
Journal of

Low Power Electronics
and Applications

Communication

An Efficient Connected Component Labeling
Architecture for Embedded Systems

Fanny Spagnolo 1, Fabio Frustaci 1, Stefania Perri 2 and Pasquale Corsonello 1,* ID

1 Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria,
87036 Rende, Italy; f.spagnolo@dimes.unical.it (F.S.); f.frustaci@dimes.unical.it (F.F.)

2 Department of Mechanical, Energy and Management Engineering, University of Calabria,
87036 Rende, Italy; stefania.perri@unical.it

* Correspondence: p.corsonello@unical.it; Tel.: +39-0984-494708

Received: 26 January 2018; Accepted: 3 March 2018; Published: 6 March 2018

Abstract: Connected component analysis is one of the most fundamental steps used in several image
processing systems. This technique allows for distinguishing and detecting different objects in images
by assigning a unique label to all pixels that refer to the same object. Most of the previous published
algorithms have been designed for implementation by software. However, due to the large number of
memory accesses and compare, lookup, and control operations when executed on a general-purpose
processor, they do not satisfy the speed performance required by the next generation high performance
computer vision systems. In this paper, we present the design of a new Connected Component Labeling
hardware architecture suitable for high performance heterogeneous image processing of embedded
designs. When implemented on a Zynq All Programmable-System on Chip (AP-SOC) 7045 chip,
the proposed design allows a throughput rate higher of 220 Mpixels/s to be reached using less than
18,000 LUTs and 5000 FFs, dissipating about 620 µJ.

Keywords: Connected Component Labeling; Heterogeneous SoC; FPGAs

1. Introduction

Connected component analysis (CCA) is one of the most fundamental steps in image processing [1].
It is widely used in several application fields, such as pattern recognition, obstacle detection, and machine
learning. CCA processes the output data coming from low-level algorithms, such as binary segmentation,
and provides abstract input data to other high-level processing, such as recognition algorithms [2].
The CCA is the combination of two computations: connected component labeling (CCL) and features
computation (FC). CCL algorithms distinguish different objects in the source image by assigning a
unique label to all pixels that refer to the same object [3]. Then, the FC transforms the labeled image into
synthetic data, useful for the subsequent processing.

The CCL process is based on scanning the input binary image and labeling each foreground
non-zero pixel in comparison to the values of its neighboring pixels. It is one of the most time-consuming
tasks in CCA and, for this reason, a pure software implementation often is insufficient for the strict
performance requirement for real-time elaboration. To address this issue, in the last few years, designers
have directed their efforts towards the design of hardware modules for use in specialized image
processing architectures. Unfortunately, most of the previously demonstrated hardware designs are
suitable for a particular application environment, thus, a generally valid solution for embedded systems
designs is still missing. In such integrated systems, several custom processing modules operate
concurrently, they access external memory resources through several Direct Memory Access (DMA)
cores, and one or more microprocessor units orchestrate their activities.

In this paper, we propose an efficient architecture for the hardware implementation of the CCL
specifically designed for the inclusion in FPGA-based image processing embedded systems. The main

J. Low Power Electron. Appl. 2018, 8, 7; doi:10.3390/jlpea8010007 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
https://orcid.org/0000-0002-9528-1110
http://dx.doi.org/10.3390/jlpea8010007
http://www.mdpi.com/journal/jlpea

J. Low Power Electron. Appl. 2018, 8, 7 2 of 11

idea of the novel approach is to overlap the most time-consuming step of the CCL algorithm, namely
the label collisions resolution, and the DMA cores configuration actions that have to be performed
by the ARM processors. Thus, multiple scans of the input image or any other steps limiting the
frame rate of the whole system are avoided. The proposed design has been implemented on a Zynq
AP-SOC 7045 chip and it reaches a 220 Mpixels/sec throughput rate. When the 640 × 480 input image
resolution is chosen, a frame rate higher than 700 fps is achieved, thus significantly outperforming
competitor architectures.

2. Background

The objective of the CCL is to mark all the pixels belonging to an object, also called a connected
component, with the same label in the source image. In order to do this, the algorithm scans the input
binary image in raster order and decides how to label each foreground non-zero pixel on the basis
of the labels already assigned to the pixels within a chosen neighborhood. Typically, neighborhoods
consisting of four or eight pixels are used. In these cases, two foreground pixels p and q are said
to be 8-connected (4-connected) if there is a path consisting of foreground pixels a1, a2, . . . , an such
that a1 = p and an = q and, for all pixels, 1 ≤ i ≤ n − 1 and ai and ai+1 are 8-neighbors (4-neighbors)
for each other. The example reported in Figure 1a shows the case in which the mask used allows
the selection of pixels A, B, C, and D as the neighborhood of the foreground pixel E, which is being
labeled. To perform the CCL over the whole image considered in the example, it is scanned in raster
order. As shown in Figure 1b, the new label 1 is assigned to the first encountered foreground pixel
since its neighborhood, consisting of only background pixels, does not provide information about a
possible connected component previously identified. Conversely, the foreground pixel in the mask
highlighted in Figure 1c inherits the label 2 from its neighborhood, so that now it belongs to the same
connected component. During the image scan, a third condition can occur: the so called label collision
or equivalence. This critical event happens when the current neighborhood contains two differently
labeled pixels, as illustrated in Figure 1d. This means that all the pixels already marked with the labels
2 and 3, and thought to belong to separate objects, instead belong to sub-portions of the same object.
Therefore, all those pixels must be assigned the same label.

J. Low Power Electron. Appl. 2018, 8, x 2 of 11

In this paper, we propose an efficient architecture for the hardware implementation of the CCL
specifically designed for the inclusion in FPGA-based image processing embedded systems. The
main idea of the novel approach is to overlap the most time-consuming step of the CCL algorithm,
namely the label collisions resolution, and the DMA cores configuration actions that have to be
performed by the ARM processors. Thus, multiple scans of the input image or any other steps limiting
the frame rate of the whole system are avoided. The proposed design has been implemented on a
Zynq AP-SOC 7045 chip and it reaches a 220 Mpixels/sec throughput rate. When the 640 × 480 input
image resolution is chosen, a frame rate higher than 700 fps is achieved, thus significantly
outperforming competitor architectures.

2. Background

The objective of the CCL is to mark all the pixels belonging to an object, also called a connected
component, with the same label in the source image. In order to do this, the algorithm scans the input
binary image in raster order and decides how to label each foreground non-zero pixel on the basis of
the labels already assigned to the pixels within a chosen neighborhood. Typically, neighborhoods
consisting of four or eight pixels are used. In these cases, two foreground pixels p and q are said to be
8-connected (4-connected) if there is a path consisting of foreground pixels a1, a2,…, an such that a1 = p
and an = q and, for all pixels, 1 ≤ i ≤ n−1 and ai and ai+1 are 8-neighbors (4-neighbors) for each other.
The example reported in Figure 1(a) shows the case in which the mask used allows the selection of
pixels A, B, C, and D as the neighborhood of the foreground pixel E, which is being labeled. To
perform the CCL over the whole image considered in the example, it is scanned in raster order. As
shown in Figure 1(b), the new label 1 is assigned to the first encountered foreground pixel since its
neighborhood, consisting of only background pixels, does not provide information about a possible
connected component previously identified. Conversely, the foreground pixel in the mask
highlighted in Figure 1(c) inherits the label 2 from its neighborhood, so that now it belongs to the
same connected component. During the image scan, a third condition can occur: the so called label
collision or equivalence. This critical event happens when the current neighborhood contains two
differently labeled pixels, as illustrated in Figure 1(d). This means that all the pixels already marked
with the labels 2 and 3, and thought to belong to separate objects, instead belong to sub-portions of
the same object. Therefore, all those pixels must be assigned the same label.

Background pixel

(a) (b)

1

 A B C

 D E

Foreground pixel

 1 2

 1 1 2

 1 1 1 2 2
 2

 2
 3 3 3

 1 2

 1 1 2

 (c) (d)

Mask

Figure 1. An example of the connected component labeling (CCL) process. Figure 1. An example of the connected component labeling (CCL) process.

Resolving the chains of label collisions is the main challenge in all CCL algorithms. Usually, one of
the following strategies is adopted [4]:

J. Low Power Electron. Appl. 2018, 8, 7 3 of 11

• Label-equivalence: in a first image scan, provisional labels are assigned to each pixel, following
the criteria described in the above example. All label collisions are stored. After the first scan
is completed, label collisions are resolved by finding a representative label for each group of
equivalent labels for which collisions were detected. Then, each pixel of the input image can be
correctly re-labeled.

• Label-propagation: the first unlabeled foreground pixel is found and a new label is assigned.
Then, such label is propagated to all foreground pixels connected to it. This technique requires
multiple scans of the input images and/or accessing the pixels in an irregular order depending
on the shapes of connected components.

Unfortunately, due to their irregular access to image pixels, label-propagation methods are not suitable
for pipelined and hardware implementations. For this reason, in the following sections, the attention is
focused on CCL algorithms that resolve collisions by exploiting the label-equivalence approaches.

3. Related Works

CCL algorithms based on the label-equivalence technique can be classified into several categories
depending on the number of performed scans [5]. Multi-scan algorithms perform a first forward
raster scan of the input image, assigning provisional labels to each foreground pixel based on its
neighborhood. When a collision occurs, the current pixel is labeled with the lowest label in the mask,
without storing any equivalence. In the next stages, multiple forward and backward raster scans
are alternated of the resulting image, in order to solve all the collisions generated in the first scan.
The number of scans depends on the shape of the connected components in the input image. However,
when an N × N image is processed (with N being the number of rows and columns of pixels in the
image), the worst chain of equivalences between all the assigned labels can be resolved performing
N-1 scans. Due to this, as deeply discussed in [6,7], FPGA architectures designed for this approach do
not reach speed performances suitable for high performance applications.

3.1. Two-Scan Algorithms

The classic CCL algorithm exploiting the two-scan approach to resolve label collisions [8] performs
a first forward scan in order to assign provisional labels to all foreground pixels and stores the collisions
information in a table. The latter is typically a look-up-table in which the label and its root are kept.
The second forward scan occurs to solve the collisions by reading the table of equivalences. Besides the
need for two full image scans in such a scenario, label equivalences may be stored multiple times
in the table, thus affecting the achievable overall performance. Recently, to speed-up the hardware
implementation of the classic two-scan CCL algorithm, several strategies have been investigated [9–14],
each having its own strengths and weakness. The architecture presented in [9] exhibits a relatively low
latency, but it was specifically designed and optimized to work only on a particular class of objects,
called k-concave. Moreover, it uses two buffers to store a sub-image of the input frame on which a
three-step process is performed to provide labels. The design proposed in [10] minimizes the amount
of memory required to store equivalent labels by working on a run-length encoding representation
of the input binary image. However, this approach also requires additional pre- and post-processing
operations, which adversely affect the latency [11]. In order to introduce a high parallelism level,
thus increasing the achievable speed performance, the strategy proposed in [12] partitions the input
image into equally sized patches. Then, a local provisional label assignment is applied in parallel
to each patch during the first scan, and a local set of equivalences is generated. Finally, a fusion
step occurs to merge in parallel all the sets of local equivalences. Unfortunately, as a drawback,
the architecture proposed in [12] requires large memory resources. As an example, when 720p frames
must be labeled, 9846 Kbits are required, thus limiting the implementation of further processing in the
case of an embedded system.

It is worth noting that the mask used to define the neighborhood of the generic foreground pixel
being labeled can influence the achievable overall performance. In fact, it determines the number of

J. Low Power Electron. Appl. 2018, 8, 7 4 of 11

accesses to the equivalence table to write/read the collisions. For instance, in [13,14], an extended
neighborhood composed of five 2 × 2 blocks of pixels is used. The label assignment is then performed
through a decision tree. For this particular mask, the pixels in the neighborhood are accessed multiple
times during the scan phase since the same strategy is iterated for each foreground pixel in the
input image.

To complete the CCA process, whatever CCL algorithm has been adopted, the additional
computational step for FC is required to extract the features of interest of the objects in the input image,
such as boundaries, position, center of gravity, etc.

3.2. One-Scan Algorithms

Often, the above mentioned features of interest are sufficient to proceed with subsequent
elaboration. In such cases, CCL is not needed and the one-scan approaches, specifically developed for
data streaming applications [15–18], can be efficiently adopted. These algorithms perform the FC step
without either storing or calculating the labeled images.

In [16], a one-scan architecture that also extracts the Center of Gravity (COG) of the labeled object
was demonstrated. When a label collision occurs, equivalent labels are stored into a table implemented
on internal block RAMs. However, resolving the complex chains of equivalences is frame-interleaved
with the labeling process, thus significantly reducing the frame rate of the whole system. A hybrid
hardware-software implementation of a single-scan algorithm for features extraction was presented
in [17]. In that implementation, a DRAM is used to store the initially labeled image, and block RAM
buffers are used to temporarily store a label-connection table and a data table. In order to make the
insertion of new features to be extracted more flexible, but to limit the overall performance in practical
environments, the ARM-based processor is instead used to update the tables. The run-length-based
approach is also investigated for one-scan methods to extract statistical information of connected
components in a binary image [18]. In such a work, two adjacent rows of the input image are
simultaneously processed to generate runs for the current row and indexes of equivalent runs with
respect to the previous row. Statistical information between equivalent runs in adjacent rows are
merged to extract the features of interest for the whole image, including boundary pixel coordinates,
accumulated value of horizontal and vertical coordinates, and number of pixels in a region. Therefore,
in order to identify complete connected regions, this information has to be further processed.

This work proposes a solution suitable for hardware implementation of the CCL process in modern
heterogeneous FPGA SoCs. Compared with two-scan methods discussed in Section 3.1, our proposal
performs the CCL in one scan, resolving on the fly the collisions when the provisional labeled image is
transferred for the next elaboration. In such a way, the performance achievable by the overall video
processing system is significantly improved. Since the FC step can run concurrently to the CCL, a system
designed as described here allows a complete CCA process to be performed by scanning the input
image just one time.

4. The Proposed Architecture

The proposed CCL architecture was designed by taking into account that it will be used as a
component of a complex system architecture realized on a System-On-Chip. We refer to the Xilinx
Zynq-7000 AP-SOC, but our design can be easily accommodated in all FPGA platforms with either a
soft-core processor or dedicate controller to manage the operational flow and DMA transfers [19].

In Figure 2, the system architecture exploiting the novel CCL module is illustrated. The dual-core
ARM Cortex-A9 processor communicates with blocks in the SOC through AXI4 interconnection [19].
In the less favorable scenario, the ARM processors are exclusively used to configure the DMA cores
through AXI4-Lite interfaces; in other words, the processor sends to the DMAs the external memory
addresses to be used in the transfers and all other information to complete the transactions [19].

J. Low Power Electron. Appl. 2018, 8, 7 5 of 11

J. Low Power Electron. Appl. 2018, 8, x 5 of 10

memory addresses to be used in the transfers and all other information to complete the transactions
[19].

Figure 2. The system architecture that includes the CCL module.

In the system architecture of Figure 2, only two DMAs are depicted, and all other devices needed
to capture the source images from a camera, to perform the binary segmentation, and to store the
resulting binary image into the external DDR memory are omitted for clarity. DMA0 is configured to
read from the external memory the binary pixels by means of a Memory Mapped transaction, and it
forms a continuous stream of pixels on its MM2S AXI4-Stream (AXIS) interface [20]. Such a stream is
inputted to the CCL module and, with a latency of two clock cycles, an output stream is provided in
which each data packet contains the original pixel plus a provisional label computed by the CCL
module. Such an output stream is sent to the S2MM interface of DMA0 to be written in the external
memory.

Further, to assign the provisional label to each foreground pixel of the input binary image, the
CCL module stores label collisions in a 2D table, organized as a register file. When the last pixel in
the frame is processed, the resolution of all label collisions automatically starts. Contemporaneously,
DMA0 sends an interrupt to the ARM cores to inform that the labeled image is now available in the
external memory and the subsequent processing can start, in other words, DMA1 can be configured
to transfer the provisionally labeled image to the Next Processing block for further elaboration.

The collisions resolution phase and the configuration of DMA1 occur in parallel, thus, the time
needed to update the 2D table is totally or partially hidden by the execution of the portion of the
software code running on the ARM processors to start any subsequent processes.

When all collisions are resolved, the CCL module writes its results in a Look-Up-Table (LUT),
acting as a Label-Translator, and flags the resolution completion. Then, DMA1 reads from the memory
the provisionally labeled image, but data on its MM2S AXIS bus is sliced so that the provisional label
is firstly converted by the Label-Translator LUT before it is actually delivered to the subsequent
processing stage.

The use of 2D binary tables in the resolution of conflicting events was also adopted in disparate
environments [21]. There, a 2D Dependence Matrices Table was used to realize an efficient instruction
scheduler for dynamic ALU cascading. However, due to the very different nature of the information
stored in the 2D table, both the storing criterion and the table update phase follow a completely
distinct algorithm with respect to our proposal.

4.1. Provisional Labeling Circuit

All the custom modules detailed below have been described by means of parametric VHDL
codes. The Provisional Labeling circuit illustrated in Figure 3 receives the stream of binary pixels
coming from the 32-bit AXIS DMA0 interface; it forms the chosen pixels neighborhood and assigns
the provisional label to the current pixel b(x,y). Finally, it merges pixel and label information on the
output 32-bit stream. The circuit has been equipped with custom input-output standard AXIS

Figure 2. The system architecture that includes the CCL module.

In the system architecture of Figure 2, only two DMAs are depicted, and all other devices needed
to capture the source images from a camera, to perform the binary segmentation, and to store the
resulting binary image into the external DDR memory are omitted for clarity. DMA0 is configured to
read from the external memory the binary pixels by means of a Memory Mapped transaction, and it forms
a continuous stream of pixels on its MM2S AXI4-Stream (AXIS) interface [20]. Such a stream is inputted
to the CCL module and, with a latency of two clock cycles, an output stream is provided in which each
data packet contains the original pixel plus a provisional label computed by the CCL module. Such an
output stream is sent to the S2MM interface of DMA0 to be written in the external memory.

Further, to assign the provisional label to each foreground pixel of the input binary image, the CCL
module stores label collisions in a 2D table, organized as a register file. When the last pixel in the frame
is processed, the resolution of all label collisions automatically starts. Contemporaneously, DMA0

sends an interrupt to the ARM cores to inform that the labeled image is now available in the external
memory and the subsequent processing can start, in other words, DMA1 can be configured to transfer
the provisionally labeled image to the Next Processing block for further elaboration.

The collisions resolution phase and the configuration of DMA1 occur in parallel, thus, the time
needed to update the 2D table is totally or partially hidden by the execution of the portion of the
software code running on the ARM processors to start any subsequent processes.

When all collisions are resolved, the CCL module writes its results in a Look-Up-Table (LUT),
acting as a Label-Translator, and flags the resolution completion. Then, DMA1 reads from the memory
the provisionally labeled image, but data on its MM2S AXIS bus is sliced so that the provisional
label is firstly converted by the Label-Translator LUT before it is actually delivered to the subsequent
processing stage.

The use of 2D binary tables in the resolution of conflicting events was also adopted in disparate
environments [21]. There, a 2D Dependence Matrices Table was used to realize an efficient instruction
scheduler for dynamic ALU cascading. However, due to the very different nature of the information
stored in the 2D table, both the storing criterion and the table update phase follow a completely distinct
algorithm with respect to our proposal.

4.1. Provisional Labeling Circuit

All the custom modules detailed below have been described by means of parametric VHDL codes.
The Provisional Labeling circuit illustrated in Figure 3 receives the stream of binary pixels coming from
the 32-bit AXIS DMA0 interface; it forms the chosen pixels neighborhood and assigns the provisional
label to the current pixel b(x,y). Finally, it merges pixel and label information on the output 32-bit
stream. The circuit has been equipped with custom input-output standard AXIS interfaces that are not
depicted in Figure 3. A FIFO stage, whose depth is related to the width resolution of the input image,
is used to form the pixel’s neighborhood.

J. Low Power Electron. Appl. 2018, 8, 7 6 of 11

J. Low Power Electron. Appl. 2018, 8, x 6 of 10

interfaces that are not depicted in Figure 3. A FIFO stage, whose depth is related to the width
resolution of the input image, is used to form the pixel’s neighborhood.

Figure 3. The provisional labeling circuit.

Without loss of generality, we have chosen the neighboring pixels b(x,y − 1), b(x − 1,y + 1) and b(x
− 1,y), as shown in Figure 4. When a new pixel enters the pipeline, the chosen neighborhood is
transferred to a logic circuit that assigns the provisional label based on the following rules:

• If the current pixel is a foreground pixel and its neighborhood contains only background pixels,
a new label is assigned to the current pixel b(x,y). New labels are generated in ascending order.

• If the neighborhood contains only a labeled foreground pixel, b(x,y) inherits the label associated
with such pixel.

• If the neighborhood contains two foreground pixels associated to different labels, then a collision
occurs. In such a case, the smallest label is assigned to the current pixel. It is worth noting that
three label collisions cannot occur in the neighborhood.

The Decision Logic circuit visible in Figure 3 merges pixels and assigned labels with a latency of
only two clock cycles. Furthermore, it stores the assigned labels and collisions in the above mentioned
2D table. As shown in Figure 3, to this purpose, Label_A and Label_B signals are used. If a new label
has been assigned Label_A = Label_B, otherwise if a collision occurs, the above signals correspon to
one of the two colliding labels. Data on Label_A and Label_B buses are valid when the Valid signal is
asserted. Whereas, the Last signal informs the 2D register file that the last pixel of the frame has been
processed and the collision resolution phase can start.

Figure 4. The neighborhood adopted in the design.

4.2. 2D Table for Resolving Label Collisions

The 2D table used for storing labels and resolving collisions is implemented as a register file
with updating capability. In our implementation, it consists of NL × NL flip-flops, where NL is the
number of usable labels. However, it can be easily implemented by using Block-RAMs, thus reducing
slice-resources utilization, but slightly increasing latency.

Figure 3. The provisional labeling circuit.

Without loss of generality, we have chosen the neighboring pixels b(x,y − 1), b(x − 1,y + 1) and
b(x − 1,y), as shown in Figure 4. When a new pixel enters the pipeline, the chosen neighborhood is
transferred to a logic circuit that assigns the provisional label based on the following rules:

• If the current pixel is a foreground pixel and its neighborhood contains only background pixels,
a new label is assigned to the current pixel b(x,y). New labels are generated in ascending order.

• If the neighborhood contains only a labeled foreground pixel, b(x,y) inherits the label associated
with such pixel.

• If the neighborhood contains two foreground pixels associated to different labels, then a collision
occurs. In such a case, the smallest label is assigned to the current pixel. It is worth noting that
three label collisions cannot occur in the neighborhood.

J. Low Power Electron. Appl. 2018, 8, x 6 of 10

interfaces that are not depicted in Figure 3. A FIFO stage, whose depth is related to the width
resolution of the input image, is used to form the pixel’s neighborhood.

Figure 3. The provisional labeling circuit.

Without loss of generality, we have chosen the neighboring pixels b(x,y − 1), b(x − 1,y + 1) and b(x
− 1,y), as shown in Figure 4. When a new pixel enters the pipeline, the chosen neighborhood is
transferred to a logic circuit that assigns the provisional label based on the following rules:

• If the current pixel is a foreground pixel and its neighborhood contains only background pixels,
a new label is assigned to the current pixel b(x,y). New labels are generated in ascending order.

• If the neighborhood contains only a labeled foreground pixel, b(x,y) inherits the label associated
with such pixel.

• If the neighborhood contains two foreground pixels associated to different labels, then a collision
occurs. In such a case, the smallest label is assigned to the current pixel. It is worth noting that
three label collisions cannot occur in the neighborhood.

The Decision Logic circuit visible in Figure 3 merges pixels and assigned labels with a latency of
only two clock cycles. Furthermore, it stores the assigned labels and collisions in the above mentioned
2D table. As shown in Figure 3, to this purpose, Label_A and Label_B signals are used. If a new label
has been assigned Label_A = Label_B, otherwise if a collision occurs, the above signals correspon to
one of the two colliding labels. Data on Label_A and Label_B buses are valid when the Valid signal is
asserted. Whereas, the Last signal informs the 2D register file that the last pixel of the frame has been
processed and the collision resolution phase can start.

Figure 4. The neighborhood adopted in the design.

4.2. 2D Table for Resolving Label Collisions

The 2D table used for storing labels and resolving collisions is implemented as a register file
with updating capability. In our implementation, it consists of NL × NL flip-flops, where NL is the
number of usable labels. However, it can be easily implemented by using Block-RAMs, thus reducing
slice-resources utilization, but slightly increasing latency.

Figure 4. The neighborhood adopted in the design.

The Decision Logic circuit visible in Figure 3 merges pixels and assigned labels with a latency of
only two clock cycles. Furthermore, it stores the assigned labels and collisions in the above mentioned
2D table. As shown in Figure 3, to this purpose, Label_A and Label_B signals are used. If a new label
has been assigned Label_A = Label_B, otherwise if a collision occurs, the above signals correspon to
one of the two colliding labels. Data on Label_A and Label_B buses are valid when the Valid signal is
asserted. Whereas, the Last signal informs the 2D register file that the last pixel of the frame has been
processed and the collision resolution phase can start.

4.2. 2D Table for Resolving Label Collisions

The 2D table used for storing labels and resolving collisions is implemented as a register file
with updating capability. In our implementation, it consists of NL × NL flip-flops, where NL is the
number of usable labels. However, it can be easily implemented by using Block-RAMs, thus reducing
slice-resources utilization, but slightly increasing latency.

J. Low Power Electron. Appl. 2018, 8, 7 7 of 11

In Figure 5, the schematic diagram of the 2D table sub-system is illustrated. It consists of a Write
Control Circuit that receives information to be stored from the previous stage labels. Label_A and
Label_B values are used as the coordinates for the access to the 2D table, so that a logic of one is written
in the (A,B) and (B,A) positions at the same time. If Label_A = Label_B, a single write operation in a
diagonal element is performed to flag that the new label has been assigned to a pixel.

J. Low Power Electron. Appl. 2018, 8, x 7 of 10

In Figure 5, the schematic diagram of the 2D table sub-system is illustrated. It consists of a Write
Control Circuit that receives information to be stored from the previous stage labels. Label_A and
Label_B values are used as the coordinates for the access to the 2D table, so that a logic of one is written
in the (A,B) and (B,A) positions at the same time. If Label_A = Label_B, a single write operation in a
diagonal element is performed to flag that the new label has been assigned to a pixel.

Figure 5. The 2D table for storing labels and resolving collisions.

In Figure 6a, an example of such a 2D table sub-system is reported. We suppose that six labels
have been assigned, thus, all elements on the diagonal line were written with a logic of one. Since
such elements do not play a role in the subsequent phase, in which collisions are resolved, we filled
those positions with ‘X’. Furthermore, several collisions were identified during the provisional
labeling step and consequently other positions in the table were filled with a logic of one. The
collisions in the example of Figure 6a are (1-3), (3-4), (2-6), and (4-5); no matter the order in which
they were found. It is worth noting that a collision chain is present (1-3, 3-4, 4-5).

(a) (b) (c)

Figure 6. An example of the content of the 2D table. (a) Filling the 2D table based on the
collisions (1-3), (3-4), (2-6), and (4-5); (b) First updating: copy the third row into the first row
due to the collision (1-3); (c) Result after the updating.

When the Last signal is asserted, the update phase starts. The register file is now scanned row-
by-row. In the position (1,3) a logic of one is found and this means that the third row must be copied
to the first row, as shown in Figure 6b. This process is repeated iteratively until the current row is
updated. When the update is complete, the table appears as in Figure 6c. A leading one circuit is used
to find the position of the first logic of one in each row, thus obtaining the equivalences that are then
stored in the Label Translator LUT. The completion of the operation is flagged by the signal Completed
visible in Figure 4. In the above example, labels 1, 3, 4, and 5 are all translated as 1, whereas labels 2

Figure 5. The 2D table for storing labels and resolving collisions.

In Figure 6a, an example of such a 2D table sub-system is reported. We suppose that six labels
have been assigned, thus, all elements on the diagonal line were written with a logic of one. Since such
elements do not play a role in the subsequent phase, in which collisions are resolved, we filled those
positions with ‘X’. Furthermore, several collisions were identified during the provisional labeling step
and consequently other positions in the table were filled with a logic of one. The collisions in the
example of Figure 6a are (1-3), (3-4), (2-6), and (4-5); no matter the order in which they were found.
It is worth noting that a collision chain is present (1-3, 3-4, 4-5).

J. Low Power Electron. Appl. 2018, 8, x 7 of 10

In Figure 5, the schematic diagram of the 2D table sub-system is illustrated. It consists of a Write
Control Circuit that receives information to be stored from the previous stage labels. Label_A and
Label_B values are used as the coordinates for the access to the 2D table, so that a logic of one is written
in the (A,B) and (B,A) positions at the same time. If Label_A = Label_B, a single write operation in a
diagonal element is performed to flag that the new label has been assigned to a pixel.

Figure 5. The 2D table for storing labels and resolving collisions.

In Figure 6a, an example of such a 2D table sub-system is reported. We suppose that six labels
have been assigned, thus, all elements on the diagonal line were written with a logic of one. Since
such elements do not play a role in the subsequent phase, in which collisions are resolved, we filled
those positions with ‘X’. Furthermore, several collisions were identified during the provisional
labeling step and consequently other positions in the table were filled with a logic of one. The
collisions in the example of Figure 6a are (1-3), (3-4), (2-6), and (4-5); no matter the order in which
they were found. It is worth noting that a collision chain is present (1-3, 3-4, 4-5).

(a) (b) (c)

Figure 6. An example of the content of the 2D table. (a) Filling the 2D table based on the
collisions (1-3), (3-4), (2-6), and (4-5); (b) First updating: copy the third row into the first row
due to the collision (1-3); (c) Result after the updating.

When the Last signal is asserted, the update phase starts. The register file is now scanned row-
by-row. In the position (1,3) a logic of one is found and this means that the third row must be copied
to the first row, as shown in Figure 6b. This process is repeated iteratively until the current row is
updated. When the update is complete, the table appears as in Figure 6c. A leading one circuit is used
to find the position of the first logic of one in each row, thus obtaining the equivalences that are then
stored in the Label Translator LUT. The completion of the operation is flagged by the signal Completed
visible in Figure 4. In the above example, labels 1, 3, 4, and 5 are all translated as 1, whereas labels 2

Figure 6. An example of the content of the 2D table. (a) Filling the 2D table based on the collisions
(1-3), (3-4), (2-6), and (4-5); (b) First updating: copy the third row into the first row due to the collision
(1-3); (c) Result after the updating.

When the Last signal is asserted, the update phase starts. The register file is now scanned row-by-row.
In the position (1,3) a logic of one is found and this means that the third row must be copied to the first
row, as shown in Figure 6b. This process is repeated iteratively until the current row is updated. When
the update is complete, the table appears as in Figure 6c. A leading one circuit is used to find the position
of the first logic of one in each row, thus obtaining the equivalences that are then stored in the Label

J. Low Power Electron. Appl. 2018, 8, 7 8 of 11

Translator LUT. The completion of the operation is flagged by the signal Completed visible in Figure 4.
In the above example, labels 1, 3, 4, and 5 are all translated as 1, whereas labels 2 and 6 are translated as
label 2. Finally, such information is used by the subsequent processing stages, as above described.

5. Results

The architecture of Figure 2 has been implemented in the hardware with NL = 64 by using a
Xilinx Zynq-7000 AP-SOC xc7z045ffg900-2 chip to prove its functionality and to measure the speed of
performance. To this purpose, the German Traffic Sign Recognition Benchmarks (GTSRB) [22] have
been used. For a fair comparison with competitors, a 640 × 480 image resolution has been adopted,
and all the pre-processing segmentation steps have been not included in the following comparison.

The characteristics of the proposed CCL architecture and of several competitors are summarized
in Table 1. It can be easily observed that the proposed architecture significantly overcomes the speed
performance of competitors in [9,10,16], well above the improvement expected due to the more
advanced technology used here. When implemented within a XC7Z045 chip, the complete embedded
system depicted in Figure 2 uses 51%, 15.5%, and 3.6% of the available LUTs, FFs, and BRAMs,
respectively. The maximum achievable clock frequency is 225 MHz, which is well below the maximum
frequency sustainable by the AXI4 and AXI4-Stream DMA interfaces. It was obtained by the Vivado
Timing Analyzer for the whole system depicted in Figure 2. Besides the maximum clock frequency,
that is obviously dependent on the technology adopted in the various realizations, Table 1 reports
the number of latency cycles and the throughput in terms of number of cycles per pixel that are
technological-independent speed performance parameters. Such data were directly extracted from
original papers. The particular strategy adopted in the proposed design allows the lowest latency to be
reached. Furthermore, the number of clock cycles required to obtain an output pixel is almost halved
with respect to [10,16] and 18% lower than the architecture in [9]. All these advantages are obtained at
a reasonable expense of the logic resources requirement, and without using internal and/or external
memory resources.

Table 1. Comparison results.

[9] [10] [16] This Work [17] 1 This Work 1

Technology Stratix Virtex IV Virtex II Zynq Z7045 Zynq Z7020 Zynq Z7020
Image size 2k × 2k 640 × 480 640 × 480 640 × 480 640 × 480 640 × 480

Fmax [MHz] 72 49.73 27 225 124.22 142.8
Latency [cycles] 46,207 n.a. 313,584 3 n.a. 3

Throughput 2 [cycles/pixel] 1.19 2.011 2.054 1.011 1.011 1.011
LUTs

10.7k
649 7589 17,938 452 404

FFs 641 936 4966 608 770
BRAM [bit] 400k 1142k 272k 0 90k 0

1 Implementation of only the provisional labeling portion; 2 Throughput obtained for a 640 × 480 image resolution.

With respect to the system demonstrated in [17], it should be noted that such an implementation
uses hardware resources only for the provisional labeling portion of the architecture, whereas the
label collisions resolution is executed by a software routine using further external memory resources
not included in the table. However, for a direct comparison, we have implemented the provisional
labeling circuit described in Section 4.1 on the Zynq xc7z020clg484-1 chip. Results show that for the
provisional labeling portion, only 404 LUTs and 770 FFs are required, saving precious BRAM resources,
and achieving a performance of ~140 Mpixels/s. Consequently, our architecture provides an 4.6×
improvement in terms of performance/area efficiency over [17].

Further hardware experiments have been performed to verify if the collisions resolution phase is
totally or partially hidden by the DMA1 configuration process. By using benchmarks in [22] and the
Internal Logic Analyzer (ILA), we proved that the worst-case time required to prepare the Label Translator
LUT is less than 5 µs, whereas the DMA configuration needs at least 15 µs to be completed. In the test

J. Low Power Electron. Appl. 2018, 8, 7 9 of 11

set-up, pre-processed image benchmarks have been stored in the DDR memory by means of an off-line
process. Then, an on-purpose C++ routine was executed on the ARM-processor that programmed the
DMAs activity and started the CCL computation. Finally, the output labeled image was stored to the
DDR memory again for testing purposes. Such results were compared with those obtained through
Matlab routines. ILA measurements have been used to verify the correctness of all timing actions.

The theoretical worst-case collisions resolution time has been estimated at ≈29 µs, but it has been
verified that it can occur only in the presence of an unrealistic chain of label collisions. However, we artificially
forced the 2D table to assume such an unrealistic content. In this case, the Completed signal in Figure 4 would
delay the start of the DMA1 transfer by ≈14 µs. As a consequence, the maximum sustainable frame rate
would be 717 fps, instead of 724 fps which is reachable when the resolution time is totally overlapped with
software code execution.

To measure energy use, the Xilinx Power Analysis Tool was used to execute a real estimation based
on the switching activity of the internal signals when the theoretical worst-case image is fed as an input
to the architecture. In such a situation, the dynamic energy dissipation is 620 µJ for the Provisional
Labeling Circuit and the 2D table. When the proposed system is used to process a 640 × 480 frame at
60 fps, the dynamic power dissipation is 38 mW, which is ≈21% lower than the architecture in [16],
in the same operating conditions.

Finally, the proposed Zynq-based embedded system has been compared with an all software
implementation of the same CCL algorithm. A software code running on the ARM dual-core processor
was used to evaluate the execution time required for reading a 640 × 480 input image from the DDR3,
performing the provisional labeling based on the rules described in Section 3.1, writing and updating
the 2D Table, and storing the result into the external memory. The processor completes those tasks
in 8.6 ms, running at 666.66 MHz as the clock frequency. However, the hardware implementation
performs the tasks in 1.38 ms, at a clock frequency of 225 MHz, providing an increase is speed of 6.23×
with respect to the software counterpart.

6. Conclusions

A novel Connected Component Labeling architecture specifically designed for the inclusion in
heterogeneous image-processing embedded systems has been demonstrated. The main innovation
consists in overlapping the label collisions resolution phase and the Direct Memory Access cores
configuration actions performed by the ARM processors.

Such a strategy allows a throughput rate of ~220 Mpixels/sec to be reached at the reasonable
expense of logic resources widely available in the programmable logic of a Xilinx Zynq-7000 AP-SOC.
The proposed design saves precious Block-RAM resources and does not use the external memory
to accomplish the CCL task, but rather the external memory is used just as a frame buffer. A frame
rate higher than 700 fps is obtained when a 640 × 480 image resolution is adopted, while only 620 µJ
are used in the worse-case scenario. When the target application requires the elaboration of Full HD
images at 60 fps, ~1300 more FFs are utilized and, to save power, the clock frequency can be as low as
125 MHz.

Acknowledgments: Authors would like to thank Giovanni Staino for his help during the prototype realization.

Author Contributions: Fanny Spagnolo is the main author and is responsible of the design and for writing
the paper. Fabio Frustaci has provided valuable inputs during the design. Stefania Perri provided valuable
suggestions during the design phase and also while preparing the manuscript. Pasquale Corsonello participated
to the design and coordinated the research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ronsen, C.; Denjiver, P.A. Connected Components in Binary Images: The Detection Problem; Research Studies
Press: Baldock, UK, 1984.

J. Low Power Electron. Appl. 2018, 8, 7 10 of 11

2. Cabaret, L.; Lacassagne, L.; Oudni, L. A Review of World’s Fastest Connected Component Labeling
Algorithms: Speed and Energy Estimation. In Proceedings of the 2014 Conference on Design and
Architectures for Signal and Image Processing (DASIP 2014), Madrid, Spain, 8–10 October 2014. [CrossRef]

3. Klaiber, M.J.; Bailey, D.G.; Baroud, Y.O. A Resource-Efficient Hardware Architecture for Connected Component
Analysis. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 1334–1349. [CrossRef]

4. He, L.; Chao, Y.; Suzuki, K. An efficient first-scan method for label-equivalence-based labeling algorithms.
Pattern Recognit. Lett. 2010, 31, 28–35. [CrossRef]

5. He, L.; Ren, X.; Gao, Q.; Zhao, X.; Yao, B.; Chao, Y. The connected-component labeling problem: A review of
state-of-the-art algorithms. Pattern Recognit. Lett. 2017, 70, 25–43. [CrossRef]

6. Crookes, D.; Benkrid, K. FPGA implementation of image component labeling. In Proceedings of the SPIE
Volume 3844, Reconfigurable Technology: FPGAs for Computing and Applications, Boston, MA, USA,
26 August 1999.

7. Benkrid, K.; Sukhsawas, S.; Crookes, D.; Benkrid, A. An FPGA-Based Image Connected Component Labeler,
in Field Programmable Logic and Application; Springer: Berlin/Heidelberg, Germany, 2003; pp. 1012–1015.

8. Rosenfeld, A.; Kak, A.C. Digital Picture Processing, 2nd ed.; Academic Press: San Diego, CA, USA, 1982.
9. Ito, Y.; Nakano, K. Low-Latency Connected Component Labeling Using an FPGA. Int. J. Found. Comput. Sci.

2010, 21, 405–425. [CrossRef]
10. Appiah, K.; Hunter, A.; Dickinson, P.; Owens, J. A Run-Length Based Connected Component Algorithm for

FPGA Implementation. In Proceedings of the International Conference on Field Programmable Technology
(FTP 2008), Taipei, Taiwan, 7–10 December 2008; pp. 177–184.

11. Klaiber, M.J.; Bailey, D.G.; Simon, S. A single-cycle parallel multi-slice connected components analysis
hardware architecture. J. Real-Time Image Process. 2016. [CrossRef]

12. Lin, C.Y.; Li, S.Y.; Tsai, T.H. A scalable parallel hardware architecture for Connected Component Labeling.
In Proceedings of the 2010 IEEE 17th International Conference on Image Processing, Hong Kong, China,
26–29 September 2010; pp. 3753–3756.

13. Grana, C.; Borghesani, D.; Cucchiara, R. Optimized Block-based Connected Components Labeling with
Decision Trees. IEEE Transact. Image Process. 2010, 19, 1596–1609. [CrossRef] [PubMed]

14. Grana, C.; Borghesani, D.; Santinelli, P.; Cucchiara, R. High performance Connected Components Labeling
on FPGA. In Proceedings of the 2010 Workshop on Database and Expert Systems Applications (DEXA),
Bilbao, Spain, 30 August–3 September 2010.

15. Walczyk, R.; Armitage, A.; Binnie, T.D. Comparative study of Connected Component Labeling algorithms
for embedded video processing systems. In Proceedings of the 2010 International Conference on Image
Processing, Computer Vision, and Pattern Recognition, Las Vegas, NV, USA, 12–15 July 2010.

16. Malik, A.W.; Thörnberg, B.; Cheng, X.; Lawal, N. Real-time Component Labeling with Centre of Gravity
Calculation on FPGA. In Proceedings of the Sixth International Conference on Systems (ICONS 2011),
St. Maarten, The Netherlands Antilles, 23–28 January 2011; pp. 39–43.

17. Tekleyohannes, M.; Sadri, M.; Klein, M.; Siegrist, M. An Advanced Embedded Architecture for Connected
Component Analysis in Industrial Applications. In Proceedings of the 2017 Design, Automation & Test in
Europe Conference & Exhibition (DATE 2017), Lausanne, Switzerland, 27–31 March 2017; pp. 734–735.

18. Zhao, C.; Duan, G.; Zheng, N. A hardware-efficient method for extracting statistic information of Connected
Component. J. Signal Process. Syst. 2017, 88, 55–65. [CrossRef]

19. AMBA 4 AXI4, AXI4-Lite, and AXI4-Stream Protocol Assertions User Guide. Available online: http://
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022d/index.html (accessed on 3 March 2018).

20. AXI DMA—Logi Core IP (v7.1). Available online: http://www.xilinx.com/support/documentation/ip_
documentation/axi_dma/v7_1/pg021_axi_dma.pdf (accessed on 3 March 2018).

http://dx.doi.org/10.1109/DASIP.2014.7115641
http://dx.doi.org/10.1109/TCSVT.2015.2450371
http://dx.doi.org/10.1016/j.patrec.2009.08.012
http://dx.doi.org/10.1016/j.patcog.2017.04.018
http://dx.doi.org/10.1142/S0129054110007337
http://dx.doi.org/10.1007/s11554-016-0610-2
http://dx.doi.org/10.1109/TIP.2010.2044963
http://www.ncbi.nlm.nih.gov/pubmed/20227983
http://dx.doi.org/10.1007/s11265-016-1126-5
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022d/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0022d/index.html
http://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf

J. Low Power Electron. Appl. 2018, 8, 7 11 of 11

21. Yao, J.; Ogata, K.; Shimada, H.; Shinobu, M.; Hiroshi, N.; Shinji, T. An Instruction Scheduler for Dynamic
ALU Cascading Adoption. IPSJ Online Transact. 2009, 2, 122–139. [CrossRef]

22. Houben, S.; Stallkamp, J.; Salmen, J.; Schlipsing, M.; Igel, C. Detection of Traffic Signs in Real-World Images:
The German Traffic Sign Detection Benchmark. In Proceedings of the 2013 International Joint Conference on
Neural Networks (IJCNN 2013), Dallas, TX, USA, 4–9 August 2013.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2197/ipsjtrans.2.122
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Related Works
	Two-Scan Algorithms
	One-Scan Algorithms

	The Proposed Architecture
	Provisional Labeling Circuit
	2D Table for Resolving Label Collisions

	Results
	Conclusions
	References

