated as: V୘ୌ(T) = V୘ୌ(T୰୭୭୫) + K୚୘ୌ ∙ (T − T୰୭୭୫) (1) 

where T is temperature, Troom is 300 K, and KVTH is the first-order temperature coefficient (TC) of VTH 
[28]. This is also confirmed with our SPICE simulation results showing a high linearity of R2 > 0.9999 
and strong temperature coefficient (KVTH) of −1.12 mV/°C across process corner variation (Figure 3). 
The manufacturing process variation mostly modulates the offset of VTH curves and makes little 
impact on KVTH. This characteristic is well-suited for OPC.  
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Additionally, we experiment the robustness of our sensor operation while being embedded in
digital circuits. Embedding sensors inside digital blocks raises the concern on coupling noise incurred
by nearby gates that are actively-switching. We layout our proposed sensor in a digital standard-cell
format and place and route it in a digital multiplier. Then, we simulate the parasitic-extracted
netlists of the sensor and multiplier. The results show that it is feasible to mitigate the impact of
coupling noise of digital gates with the design efforts such as shielding, larger sampling capacitors,
and post-measurement data processing (e.g., averaging).

The paper is organized as follows. In Section 2, we discuss the operating principle of the proposed
sensor and the design methodology to optimize accuracy. In Section 3, we discuss the test chip design
and noise simulation results. We then discuss the measurement results of the test chip in Section 4.
In Section 5, the experiment with the proposed sensor in digital standard-cell format is described. Also,
techniques to mitigate the effect of coupling noise are presented. Finally, we conclude the paper in
Section 6.

2. Proposed Temperature Sensor Design

2.1. Operating Principle

The proposed frontend directly samples the VTH of a PMOS device P1 (Figure 2). VTH is
well-known to have a strong and well-defined linear relationship with temperature and can be
formulated as:

VTH(T) = VTH(Troom) + KVTH·(T − Troom) (1)

where T is temperature, Troom is 300 K, and KVTH is the first-order temperature coefficient (TC) of
VTH [28]. This is also confirmed with our SPICE simulation results showing a high linearity of R2

> 0.9999 and strong temperature coefficient (KVTH) of −1.12 mV/◦C across process corner variation
(Figure 3). The manufacturing process variation mostly modulates the offset of VTH curves and makes
little impact on KVTH. This characteristic is well-suited for OPC.
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Figure 2. Schematic and operation of the proposed sensor frontend that directly samples VTH. 
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To capture the VTH of P1, we propose to use the discharging behavior of a PMOS device,
also known as VTH drop. This can be simply done by pre-charging the source voltage of P1 (VSENSOR

in Figure 2), followed by discharging operation. Specifically, as shown in the waveform of Figure 2,
we first use the shared pre-charging device P2 to pre-charge the shared sampling capacitor Csample
(VSENSOR node) to VDD. Once the node is fully charged, we turn off P2 and turn on our sensing
device P1 at time = 0 (in Figure 2). The P1 device starts to discharge VSENSOR node rapidly as it
is initially in the strong-inversion region. At time = tweak, P1 gradually enters the weak-inversion
region, and the discharging rate of VSENSOR node is largely reduced. This is known as the VTH drop
phenomenon. Finally, we sample the voltage of VSENSOR node at the optimal sampling time (tsample).

2.2. Optimal tsample

In the proposed sensor design, it is important to sample VSENSOR node at the optimal sampling
time (tsample). This provides mainly four benefits, namely (i) good linearity of sampled VSENSOR values
over temperature, (ii) robustness against leakage current of P1, (iii) robustness of TC of VSENSOR values
against process variations, and (iv) robustness against pre-charged level (i.e., VDD) variations.

The optimal sampling time can be determined based on the two constraints that set the upper
and lower bound. The upper bound is set by the leakage current of P1, which perturbs the desired
sampled VSENSOR value. Intuitively, if we sample too late, the leakage current of P1 will modulate
the VSENSOR value away from the VTH value of P1. In such case, the sampled VSENSOR value can be
determined by VTH of P1 and will also be impacted by the leakage current of P1. Since leakage current
has an exponential relationship with VTH of P1 (or temperature), the linearity of sampled VSENSOR

over temperature can be deteriorated.
On the other hand, the lower bound is set by the fact that we need to wait until P1 surely enters

weak inversion. In the boundary between strong and weak inversion, the discharging rate of VSENSOR

node is relatively high and sampling time variation can largely degrade the accuracy of the sensor.
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We perform circuit simulation to find the optimal range of sampling time. As expected,
the linearity of sampled VSENSOR values rapidly degrades due to leakage when sampled too late
(Figure 4a). To maintain the linearity R2 > 0.9999 across worst-case process corners, we set the upper
bound of tsample to 80 µs. On the other hand, the discharging rate exponentially increases if tsample is
too small (Figure 4b). A tsample that is larger than 1 µs can significantly reduce the discharging rate to
<30 µV/ns since P1 is surely in weaker inversion. These set the optimal sampling time window to be
between 1 µs to 80 µs after P1 is turned on. In modern IC technology, this range of time window is
easy to locate since system clock has a much finer resolution.
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Furthermore, we analytically confirm the validity of our intuition and simulation results on the
optimal tsample. To understand the dependency of sampled VSENSOR values on temperature just after
P1 enters weak inversion, we derive its equation to

VSENSOR

(
tsample

)
= VTH −

Iweak·(tsample − tweak)

Csample
(2)
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to 80 µs in the optimal sampling time window). Therefore, tweak can be ignored. Iweak, which is the
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·TKu+K0

room ·
(

1 + T − Troom
Troom

)K0

≈ µ0·COX·W
L ·(n − 1)·

(
K
q

)2
·TKu+K0

room ·
(

1 + K0·T−Troom
Troom

) (3b)

≈ µ0·COX·
W
L
·(n − 1)·

(
K
q

)2
·TKu+K0

room ·
[
(1 − K0) +

K0

Troom
·T
]

(3c)

where Ku is the TC of the mobility (µ) and K0 = −Ku + 2. A key point in the derivation is that VGS is
close to VTH(T) and thus the exponential term in Equation (3a) becomes 1. In addition, another high-order
temperature dependent term, 1+ T−Troom

Troom
in Equation (3b), can be approximated to a linear function via

the Taylor series since T−Troom
Troom

is much smaller than 1 for the temperature range of interest. For example,
for temperature range of 0 ◦C to 100 ◦C, this term is in the range of −0.09 and 0.24. Therefore, as shown
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in Equation (3c), Iweak also becomes a linear function of temperature. After plugging Equation (3c) and
Equations (1) and (2), the value of VSENSOR node sampled at tsample can be formulated as

VSENSOR

(
tsample

)
≈

(
VTH(Troom)− KVTH·Troom − Aweak·tsample

Csample

)
+

(
KVTH − Kweak·tsample

Csample

)
·T (4)

where Aweak = C·(1 − K0) and Kweak = C· K0
Troom

, where C = µ0·COX·W
L ·(n − 1)·

(
K
q

)2
·TKu+K0

room .
The sampled VSENSOR value is a linear combination of the two parameters, VTH and Iweak,

which are linear to temperature, and thus is also linear to temperature. If VSENSOR node is sampled
after the optimal window, the assumption that VGS is close to VTH(T) used in deriving Equation (3a)
becomes invalid, and thus the exponential term cannot be eliminated. This makes the sampled VSENSOR

value exhibit poor linearity which matches our simulation results shown in Figure 4a.
From the above analytical study, we can find another important consideration on choosing the

optimal tsample value. As shown in Equation (4), the TC of the sampled VSENSOR values is formulated

as KVTH − Kweak·tsample
Csample

. In simulation, we saw that KVTH is well-maintained across process variation
(Figure 3). However, the capacitance value of sampling capacitor (Csample) can have large variation
across the process (e.g., Metal-Insulator-Metal capacitors have ~15% 3σ/µ variation). Also, Kweak
value can also vary across the process variation depending on P1 sizing (i.e., W, L). Therefore, it is
critical to minimize the impact of Csample and Kweak variation, which can be achieved by using the
smallest allowable tsample value. We use tsample = 10 µs, so that KVTH (−1.12 mV/◦C) can be more than

50× larger than the
Kweak·tsample

Csample
term.

2.3. Pre-Charge Level Variation

The optimal tsample also makes the proposed sensor robust against pre-charge level variation
incurred by VDD noise. After the sensing device P1 turns on, if the pre-charge level varies, it can change
tweak, i.e., the time P1 enters the weak inversion region. However, as shown in Equation (2), the tweak
(100 ns) is two orders of magnitude smaller than optimal tsample (10 µs). Therefore, the tweak variation
makes minimal impact on the accuracy. As shown in Figure 5, the simulation results show that the
pre-charge level variation of 100 mV causes a negligible error increase of <0.02 ◦C. For the same reason,
VTH offset variation due to process variation (i.e., VTH(Troom) in Equation (1)) also has a negligible
impact on accuracy. The VTH(Troom) variation only affects the offset of the sampled VSENSOR value in
Equation (4) and can be calibrated out via OPC. As a result, process variation also has a negligible
impact on the optimal tsample found in Section 2.2.
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2.4. Sensor Device Type and Body Connection

We explore various device types provided in the 65 nm process for the proposed sensor frontend.
We simulate the accuracy by running 100 Monte-Carlo simulations with process variation and
performing OPC. In the simulation, we compare 2.5 V thick-oxide device and 1 V thin-oxide device
with different VTHs (i.e., high-VTH, standard-VTH, and low-VTH). We choose the optimal sensor size
and tsample value for each device types while sweeping the length by 1–10× of the minimum, width by
1–30× of the minimum, and the tsample value from 1 µs to 100 µs. For all the device types, the sample
capacitor (Csample) value is fixed to 1 pF. The results are summarized in Table 1. All the device types
achieve the 3σ-error of <2.72 ◦C while the 2.5 V thick-oxide device achieves the best 3σ-error of 0.93 ◦C.

Table 1. Comparisons of the proposed sensors in different device types.

Device Type Optimal Sizing (µm) Optimal tsample (µs) +3σ/−3σ Error (◦C) TC (mV/◦C)

2.5 V thick-oxide L = 0.28
W = 3.6 100 0.17/−0.76 −1.50

1.0 V thin-oxide
high-VTH

L = 0.54
W = 3.0 10 −0.06/−2.20 −0.87

1.0 V thin-oxide
standard-VTH

L = 0.54
W = 3.0 10 −0.03/−1.85 −0.85

1.0 V thin-oxide
low-VTH

L = 0.54
W = 3.6 1 −0.24/−2.48 −0.70

We also simulate the sensor circuits using 2.5 V thick-oxide devices across two different body
connections, i.e., connected to VDD or VSENSOR (Figure 6). As shown in Table 2, the sensor with body
connected to VDD achieved better accuracy. However, if VDD is susceptible to large noise, the body can
be connected to VSENSOR or a separate clean bias voltage with <0.06 ◦C nominal accuracy degradation.

Table 2. Comparison of the proposed sensors with different body connection.

Body Connection Optimal Sizing (µm) Optimal tsample (µs) +3σ/−3σ Error (◦C) TC (mV/◦C)

VDD
L = 0.28
W = 3.6 100 0.17/−0.76 −1.50

VSENSOR
L = 2.52
W = 12 100 0.29/−0.70 −1.64
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2.5. VDD Scalability and Noise

We experiment voltage scalability of the proposed frontends. To evaluate this, we simulate the
3σ-error of the sensor frontend whose body is connected to VDD. We perform OPC and calculate the
accuracy across 0.4 to 1 V using (i) VDD specific TC and (ii) the fixed TC found at VDD = 1 V. Using the
single TC found at 1 V, the downscaling to 0.4 V incurs additional 0.98 ◦C error for the 3σ case. If VDD
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specific TCs are used, the additional error is reduced to 0.33 ◦C. Using VDD specific TCs achieves
better accuracy. However, it requires to add a lookup table storing those TC values in the DVS/UDVS
control systems.

One of the challenges in the remote sensing approach is VDD noise. If the body of our frontend (P1)
is connected to VDD, VDD change during the tsample period could affect the output voltage. The result of
the second case (the fixed TC) shows that even with 100 mV VDD variation during the tsample period,
the accuracy is only degraded by 0.05 ◦C (Figure 7). Another potential concern for the remote thermal
sensing approach is substrate noise in the hotpot location since hotspots are likely to have higher
switching activity and thereby have more substrate noise. However, the proposed sensor does not
have any direct connection to substrate and thus mostly immune from substrate noise.
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3. Test Chip Details

The test chip is designed and fabricated in a 65 nm general-purpose CMOS process. Figure 8
shows the die photo of the test chip. The test chip consists of (i) an 8 × 8 frontends, each frontend
being able to be configured from Sensor-Size-1 to Sensor-Size-64 (SS1 to SS64); (ii) shared sample
and hold circuits (S&H); and (iii) on-chip read-out circuitry using the dual-slope analog-to-digital
converter (DSADC) topology (Figure 9). We assume those are a part of the remote sensing architecture.
Each unit-size sensor is a 3× minimum-sized 2.5 V thick-oxide PMOS device with its body tied to VDD.
We used this device and configuration since it achieves the best accuracy as discussed in Section 2.4.
The reference voltage (VCM) for the S&H and DSADC can be generated by e.g., an accurate bandgap
voltage reference (not included in this test chip). Such bandgap circuits may require vertical BJT
devices, limiting area and voltage scalability. However, as the voltage reference is shared by multiple
frontends, its overhead can be amortized. Also, in the remote sensing architecture, the backend
circuitries including the voltage reference are placed in a location away from main digital circuits,
which can relax its requirement on area and voltage scalability. We implement a 1 pF capacitor for
Csample. Further investigation on the different sizes for Csample will be presented in Section 5.
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3.1. P2 and Csample Sharing

The pre-charge PMOS device (P2), the sampling capacitor (Csample), and the S&H are shared
by multiple frontends, providing mainly three benefits. First, each frontend sees the identical load
capacitance which is the sum of Csample and the capacitance of all wires connecting Csample and the

frontends. This makes the TC of sampled VSENSOR value (i.e., KVTH − Kweak·tsample
Csample

) to be the same.
Second, the manufacturing variation of Csample makes little impact on accuracy since each frontend
sees the same variation, which then is calibrated out by OPC. Last but not the least, the sharing can
save the area.

When a frontend is sensing, all the other sensors receive VDD on their gates. This forms negative
VGS in the frontends and suppresses the leakage of the inactive sensors. Also, if no temperature sensing
is requested, all frontends receive VDD. This helps prevent aging effects such as NBTI from degrading
the long-term accuracy of frontends.

3.2. Operating Principle

The operational waveform of a test chip is shown in Figure 9. During period t1, the VSENSOR node
is pre-charged to VDD by P2. Then, during period t2 (which is our tsample), P2 is turned off, and one of
the selected sensor is turned on and discharges the VSENSOR node. During this t1 + t2 period, the S&H
is in the sampling mode. At last, during period t3, S&H captures the VSENSOR value on VOUT and
enters hold mode. The VOUT value which is the sum of VCM (=0.8 V) and VSENSOR at the time tsample is
digitized by an off-chip ADC (16 bit, ±5 V) or by on-chip DSADC.

3.3. On-Chip DSADC

We design an on-chip DSADC to digitize VOUT 32 times and store them in the digital memory
(FIFO) (Figure 9). The average of the 32 values is used for the temperature measurement. The DSADC
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digitization process is as follows. First, ADCOUT resets to VCM for 1 µs. The DSADC counter also resets
to zero. Second, ADCOUT is discharged for a fixed period of 1 µs at the rate of VSENSOR(tsample)/R1C2.
Third, the DSADC counter starts, and ADCOUT is charged with a fixed rate of VCM/R1C2. In the course
of charging, the comparator finds the moment when the ADCOUT becomes larger than VCM and stops
the counter. The digital counter output (count), which is formulated as VSENSOR(tsample) × 1 µs/VCM,
represents the temperature that the sensor core measures. The counter operates at 1.5GHz with a
resolution of 0.5 ◦C/count.

3.4. Noise Simulation

The impact of flicker and thermal noise on the accuracy of the proposed frontend is investigated
using the transient noise analysis methodology outlined in [29]. Specifically, 10 k Monte-Carlo
simulation with transient noise analyses is performed, and noise statistics is gathered. The FMIN and
FMAX is set to 0.1 Hz and 1 MHz, respectively. In this simulation, the noise on the two output nodes
VSENSOR and VOUT (Figure 9) is examined (Figure 10). The 3σ voltage noise (VNOISE) on node VSENSOR

is 0.44 mV, translated to 0.35 ◦C error. The 3σ VNOISE on VOUT is 0.97 mV (=0.76 ◦C).
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4. Measurement Results

4.1. Sensor Accuracy Measurement

Each of the randomly chosen 10 test chips is placed in a temperature chamber and measured
while the temperature is swept from 0 ◦C to 100 ◦C with 10 ◦C steps. We measure the sensors across 10
dies (total 40 SS16 frontends) using off-chip ADC (±5 V, 16b in a National Instruments data-acquisition
PCI card) and the on-chip DSADC. The sensor reading is calibrated with OPC at 50 ◦C and the error
is calculated using a fixed TC for all the sensors in 10 dies. In all the measurement, the t1 and t2 in
Figure 9 are set to be 1 µs and 10 µs, respectively. Therefore, the raw sampling rate is 91 kS/s.

To study the impact of sensor area on accuracy, multiple unit-size sensors are combined and
measured with the off-chip ADC. As more unit-size sensors are combined to form a larger sensor,
the accuracy is improved (Figure 11). When 16 of unit-size sensors are combined (i.e., SS16), it achieves
the 3σ-error of ±1.1 ◦C post OPC. The footprint is 30.1 µm2. The VOUTs of the 40 SS16 sensors after
OPC is shown in Figure 12a. The average TC is measured to be −1.27 mV/◦C. The measured error is
shown in Figure 12b. We also perform two temperature point calibration (TPC) at 20 ◦C and 80 ◦C
(Figure 13). The TPC can further reduce error down to −0.4 ◦C/+0.6 ◦C.

We also investigate the impact of tsample on accuracy (Figure 14). As expected from discussion
in Section 2.2, the worst-case error (i.e., max.(+)error–max.(−)error) exhibits a bathtub-shape curve
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with an optimal tsample appearing between 1µs and 100µs, which achieves the worst-case error of less
than 2 ◦C.J. Low Power Electron. Appl. 2018, 8, x 11 of 17 
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4.3. On-Chip DSADC Measurement 

We repeat the measurement in Section 4.1 using on-chip DSADC (Figure 16). The measurement 
across 5 chips shows the worst-case error increase by 1.1 °C, as compared to the measurement using the 
off-chip ADC. The increased error is mainly due to the resolution limitation (0.5 °C) of the DSADC. 
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4.2. Supply Voltage Scalability Measurement

We also measure VDD scalability of the sensors (Figure 15). The same measurement methodology
described in Section 4.1 is used for the SS16 frontends except VDD is swept from 0.4 V to 1 V.
The measurements across 20 instances across 5 chips show that the worst-case errors are found nearly
constant, around 1.8 ◦C across VDDs.
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4.3. On-Chip DSADC Measurement 

We repeat the measurement in Section 4.1 using on-chip DSADC (Figure 16). The measurement 
across 5 chips shows the worst-case error increase by 1.1 °C, as compared to the measurement using the 
off-chip ADC. The increased error is mainly due to the resolution limitation (0.5 °C) of the DSADC. 
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4.3. On-Chip DSADC Measurement

We repeat the measurement in Section 4.1 using on-chip DSADC (Figure 16). The measurement
across 5 chips shows the worst-case error increase by 1.1 ◦C, as compared to the measurement using
the off-chip ADC. The increased error is mainly due to the resolution limitation (0.5 ◦C) of the DSADC.
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4.4. Comparisons 

As summarized in Table 3, the proposed frontend is compared to the previous temperature 
sensor works. The proposed sensor frontend has 30.1 µm2 area and <±1.1 °C 3σ-error across 40 
instances in 10 dies. As shown in Figure 1, the proposed frontend significantly advances the existing 
area and accuracy trade-off among the MOSFET based designs: the proposed sensor achieves 9× 
smaller area and 3× higher accuracy than the previous smallest design [15]. The proposed sensor 
frontend also achieves the voltage scalability down to 0.4 V, which is 50 mV lower than [16], while 
achieving 35× smaller area and 1.4× higher accuracy. 
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4.4. Comparisons

As summarized in Table 3, the proposed frontend is compared to the previous temperature sensor
works. The proposed sensor frontend has 30.1 µm2 area and <±1.1 ◦C 3σ-error across 40 instances
in 10 dies. As shown in Figure 1, the proposed frontend significantly advances the existing area
and accuracy trade-off among the MOSFET based designs: the proposed sensor achieves 9× smaller
area and 3× higher accuracy than the previous smallest design [15]. The proposed sensor frontend
also achieves the voltage scalability down to 0.4 V, which is 50 mV lower than [16], while achieving
35× smaller area and 1.4× higher accuracy.

Table 3. Comparison table with previous designs.

[7] [17] [9] [10] [13] [14] [15]
Balanced [16] [18] [20] Proposed

Tech. 14 nm 180 nm 28 nm 65 nm 65 nm 44 nm 65 nm 90 nm 40 nm 40 nm 65 nm
Type BJT BJT BJT MOS MOS MOS MOS MOS MOS TD MOS

Front end
Area 1

(µm2)
2900 360 - 1255 2000 * 1725 279 1058 240 400 * 30.1

Total Area 2

(µm2)
8700 - 3800 5000 * 8000 41,300 - - - 1650 30.1 + 1693

(=6770/4) +

VDD (V) 1.35 1~1.8 1.1~2 1.1 1 1.1 0.6~1 0.45~1.5 0.5~1 0.9~1.2 0.4~1
Temperature
Coefficient
(mV/◦C)

- - - - - 3.2 0.57 - - - 1.27

Range (◦C) 0~100 −55~125 −20~130 40~90 0~110 0~110 0~100 −55~105 −40~100 −40~125 0~100
Error 3 (◦C) - ±0.6 (3σ) ±1.8 (3σ) - - - - ±3.5 (3σ) - ±1.4 (3σ) -
Error 4 (◦C)

(on-chip
ADC)

- - ±0.8 (3σ) <3.1 ±1.5
(3σ) −1.4~2.7 - ±2.0 (3σ) + - ±0.75

(3σ) ±1.4

Error 4 (◦C)
(off-chip

ADC)
- - - - - - -3.4~3.2 - - - ±1.1(3σ)

Error 5 (◦C) 3.3 - - - - - −1.5~1.6 + - −0.95~0.97 - −0.4~0.6 +

Sensor
power - - - - - 0.92 µW - 17 µW - 1 pJ **

Total power 1.11
mW - 16 µA - 0.5

mW 0.4 µW - - - 2.5 mW -

Samples 52 318 630 - 20 61 64 27 30 144 40

1: area of single front end circuitry, 2: area including back end read-out circuitry, 3: error without calibration,
4: error after OPC, 5: error after TPC, *: estimated from die photo, **: energy per sensing from simulation at 1V,
+: read-out-circuit shared by 4 SS16.

5. Digital Standard-Cell-Compatible Sensor Experiment

In this section, we investigate the placement of our proposed frontend in digital circuits that
are designed and laid out in the automatic standard cell design flow. First, we layout the proposed
SS16 frontend in the same digital standard-cell format. This takes the area of 3.6 × 9.2 = 33.12 µm2

(Figure 17). Then, we use a commercial place and route tool and place one frontend in the center of
the multiplier circuits. We use four different-size multipliers, each having the input data widths of
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8, 16, 32, or 64 bits. All the multipliers are synthesized with the standard cells using 1V thin-oxide
standard-VTH devices.
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VDD or VSS). For example, as shown in Figure 18a, shielding the VSENSOR node with VSS reduces the 
worst-case error by ~2× in the 64-bit multiplier.  
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We study the impact of coupling noise of digital circuits on the sensor output (VSENSOR) using
the SPICE simulation with the parasitic-extracted netlists and VDD = 1 V. Specifically, we simulate the
VSENSOR node while the multiplier actively switches. To extract the inaccuracy only incurred by digital
noise, we run two simulations with and without multiplier switching activities and take the difference
between them. We also take 1000 samples across varying input vectors for 100 multiplier-clock (CLK)
cycles. Figure 18a shows the worst-case coupling noise found in the simulation. It shows that the
coupling-induced error increases with larger multipliers since the wire of the VSENSOR node becomes
longer and thus exposed to more of digital circuits.
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One technique to reduce coupling noise is to shield the sensitive node with stable voltage (e.g.,
VDD or VSS). For example, as shown in Figure 18a, shielding the VSENSOR node with VSS reduces the
worst-case error by ~2× in the 64-bit multiplier.

Another technique is to use a larger sampling capacitor. This increases the capacitance of a
victim wire relative to coupling capacitance. As shown in Figure 18b, larger sampling capacitors
proportionally reduce the worst-case error. For example, in the experiment with the 64-bit multiplier
and the VSENSOR node being shielded, 10× larger sampling capacitor (i.e., 10 pF) reduces the worst-case
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error proportionally by 10× to 0.44 ◦C (the 1 pF sampling capacitor can incur the worst-case error of
4.04 ◦C). Large sampling capacitors, however, can increase backend area, reduce sampling speed (see
Section 4 for details) and increase energy dissipation per sampling.

Finally, we study the last technique—averaging—to mitigate coupling noise impact. Figure 19
shows the VSENSOR node voltage while the multiplier is computing random input vectors at every CLK
cycle. We sample the VSENSOR node multiple times uniformly (every 10 CLK cycle) after an optimal
tsample, and then we average 10 samples. The results show that the averaging technique can reduce
coupling induced error by 2.6× as compared to the worst case. To implement the averaging operation,
we can use the local FIFO in the on-chip DSADC (discussed in Section 3.3)
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In larger designs, the impact of coupling noise on sensor accuracy can become significant. Also, 
as the metal wire network connecting frontends becomes larger, the resistance and capacitance of the 
metal wire can make more prominent impact on delay and sensor accuracy. To mitigate these 
problems, one can consider hierarchical networks which disable the unused part of networks, and 
potentially have multiple backends [8,16,17]. 

6. Conclusions 

In this paper, we propose a temperature sensor frontend based on a novel mechanism of direct 
VTH sensing. The proposed frontend achieves compact footprint (30.1 µm2), low 3σ-error (±1.1 °C; 
across 0 to 100 °C; after OPC), and good voltage scalability (1 to 0.4 V) without losing much accuracy. 
This is 9× smaller and 3× more accurate than the prior art [15]. It also operates at 50 mV lower than 
the prior art while achieving while achieving 35× smaller area and 1.4× higher accuracy [16]. The 
proposed sensor frontend is in the scale of a digital standard cell, which enables an aggressive sensor 
placement, virtually on a target hotspot. The proposed sensor can enable accurate dense thermal 
monitoring in modern VLSI systems.  
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Figure 19. Coupling noise induced error and its reduction via averaging.

In larger designs, the impact of coupling noise on sensor accuracy can become significant. Also,
as the metal wire network connecting frontends becomes larger, the resistance and capacitance of the
metal wire can make more prominent impact on delay and sensor accuracy. To mitigate these problems,
one can consider hierarchical networks which disable the unused part of networks, and potentially
have multiple backends [8,16,17].

6. Conclusions

In this paper, we propose a temperature sensor frontend based on a novel mechanism of direct
VTH sensing. The proposed frontend achieves compact footprint (30.1 µm2), low 3σ-error (±1.1 ◦C;
across 0 to 100 ◦C; after OPC), and good voltage scalability (1 to 0.4 V) without losing much accuracy.
This is 9× smaller and 3× more accurate than the prior art [15]. It also operates at 50 mV lower
than the prior art while achieving while achieving 35× smaller area and 1.4× higher accuracy [16].
The proposed sensor frontend is in the scale of a digital standard cell, which enables an aggressive
sensor placement, virtually on a target hotspot. The proposed sensor can enable accurate dense thermal
monitoring in modern VLSI systems.
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