
Journal of

Low Power Electronics
and Applications

Article

Predictive Direct Torque Control Application-Specific
Integrated Circuit of an Induction Motor Drive with a
Fuzzy Controller

Guo-Ming Sung *, Wei-Yu Wang, Wen-Sheng Lin and Chih-Ping Yu

Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan;
wa26ng@gmail.com (W.-Y.W.); wensheng.0@gmail.com (W.-S.L.); cpyu@ntut.edu.tw (C.-P.Y.)
* Correspondence: gmsung@ntut.edu.tw; Tel.: +886-2-277-121-71 (ext. 2121); Fax: +886-2-27-317-187

Academic Editor: Alexander Fish
Received: 18 January 2017; Accepted: 7 June 2017; Published: 10 June 2017

Abstract: This paper proposes a modified predictive direct torque control (PDTC) application-specific
integrated circuit (ASIC) of a motor drive with a fuzzy controller for eliminating sampling and
calculating delay times in hysteresis controllers. These delay times degrade the control quality and
increase both torque and flux ripples in a motor drive. The proposed fuzzy PDTC ASIC calculates
the stator’s magnetic flux and torque by detecting the three-phase current, three-phase voltage,
and rotor speed, and eliminates the ripples in the torque and flux by using a fuzzy controller and
predictive scheme. The Verilog hardware description language was used to implement the hardware
architecture, and the ASIC was fabricated by the Taiwan Semiconductor Manufacturing Company
through a 0.18-µm 1P6M CMOS process that involved a cell-based design method. The measurements
revealed that the proposed fuzzy PDTC ASIC of the three-phase induction motor yielded a test
coverage of 96.03%, fault coverage of 95.06%, chip area of 1.81 × 1.81 mm2, and power consumption
of 296 mW, at an operating frequency of 50 MHz and a supply voltage of 1.8 V.

Keywords: predictive direct torque control; ASIC; induction motor; hardware description language;
fuzzy control

1. Introduction

The direct torque control (DTC) algorithm is based on the error between the reference and
estimated values of torque and flux. Inverter states can be directly controlled by reducing the torque
and flux errors within band limits [1]. The conventional proportional–integral–derivative (PID) control
is still widely used as a speed regulator in DTC systems [2]. However, the induction motor (IM) has
multivariable, strong coupling, nonlinear, and time-varying characteristics. A fuzzy PID motor speed
regulator is used for adjusting the nonlinear control variable and for enhancing the speed, response,
and stability of a DTC system [3]. Furthermore, the model predictive direct torque control (MPDTC)
algorithm is used to maintain the motor torque, stator flux, and the inverter’s neutral point potential
within the given hysteresis bounds by reducing the average switching frequency of the inverter, unlike
the process in the conventional DTC method. Studies have reported that the MPDTC algorithm can
achieve an average inverter switching frequency reduction of 16.5% [4,5].

In IM drive systems, the quick-response scheme is based on the limit cycle control of both flux
and torque [6]. A low switching frequency is used in an inverter to achieve a rapid dynamic response.
This is achieved by rapidly equaling the torque and flux to the reference values. The switching
technique mainly contributes to large torque and flux errors, which generate additional torque and
flux ripples in the motor control system [7]. To achieve a high IM control performance, decrease the
variation in the torque and flux by applying the fuzzy theory, and lower the average inverter switching
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frequency with respect to the conventional DTC algorithm, a combination of fuzzy control and a
predictive direct torque control (PDTC) algorithm has been proposed.

The model predictive control (MPC) algorithm has been used in various branches of automotive
research. Borhan and Vahidi proposed an online optimization-based predictive controller to control
power-split hybrid electric vehicles [8]. Suzuki et al. implemented an individual air-fuel estimation
and control by using an MPC controller [9]. Bageshwar et al. computed the spacing-control laws for
the transitional maneuvers of vehicles by using the MPC algorithm [10]. Saerens et al. presented the
application of MPC in the control of conventional powertrains instead of hybrid powertrains [11].
He et al. illustrated an MPC-based torque demand control approach for the torque-based control of
a parallel hybrid powertrain, which comprised a torque distributor, a nonlinear MPC controller, a
linear MPC controller of the permanent-magnet synchronous motor, and a torque load observer [12].
According to the aforementioned review, the linear MPC algorithm is designed with current feedback.
In other words, the MPC algorithm is implemented with closed-loop control, which results in a slow
response from the controller. In the proposed PDTC algorithm, a modified predictive compensation
circuit with open-loop control is used to speed up the controller’s response. Furthermore, subtracting
the previous flux φs[k − 1] from the present flux φs[k] greatly reduces the ripples of the flux or torque.

Okumus proposed a torque control strategy in which the band is controlled by a fuzzy controller
through an applied voltage vector and the slope of the torque to maintain a constant switching
frequency in all operating conditions. Through the proposed technique, the switching frequency
of the inverter can be kept nearly constant [13]. Siva et al. presented a direct torque-controlled IM
drive system with a fuzzy variable structure controller (FVSC) and fuzzy state feedback controller
(FSFC). The FVSC exhibited a slow response with noticeable overshoot. The ripples in the stator
flux were lower in the FSFC compared with the PID and FVSC. The proposed controllers improved
the performance and robustness of the drive system [14]. In addition, the PI control (PIC) of the IM
exhibited more current ripples, high torque and flux distortions, a poor transient performance due to
sudden disturbances, and poor sensitivity to control gains. To improve the performance of the IM,
PIC was replaced by type-2 fuzzy logic control (TP2FLC), which resulted in an excellent dynamic
performance of the IM with less harmonic distortion in the current, torque, and flux [15]. Dybkowski
and Szabat presented an adaptive control structure while working with the online tuned neuro-fuzzy
speed compensator. In the proposed fuzzy control system, a fuzzy controller and a fuzzy vector
selection table were used to establish an appropriate voltage vector for achieving a high operating
speed and stability [16,17].

In the PDTC algorithm, versatile and flexible control algorithms were developed for realizing
electric motor drives with favorable performance characteristics [5]. The conventional direct torque
control (CDTC) of an IM was improved using artificial intelligence to control the motor speed with
a field-programmable gate array (FPGA). Fuzzy logic was used to improve the effectiveness of the
conventional PI controller when it changed with time and operating conditions. In addition, the digital
implementation of the CDTC with a fuzzy speed controller was based on the FPGA, which was used to
overcome the limitations of software solutions (e.g., digital signal processors and microcontrollers) [18].
In this paper, we present an application-specific integrated circuit (ASIC) capable of fuzzy control and
a PDTC for IM drives.

In this study, a fuzzy PDTC was fabricated using 0.18-µm 1P6M CMOS technology. Simulated
and measured results were recorded at an operating frequency of 50 MHz and a supply voltage of
1.8 V. The remainder of this paper is organized as follows. Section 2 details the proposed topology of
the fuzzy PDTC ASIC, implemented with 10 blocks. Section 3 presents the simulated and measured
results. Section 4 presents our conclusions.

2. Proposed Topology of Fuzzy PDTC ASIC

Figure 1 presents the block diagram of the modified fuzzy PDTC for an IM drive, which comprises
a Hall sensor, an analog-to-digital converter, an abc–dq transformation unit, a flux calculator, a voltage
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calculator, a torque calculator, a speed calculator, an angle selector, a predictive calculator, a fuzzy
controller, a fuzzy voltage vector selector, and a short-circuit preventer. All blocks were designed using
the Verilog hardware description language (HDL) and verified using an FPGA board. After the digital
chip was implemented using the synthesis tool, auto place, routed tool, and verification tool, an ASIC
was fabricated using a 0.18-µm 1P6M CMOS process for a three-phase IM control system.

As shown in Figure 1, the proposed fuzzy PDTC ASIC (red rectangle) comprises 10 blocks. In the
design of these blocks, we focused on the voltage calculation, flux calculation, torque calculation,
angle selection, modified predictive calculation, fuzzy control, fuzzy voltage vector selection, and
short-circuit prevention.
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Figure 1. Block diagram of the modified fuzzy PDTC ASIC for a three-phase IM control system. 
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2.1. Voltage Calculation

To calculate the voltage, an abc–dq transformation was performed to not only simplify the
calculation process, but also accelerate the transformation. In general, the motor’s voltages were
determined using three-phase switching states—Sa, Sb, and Sc—and the DC voltage Vdc of the inverter.
The calculated three-phase output voltages, with respect to the central point, Van, Vbn, and Vcn, can be
expressed as follows:

Van =
Vdc
3

(2Sa − Sb − Sc), (1)

Vbn =
Vdc
3

(−Sa + 2Sb − Sc), (2)

and
Vcn =

Vdc
3

(−Sa − Sb + 2Sc) (3)

For the motor stator, the calculated Van, Vbn, and Vcn can be expressed as three-phase stator
voltages—Vs

as, Vs
bs, and Vs

cs—which can be transformed into the two-phase stator voltages, Vs
ds and

Vs
qs, by using the following equations:

Vs
ds = Vs

as =
Vdc
3

(2Sa − Sb − Sc), (4)

and
Vs

qs =
1√
3

Vdc(Sb − Sc) (5)
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Table 1 presents the related voltage parameters with respect to various switching states.
In addition, a Hall sensor was used to detect the three-phase stator currents—isas, isbs, and iscs—of
the motor drive, and these currents were transformed into two-phase stator currents, isds and isqs,
as follows: [

is
ds(t)

is
qs(t)

]
=

[
1 0

1/
√

3 2/
√

3

][
is
as(t)

is
bs(t)

]
(6)

Table 1. Related voltage parameters with respect to various switching states.

Vector Voltages Sa Sb Sc Van Vbn Vcn Vs
ds Vs

qs

V0 0 0 0 0 0 0 0 0
V1 1 0 0 2Vdc/3 −Vdc/3 −Vdc/3 2Vdc/3 0
V2 1 1 0 Vdc/3 Vdc/3 −2Vdc/3 Vdc/3 Vdc/

√
3

V3 0 1 0 −Vdc/3 2Vdc/3 −Vdc/3 −Vdc/3 Vdc/
√

3
V4 0 1 1 −2Vdc/3 Vdc/3 Vdc/3 −2Vdc/3 0
V5 0 0 1 −Vdc/3 −Vdc/3 2Vdc/3 −Vdc/3 −Vdc/

√
3

V6 1 0 1 Vdc/3 −2Vdc/3 Vdc/3 Vdc/3 −Vdc/
√

3
V7 1 1 1 0 0 0 0 0

If two stator currents, isas and isbs, are measured, the third parameter iscs can be calculated on the
basis of the following equation:

isas + isbs + iscs = 0 (7)

2.2. Flux and Torque Calculations

After the two-phase stator currents and stator voltages are obtained, the two-phase magnetic
fluxes φs

ds and φs
qs can be calculated using the winding resistance Rs, which is the direct-current

resistance in the single-phase winding of the stator. In other words, the magnetic fluxes in the ds–qs

axis can be expressed as follows [16]:[
Vs

ds
Vs

qs

]
= Rs

[
is
ds

is
qs

]
+ p

[
φs

ds
φs

qs

]
, p =

d
dt

(8)

If Rs is small, Equation (8) can be simplified using the sampling time T as follows [17]:[
φs

ds
φs

qs

]
≈ z−1

[
φs

ds
φs

qs

]
+ T

[
Vs

ds
Vs

qs

]
(9)

The magnetic torques Te in the ds–qs axis can then be expressed as follows [18]:

Te =
3
2

p
2

(
φs

dsis
ds − φs

qsis
qs

)
, (10)

where p is the pole number of the motor. Note that the digital multiplier is implemented with the
Booth multiplication algorithm [19], and the composite magnetic flux is completed with a square root
operation, which is implemented in the shadow tree algorithm [20].

2.3. Angle Selection

The angle can be selected using the calculated two-phase stator fluxes and by determining the flux
φs

dqs. In general, the voltage space vector can be divided into six sectors, with each sector including an
angle of 60◦. To simplify the analysis, the first quadrant of the coordinate plane is depicted in Figure 2.
Both φs

ds and φs
qs are positive in this quadrant. In addition, Figure 2 presents two sectors, S1 and S2.
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The angle of the first sector, S1, extends from 0◦ to 30◦, whereas that of the second sector, S2, extends
from 30◦ to 90◦. In trigonometry, a relational equation is expressed as follows:

∣∣φs
ds

∣∣ = ∣∣∣φs
dqs

∣∣∣× cos 30◦∣∣∣φs
qs

∣∣∣ = ∣∣∣φs
dqs

∣∣∣× cos 60◦
(11)

Dividing |φs
qs(t)| by |φs

ds(t)| gives the following:

√
3
∣∣∣φs

qs

∣∣∣− |φs
ds| = 0 (12)

When the two fluxes φs
ds(t) and φs

qs(t) are positive and
√

3
∣∣∣φs

qs

∣∣∣− ∣∣φs
ds

∣∣ is negative, we select the
first sector S1, whereas the output is the second sector S2 because the two fluxes φs

ds(t) and φs
qs(t) are

positive and
√

3
∣∣∣φs

qs

∣∣∣− ∣∣φs
ds

∣∣ is positive. The output is 1 if the value of φs
ds(t), φs

qs(t), or
√

3
∣∣∣φs

qs

∣∣∣− ∣∣φs
ds

∣∣
is positive and is 0 otherwise. Table 2 is the sector selection table for the proposed fuzzy PDTC. The
output sector can be easily selected using this table.

Table 2. Sector selection table of the proposed fuzzy PDTC.

√
3
∣∣Œs

ds

∣∣− ∣∣∣Œs
qs

∣∣∣ Œs
ds Œs

qs Output Sector

0 1 1 S1 = [0 0 1]
0 1 0 S1 = [1 0 1]
0 0 1 S4 = [0 1 1]
0 0 0 S4 = [1 1 1]
1 1 1 S2 = [0 0 0]
1 1 0 S6 = [1 0 0]
1 0 1 S3 = [0 1 0]
1 0 0 S5 = [1 1 0]
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2.4. Modified Predictive Calculation

Figure 3 presents the modified compensation circuits of the present magnetic flux of the stator,
φs[k], and the present torque of the motor, Te[k]. As shown in Figure 3a, the delay (z−1) block is
completed using an edge-triggered D flipflop (DFF) circuit, the subtraction block (denoted by the
symbol “−” in the figure) is used to obtain the deviation between the present flux φs[k] and the
previous flux φs[k − 1], the absolute value block (Abs.) provides the magnitude of the deviation, and
the multiplexer determines the output ∆k

k + 1φs[k] according to the control signal Cφs[k]. Figure 3b
presents the same function, but with the present torque Te[k] and previous torque Te[k − 1]. Unlike the
conventional DTC, the predictive compensation circuit used in the current study can reduce the ripples
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in the flux and torque. Moreover, the proposed PDTC not only has the advantages of the conventional
DTC, but also shortens the delay time and thus exhibits a high performance.
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2.5. Fuzzy Controller

Figure 4 presents the membership functions of two input variables and an output variable.
According to the analysis of the step response in a DTC system, three fields of the fuzzy variables can
be defined as follows. The field of the motor speed feedback error e is [−100, 100], that of the speed
error variation ∆e is [−10, 10], and that of the torque value u is [−2, 2]. The fuzzy subsets are {NB,
NS, ZE, PS, PB} [3]. The abbreviations NB, NS, ZE, PS, and PB represent a negative big error, negative
small error, zero error, positive small error, and positive big error, respectively [16].

Each rule of the fuzzy controller can be described using e, ∆e, and u. As shown in Table 3, if e =
NB and ∆e = NB, then u = PB. A total of 25 rules are presented for the two input variables. The fuzzy
control rules are presented in Table 3.

2.6. Fuzzy Voltage Vector Selector

To enhance the performance of the DTC system, the typical voltage vector selection table was
modified. In the modified table, the input variables were the error in stator flux, error in the torque, and
stator angle, and the output variable was the switching state selector. Figure 5 presents the membership
function of the flux errors with three fuzzy subsets {N, Z, P}. The letters N, Z, and P represent a negative
flux error, zero flux error, and positive flux error, respectively. Figure 6 presents the membership
function of the torque error T with five fuzzy subsets {NL, NS, ZE, PS, PL}. The abbreviations NL,
NS, ZE, PS, and PL represent a negative large error, negative small error, zero error, positive small
error, and positive large error, respectively. ut is a fuzzy membership function and et is a fuzzy error.
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Figure 7 presents the membership function of the stator angle with six angular intervals, {θ1, θ2, θ3,
θ4, θ5, θ6}. The angular intervals θ1, θ2, θ3, θ4, θ5, and θ6 extend from −29◦ to 30◦, 31◦ to 90◦, 91◦ to
150◦, 151◦ to 210◦, 211◦ to 270◦, and 271◦ to 330◦, respectively [21]. Table 4 is the fuzzy voltage vector
selection table for the proposed PDTC with a fuzzy controller.
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2.7. Short-Circuit Prevention

To prevent a short circuit in the inverter, dead time is used to protect the inverter from burning
the motor control system. Figure 8 presents the proposed short-circuit prevention scheme, which
comprises two states, 1→0 and 0→1, in the control signal. First, the “Up” signal is low (0) from high
(1) when the control signal turns off (1→0); and the “Down” signal is high (1) from low (0) when the
dead time (∆T) is up. Second, the “Down” signal is low (0) from high (1) when the control signal turns
on (0→1); and the “Up” signal is high (1) from low (0) when the dead time (∆T) is up. The advantage
of the proposed short-circuit prevention method is that it helps to easily adjust the dead-time interval
(∆T) according to the specifications of the motor control system.
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Table 4. Fuzzy voltage vector selection table.

Ψ T θ1 θ2 θ3 θ4 θ5 θ6

P

PL V2 V3 V4 V5 V6 V1
PS V2 V3 V4 V5 V6 V1
ZE V1 V2 V3 V4 V5 V6
NS V6 V1 V2 V3 V4 V5
NL V6 V1 V2 V3 V4 V5

Z

PL V3 V4 V5 V6 V1 V2
PS V2 V3 V4 V5 V6 V1
ZE V6 V1 V2 V3 V4 V5
NS V6 V1 V2 V3 V4 V5
NL V5 V6 V1 V2 V3 V4

N

PL V3 V4 V5 V6 V1 V2
PS V3 V4 V5 V6 V1 V2
ZE V4 V5 V6 V1 V2 V3
NS V5 V6 V1 V2 V3 V4
NL V5 V6 V1 V2 V3 V4

3. Simulation and Measurement Results

The proposed fuzzy PDTC was implemented using Verilog HDL, and ModelSim software was
used to simulate and verify the operation of the designed hardware circuit. Figure 9 presents the
simulation results for the six arms feeding the inverter. In this figure, Pa and Pb are the feedback signals
of the speed encoder; the output signals Ua_out, Ub_out, and Uc_out are the output waveforms of the
upper arms for the U-, V-, and W phases, respectively; and the output signals Da_out, Db_out, and
Dc_out represent the output waveforms of the lower arms for the U-, V-, and W phases, respectively. In
other words, three complementary switches, Ua_out and Da_out, Ub_out and Db_out, and Uc_out and
Dc_out, were simulated to verify that the output waveforms of both the upper and lower arms worked
as intended. Figure 10 presents the composite magnetic flux of the proposed fuzzy PDTC, and Figure 11
presents the composite magnetic flux of a conventional DTC. A comparison between Figures 10 and 11
clearly reveals that the proposed architecture operated with smaller ripples. The performance of the
proposed PDTC was superior to that of the conventional DTC [22]. Figure 12 presents the locus of the
stator flux in the proposed fuzzy PDTC, which was superior to that in [23]. Figure 13 presents the
simulated electromagnetic torque of the proposed fuzzy PDTC with respect to the change of speed
from 0 to 1000 r/min in 1 s, which operated with small ripples, as shown in Figure 14. In comparison
to [24], the proposed fuzzy PDTC performed smoothly by reducing the ripples generated in the indirect
matrix converter. The ripples of the fuzzy controller occurred irrespective of the sampling frequency,
whereas those of the hysteresis controller were dependent on the sampling frequency. Furthermore, a
fuzzy voltage vector selection table (Table 4) was used to not only rapidly determine the six output
waveforms, but also to protect the inverter from burning the motor control system with dead time.
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An FPGA development board (Altera DE2-70) was used to verify the output waveforms of the six
arms. Figure 15 presents the measured platform, which included an FPGA card, a switching board,
an inverter, and an AC motor. The switching board was used for sensing the feedback signal and for
accelerating the response between the FPGA card and inverter. Figure 16 presents the waveforms of
the six arms measured using a logic analyzer. In Figure 16, three complementary switches, Ua_out
and Da_out, Ub_out and Db_out, and Uc_out and Dc_out, work with a dead time of 3 µs to prevent a
short circuit between the upper and lower arms. Figure 17 presents the measured dead time of the
complementary switches.
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upper and lower arms.

Figure 18 presents the measured feedback currents, ias and ibs, generated using the inverter (see
Figure 1). Notably, the second output current of the inverter ibs was delayed by 120◦ from the first
output current of the inverter ias. Figure 19 presents the experimental result of the torque response with
a 1 N·m load torque and a 1000 rpm motor speed in 2 s for the proposed fuzzy PDTC. The torque error
ripples varied from 0.12 N·m to 0.35 N·m and the average torque is about 0.2 N·m without a load torque,
while the torque error ripples varied from 0.90 N·m to 1.18 N·m and the average torque is approximately
1.0 N·m at a 1 N·m load torque and 1000 rpm motor speed. The measured electromagnetic torques
perform with small torque error ripples. Figure 20 presents the measured current response without
torque load and Figure 21 shows the measured current response at a 1 N·m load torque in 2 s for the
proposed fuzzy PDTC. In comparison to [24], the proposed fuzzy PDTC performs with small current
error ripples and small torque error ripples. Figure 22 presents a microphotograph of the ASIC. Table 5
presents the system specifications of the proposed fuzzy PDTC ASIC.
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Table 5. System specifications of the proposed ASIC.

Items Specifications

Technology 0.18 µm 1P6M CMOS
Supplied Voltage 1.8 V

Test Coverage 96.03%
Fault Coverage 95.06%

Operating Frequency 50 MHz
Power Consumption 296 mW

Chip Size 1.81 × 1.81 mm2

Pins 160
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4. Conclusions

This study proposed an ASIC for fuzzy PDTC, which involves the conventional DTC, modified
predictive calculation, and fuzzy control. All functional blocks were designed using Verilog HDL
and were verified using an FPGA board. The proposed PDTC reduces ripples in the torque and flux
hysteresis controllers by reducing the average switching time, and the fuzzy controller helps to achieve
a high operating speed and high stability of motor control with a small delay time. The proposed
fuzzy PDTC ASIC helps to not only calculate the stator’s magnetic flux and torque by detecting the
three-phase currents, three-phase voltages, and rotor speed, but also to eliminate ripples in the torque
and flux hysteresis controller by using the fuzzy controller and predictive scheme. According to the
simulation results, the proposed fuzzy PDTC achieved a test coverage of 96.03%, fault coverage of
95.06%, and power consumption of 296 mW at an operating frequency of 50 MHz and a supply voltage
of 1.8 V. The chip area of the proposed ASIC is 1.81 mm × 1.81 mm, and the chip contains pads.
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