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Abstract: We propose a novel two-layer error control code, combining error detection 

capability of rectangular codes and error correction capability of Hamming product codes 

in an efficient way, in order to increase cache error resilience for many core systems, while 

maintaining low power, area and latency overhead. Based on the fact of low latency and 

overhead of rectangular codes and high error control capability of Hamming product codes, 

two-layer error control codes employ simple rectangular codes for each cache line to detect 

cache errors, while loading the extra Hamming product code checks bits in the case of error 

detection; thus enabling reliable large-scale cache operations. Analysis and experiments are 

conducted to evaluate the cache fault-tolerant capability of various existing solutions and 

the proposed approach. The results show that the proposed approach can significantly 

increase Mean-Error-To-Failure (METF) and Mean-Time-To-failure (MTTF) up to 2.8×, 

reduce storage overhead by over 57%, and increase instruction per-cycle (IPC) up to 7%, 

compared to complex four-way 4EC5ED; and it increases METF and MTTF up to 133×, 

reduces storage overhead by over 11%, and achieves a similar IPC compared to simple 

eight-way single-error correcting double-error detecting (SECDED). The cost of the 

proposed approach is no more than 4% external memory access overhead. 
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1. Introduction 

Reliability is a main concern in future multi-core and many-core designs. On the one hand, 

technology scaling makes it possible to integrate ever-increasing numbers of transistors on a single 

chip, enabling a many-core system design; on the other hand, scaling has brought about an increase in 

various error sources, such as process, voltage and temperature (PVT) variation, electromagnetic 

radiation and device aging. Meanwhile, as the speed gap between processor and external memory 

increases, large volume and high density caches are required, exacerbating the reliability issue 

furthermore. Consequentially, it is necessary to provide fault tolerance for cache to improve system 

reliability in future many-core systems. 

We can classify cache errors as hard or soft errors [1,2]. Hard errors, which are permanent and 

unrecoverable, may be caused by chip manufacturing defects, threshold voltage variations, or runtime 

effect, such as device aging and electrostatic discharge, and soft errors, which occur transiently and 

can be recoverable, are introduced by external particle strikes or other random noises. Traditionally, 

most soft errors manifest as single cell upset. However, as we approach the nanometer era, the 

probability of multi-bit upset increases significantly because a single particle strike can cause more 

cache cell upset. For example, [3] shows that 55% of soft errors are multi-bit fails, and error clusters 

up to 20 failed bits were found in static random-access memory (SRAM). 

An ever-increasing cache error rate, especially multi-bit upset (burst error), requires high  

fault-tolerant mechanisms for cache to improve system reliability. Meanwhile, it is critical that latency, 

area and power overhead introduced by these fault-tolerant mechanisms must be minimized to meet 

the strict constraints of power and latency budget for future many-core systems. Similar to [4], we 

employ two-layer error control codes (ECC) for cache. Based on the low latency and power overhead 

of rectangular codes, and the high error correction capability of Hamming product codes, we propose a 

novel two-layer ECCs, combining the error detection capability of rectangular codes and the error 

correction capability of Hamming product codes in an efficient way, to improve system reliability 

while maintaining low area, power, and latency overhead [4]. The proposed approach is based on the 

following observations and facts: 

• The cache error rate increases for large volume and high density cache in many-core systems, 

and can compromise overall system reliability if not well-protected. Meanwhile, future many-core 

systems place a strict budget on fault-tolerant mechanisms in terms of latency, power and area 

overhead. Therefore, high reliability but low cost fault-tolerant mechanisms are required; 

• The encoding and decoding of rectangular codes, which simply consists of several exclusive or 

(XOR) gates, can be very fast compared to other error control code, such as Hamming and BCH 

codes. In contrast, Hamming product codes can provide high error correction capability at the 

cost of extra check bits overhead; 
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• Much of cache lines in systems are clean, which means there is another copy in next-level 

memory. Therefore, it is enough to detect error in clean cache lines, and only correct error in 

dirty cache lines [5].  

The remainder of this paper is organized as follows: Section 2 reviews various fault-tolerant 

mechanisms for cache design. In Section 3, the proposed two-layer error control codes combining 

rectangular codes and Hamming product codes is described; Section 4 provides experimental results 

about cache reliability, storage overhead, system performance, memory access overhead of the 

proposed approach and other alternative solutions existing in current literature; Conclusion and future 

work are presented in Section 5. 

2. Related Works 

In this section, we review various cache fault-tolerant methods existing in current literature. Our 

focus is on architectural level solutions, to which the proposed approach belongs. We also briefly 

explain circuit and device level techniques handling with cache error to provide background information. 

2.1. Soft Error Management Techniques 

To address cache soft errors, various error control codes (ECC) have been investigated and 

employed. For example, IBM Power 6 applies parity codes to L1 cache and single-error correcting 

double-error detecting (SECDED) codes to L2 cache [6]. For low soft error rate (SER) and low volume 

cache, these approaches can provide enough reliability with low area, power and latency cost. 

However, as SER and cache size increases, these simple ECC codes fail to protect the whole system. 

Chishti et al. employ four-bit segmented orthogonal Latin square codes (OLSC) to correct faulty  

cells [7]. The low-complexity OLSC codes can provide a low-latency encoding/decoding process but at 

the cost of too much redundancy. Half or a quarter of the cache is sacrificed to store ECC check bits, 

which degrade system performance significantly. Wilkerson et al. propose strong BCH codes, such as 

five-error correcting six-error detecting (5EC6ED) codes to address reliability issues in the case of 

high cache error rate [8]. However, simple ECCs are ineffective in handling increasing burst errors in 

aggressively scaled technologies; unfortunately, complex ECCs introduce large power, area and 

latency overhead. 

One general solution to burst errors is interleaving [9,10]. Generally, two types of interleaving, 

inter-cacheline interleaving and intra-cacheline interleaving, have been proposed. Inter-cache line 

interleaving distributes burst errors into different cache lines and applies ECC to each cache line. 

However, this leads to unnecessary cache line access because we need to read/write multiple cache 

lines even if only one is required. The power overhead introduced by unnecessary cache line access 

can be expensive, especially considering the increasing bit line length of the large volume cache 

adopted by many-core systems. The intra-cache line divides one single cache line into several  

sub-blocks and applies ECC to each sub-block. These inter-cacheline and intra-cacheline interleaving 

approaches can improve random error control mechanisms by making burst errors look like random 

errors. However, in some cases, it will also make random errors look like burst errors and introduce 

extra latency or power consumption overhead. 
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Kim et al. propose a two-dimensional ECC to deal with multi-bit clustered errors [11]. In the 

proposed scheme, the combination of a single error detection parity code and intra-cacheline 

interleaving is applied in the horizontal direction for each cache line; meanwhile, for all cells in one 

column, similar error control mechanisms are employed in the vertical direction. The proposed method 

can effectively address burst errors in both horizontal and vertical directions. However, it fails to 

address random errors and becomes ineffective as the soft error rate (SER) increases with technology 

scaling. Meanwhile, the proposed two-dimensional error control coding introduces a large area 

overhead (25%) and requires an extra cache read-modify-write operation of vertical check bits for 

every cache write access, worsening system energy efficiency. 

Yoon et al. propose a so-called memory-mapping ECC, addressing soft errors while reducing 

storage overhead [5]. The proposed approach applies simple ECCs to all cache lines and stores 

complex ECCs into next-level memory. Specifically, the paper uses single-error detecting parity codes 

with eight-way intra-cacheline interleaving to detect burst errors and to store the interleaved SECDED 

codes in next-level memory to correct soft errors once they have been detected. In the normal case, 

only parity decoding will be performed to detect errors. In the case of error detection, extra SECDED 

check bits will be loaded to correct the error. The actual error correction capability of the proposed  

memory-mapping ECC is equal to eight-way intra-cacheline interleaving SECDED codes while 

achieving similar area overhead with eight-way parity codes. Memory-mapping ECC can effectively 

increase burst and random error control capability, while reducing area overhead. However, the error 

correction capability of memory-mapping ECC is still not big enough in the case of high SER. 

Argyrides et al. propose a so-called matric code to improve the reliability and yield rate of memory 

chips in the presence of large numbers of defects and multi-bit upset (MBU) [12]. The proposed 

scheme employs Hamming Codes in the horizontal direction and parity codes in the vertical direction. 

The matrix code can effectively address high numbers of errors in the memory chips and introduces 

limited overhead for short word length, such as the 32-bit data word as shown in the paper. However, 

for typical cache line sizes, such as 512-bit or 1024-bit, the extra storage overhead of the matrix code 

can be too expensive to afford considering strict area, power and cost overhead. 

Several specific solutions to certain parts of cache have also been proposed. Wang et al. propose 

duplicating most recently used tag entries in a small buffer to protect tag entries from cache errors by 

exploiting memory address locality [13]. Kim et al. propose to exploit same adjacent tag bits to 

increase their resilience to soft error [14]. The proposed scheme checks whether a new tag entry has 

the same tag bits with its adjacent tags or not and stores this information. Based on this similarity, an 

error can inherently be detected in the tag entry. Wang investigates the error masking and detection 

effects based on the Instruction Set Architecture [15]. For example, in the Alpha ISA, certain parts of 

the instruction should always be zero. This information can be used to mask errors in instruction cache. 

2.2. Hard Error Management Techniques 

Traditional approaches addressing hard error introduce spare SRAM rows/columns [16,17]. These 

redundant rows/columns replace those faulty ones in the case of hard errors detected statically by 

memory test procedures. The spare rows/columns method introduces too much area and power 
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overhead in the case of high faulty cell rate brought by technology scaling, although it is effective at a 

low cell failure rate. 

Agarwal et al. propose a process-tolerant cache architecture using a cache line disabling technique, 

which statically detects and deletes cache lines with faulty cells [18]. In their scheme, the number of faulty 

cells and their locations are obtained and stored in a configurator by performing a conventional built-in 

self-test (BIST). Based on this information, the configurator will disable cache lines with faulty cells. 

Cache line disabling can be effective when the cell failure probability is low. However, as the number of 

faulty cells increases at lower supply voltage, cache capacity and system performance shrink rapidly. 

Other cache disabling methods include cache way disabling, cache set disabling, and sub-block 

disabling [19,20]. For the cache way disabling technique, full cache ways will be disabled whenever 

they contain one or several faulty cells; cache set disabling technology disables full cache sets when 

they contain one or several faulty-cells; sub-block disabling technique only discards the faulty  

sub-block, while the reset faulty-free sub-block can still be used in the case of faulty cells. The cache 

way and set disabling techniques discard too many fault-free cache lines, although they only introduce 

low complexity and area overhead. Sub-block disabling technology can introduce less cache 

downsizing under faults but at the cost of large complexity and area overhead. 

Wilkerson et al. propose two architectural level techniques, which enable cache to operate at high 

cache cell failure rates [21]. The word-disable scheme combines two consecutive cache lines to form a 

single cache line where only non-faulty words are used. The bit-fix scheme uses a quarter of the ways in a 

cache set to store positions and fix bits for faulty cells in other ways of the set. Therefore, at a high cache 

cell failure rate, the word-disable scheme and bit-fix scheme sacrifice a cache capacity of 50% and 25%, 

respectively; thus, degrading system performance significantly. In addition, the word-disable mechanism 

and bit-fix mechanism introduce a cache size overhead of 7% and 15%, respectively, for a 2 MB cache. 

Lu et al. propose dynamic cache reconfiguration with error-correcting codes in order to address 

both hard error and soft error at low supply voltage [7,22]. In low supply voltage mode, a portion of 

the cache is used to store additional ECC information. Specifically, all the physical ways in each cache 

set are divided into data ways and ECC ways. ECC ways store error correcting codes for data ways, 

and a fixed mapping between data ways and associated ECC ways are applied. Therefore, during low 

voltage operation, the proposed dynamic cache reconfiguration scheme sacrifices cache capacity of 

50%, assuming there is one ECC way for every data way as described in the work. Alameldeen et al. 

propose to employ variable-strength ECC (VS_ECC) for cache. In the scheme, SECDED codes are 

used for each cache line to protect them against single error, and 4EC5ED are employed for those 

cache lines containing multiple errors [23]. However, the effectiveness of these approaches depends on 

a static configuration process. Therefore, these methods cannot handle soft errors or can only provide 

limited soft error tolerance capability. Our previous works propose double-error correcting triple-error 

detecting (DECTED) with cache line disabling and adaptive fault-tolerant design to address both cache 

hard and soft error [24–26].  

2.3. Reliable Circuits and Device Design for Cache 

At the circuit level, a traditional approach toward reliable cache design is to upsize cache cells by 

employing large transistors. Apart from upsizing traditional six-transistor (6-T) cells, new types of 
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cache cells, such as eight-T or 10-T, are proposed to improve cache cell reliability by adding more 

transistors. For example, Chang et al. propose adding two data output transistors to a conventional  

6T-cell, which separates data read elements from data retention elements, in order to improve 

reliability [27]. Calhoun et al. propose adding four transistors to implement a buffer used for reading, 

which can separate the read and write word lines and bit lines [28]. These techniques can improve 

cache reliability to some extent but at the cost of high area overhead and low cache density. 

3. Two-Layer Error Control Codes Combining Rectangular and Hamming Product Codes 

In this section, we describe the proposed two-layer error control codes, which combine rectangular 

codes and Hamming product codes in an efficient way. The description of rectangular codes and 

Hamming product codes is given in the first two sub-sections. The last sub-section shows how these 

two codes are combined in order to achieve high reliability while maintaining low cost. 

3.1. Rectangular Codes 

For rectangular codes, k-bit data within one cache line is first divided into kr rows and kc columns 

(as shown in Figure 1a). For each of kr rows, a row-direction parity check bit is added to detect single 

errors in the row; similarly, for each of kc columns, a column-direction parity check bit is used to 

detect single errors in the column; the bottom right corner can be either the column parity check bit or 

the row parity check bit. Therefore, the code word length for k bits data is n = (k + kr + kc + 1), and the 

code rate is k/n = k/(k + kr + kc + 1). For example, supposing that each cache line has 1024-bit data: d0, 

d1, …, d1023. For rectangular codes, we add one row parity bit r0 for d0, d1, d2, …, d31, add one row 

parity bit r1 for d32, d33, d34, …, d63, and so on. Similarly, we add one column parity bit c0 for d0, 

d32, d64, …, d992, add one column parity bit c1 for d1, d33, d65, …, d993, and so on. Finally, we will 

add one extra check-on-check bit c. Then, we will store all these data and check bits in the following  

one-dimensional way: d0, d1, d2, …, d31, r0, d32, d33, d34, …, d63, r1, …, d992, d993, d994, …, 

d1023, r31, c0, c1, … , c32, c. 

Figure 1. (a) Rectangular codes, and (b) Hamming product codes. 

 
(a) (b) 
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The rectangular code has the minimal Hamming distance of four, and therefore can correct single 

errors and detect double errors. However, in our work, we do not use the rectangular codes’ error 

correction capability. Instead, we only use the rectangular code to detect cache errors. Therefore, the 

rectangular code can detect three random errors; meanwhile, the rectangular code can detect single 

burst errors with any length as we will prove later, and it can also detect error patterns in which there is 

at least one row/column with an odd number of errors. 

3.2. Hamming Product Codes 

Similar to rectangular codes, Hamming product codes also first divide k-bits data into kr rows and kc 

columns (as shown in Figure 1b). For each of kr rows, (nc − kc) row-direction Hamming check bits are 

added to correct single errors in the row; for each of the kc columns, (nr − kr) column-direction 

Hamming check bits are used to correct single errors in the column; the bottom right corner can be 

either column- or row-direction Hamming check bits. Therefore, the code word length for k bits data is 

n = nr×nc, and the code rate is k/n = k/(nr + nc).  

In theory, Hamming product codes have a minimal Hamming distance of 16, and therefore can 

correct seven errors and detect eight errors. However, in our work, we use the following three-stage 

decoding process, which is similar to [29], to correct errors at a low latency cost: Stage 1, correct 

single error in each row; Stage 2, correct single error in each column; and Stage 3, correct single error 

in each row again after Stage 1 and Stage 2 have corrected parts of the errors.  

Table 1 shows the check bits overheads and the maximal code rates achieved by rectangular code 

and Hamming product code. Taking 1024-bit cache line as example, rectangular codes only require  

64 check bits, while Hamming product codes need 384 check bits. Meanwhile, the code rates of 

rectangular codes and Hamming product codes are 94.1% and 72.8%, respectively. It is clear that 

rectangular codes introduce a much higher code rate than Hamming product codes. Also, the encoding 

and decoding process for rectangular codes is pretty simple because it only consists of several XOR 

operations. Thus, rectangular codes can minimize encoding/decoding latency and power overhead. 

However, rectangular codes can only provide a limited error correction capability. In contrast, 

Hamming product codes obtain a high error correction capability at the cost of large storage overhead, 

high latency, and power overhead. This comparison between rectangular and Hamming product code 

motivates the proposed two-layer ECCs. 

Table 1. Code rate comparison between rectangular codes and Hamming product codes (HPC). 

Cache Line Size nc nr 
Rectangular 
Check Bits 

Rectangular 
Code Rate 

HPC 
Check Bits 

HPC Code 
Rate 

1024-bit cache line 32 32 64 94.1% 384 72.8% 
512-bit cache line 32 16 48 91.4% 256 66.7% 
256-bit cache line 16 16 32 88.9% 160 61.5%% 

3.3. Two-Layer ECC Combining Rectangular and Hamming Product Codes 

Rectangular codes enable fast error detection with low latency, power and storage overhead, but are 

ineffective to correct multiple errors, while Hamming product codes can obtain a high error correction 
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capability at the cost of high latency, large storage and power overhead. Therefore, we propose  

two-layer ECCs, which utilize the error detection capability of rectangular codes to detect errors, and 

the use error correction capability of Hamming codes to correct errors detected by rectangular codes. 

As shown in Figure 2, we employ rectangular codes for every cache line to detect errors. Once errors 

have been detected, they can be corrected by Hamming product codes or loading replication from 

external memory depending on whether the related cache line is dirty or not. Also, Hamming product 

codes need to be updated when necessary. 

Figure 2. Two-layer error control codes (ECC) combining rectangular and Hamming 

product codes. 

 

Figure 3 shows a flow chart of cache line read and write operations using the proposed  

two-layer ECCs. In the case of cache line read, a conventional cache line read operation is first 

performed. Then, fast rectangular decoding, which only consists of several XOR operations, is 

conducted to detect errors. If there are errors detected by rectangular decoding, we need to check 

whether the related cache line is dirty or not. If the related cache line is clean, we simply load data 

replication from the next-level memory because a clean cache line means that the newest data 

replication is in the next-level memory; if the related cache line is dirty, we need to load Hamming 

product check bits. Then, Hamming product decoding is performed to correct errors detected by 

rectangular decoding. In the case of cache line write, a conventional cache line write is first performed. 

Then, we need also write Hamming product check bits, and cache line write back might be performed 

if necessary. 

Figure 4 shows cache architecture using the proposed approach. In cache write port, rectangular 

encoding is performed to generate rectangular check bits for each cache line. These rectangular check 

bits, together with the original data, are stored in the cache array. Meanwhile, Hamming product check 

bits are also calculated using the Hamming Product Encoding module, and written into the memory 

hierarchy with the Hamming Product Check Bits Writing module. In cache read port, rectangular 

decoding is first performed to check whether there are errors in the cache line or not. If there is no 

error, the data will go directly through the Read MUX module; if there is an error detected by 

rectangular decoding, extra Hamming product check bits or data replication will be read from the 

memory hierarchy depending on whether the related dirty flag is set or not. 
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Figure 3. Flow chart of (a) Cache line read, and (b) Cache line write of proposed approach. 

 
(a) (b) 

Figure 4. Cache achitecture using proposed approach. 

 

4. Analysis and Experimental Results  

In this section, we compare the proposed two-layer ECCs with different fault-tolerant methods in 

terms of reliability, storage overhead, performance degradation by analysis and experiments. In detail, 

we compare the proposed method with the following techniques: 

• 16-way SECDED: 16 interleaved SECDED codes are applied for every cache line; 

• 8-way SECDED: 8 interleaved SECDED codes are applied for every cache line; 

• 8-way DECTED: 8 interleaved DECTED codes are applied for every cache line; 

• 4-way DECTED: 4 interleaved DECTED codes are applied for every cache line; 

• 4-way 4EC5ED: 4 interleaved 4EC5ED codes are applied for every cache line; 

• 2-way 4EC5ED: 2 interleaved 4EC5ED codes are applied for every cache line. 
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4.1. Experimental Setup 

Our evaluation is based on a 1024-tile many-core system using 11 nm predictive tri-gate 

technology [30]. Each tile consists of a single-issue 64-bit core, four-way 32KB private L1 instruction 

cache, four-way 32KB private L1 data cache, and eight-way 256KB private L2 cache (Table 2 and 

Figure 5 A mesh network-on-chip (NoC) with wormhole flow control is adopted. Least Recently Used 

(LRU) cache replacement policy is used for both L1 and L2 caches. To evaluate performance 

degradation, we use a parallel many-core simulator, Graphite [31], which integrates CACTI [32]. To 

evaluate cache reliability, C simulation models for cache with various fault-tolerant approaches and the 

proposed method are built. 

Table 2. 1024-tile system parameter. 

Parameters Value 

Tile Number 1024 

Core Type 64 bits single-issue 

L1-I/L1-D Cache, Private  
 Cache Size 32 kb 

Associativity 4 
Replacement Policy LRU 
Tag Access Time 1 cycle 
Data Access Time 1 cycle 

L2 Cache, Private  
 Cache Size 256 kb 

Associativity 8 
Replacement Policy LRU 
Tag Access Time 3 cycles 
Data Access Time 8 cycles 

External Memory 
 Memory Access Time 100 cycles 

Figure 5. 1024-tile system architecture. 

 

4.2. Burst Error Control Capability 

There are two types of errors: burst errors and random errors. Here, we evaluate the burst error 

control capability. Random error will be evaluated in the next subsection. We make two claims related 

to burst error detection and correction capability of the two-layer ECCs. The proof is also given. 
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Claim 1: the proposed approach can detect single a burst error of any length. 

Proof: 

All data and check bits are stored in a one-dimensional way as presented in Section 3.1. There 

are two cases for any single burst error in this one-dimensional data and check bits: Case 1—the 

burst error spans at least one whole row, as shown in Figure 1, and Case 2—the burst error does not 

span one whole row. 

For Case 1, the Row Parity Decoder for the row where all bits have errors will detect this burst 

error because nc is odd, and the parity codes can detect odd numbers of errors.  

For Case 2, the fact that the burst error does not span any row means that there is at least one 

column containing one error. Otherwise, if all columns had two or more errors, there would be at 

least one whole row in which all bits had errors, which is in conflict with our precondition; if all 

columns had zero errors, there would be no burst error at all, which is also in conflict with our 

precondition; if some of the columns had two or more errors, while the rest had no error, then, there 

would be multiple burst errors, which is still in conflict with our precondition. Hence, for this case, 

at least one column has one error, and the related Column Parity Decoder can detect this burst error 

because the parity codes can detect one error. [Q.E.D.] 

Claim 2: the proposed approach can correct single burst errors up to nc + 1 bits. 

Proof: 

For a burst error of nc + 1 bits, each column in Figure 1 has 1 error at most except for one, which 

has two errors. Otherwise, if two of the columns had two or more errors, this burst error would have 

at least nc + 2 bits. Therefore, the Column SECDED Decoders can correct all errors except those in 

the column with two errors. Then, the Row SECDED Decoder at Stage 3 can correct this column. 

Thus, the proposed approach can correct single burst errors up to nc + 1 bits. [Q.E.D.] 

SECDED can correct a single error and detect double errors. Therefore, 16-way SECDED can 

correct up to 16-bit burst errors. Here, we claim that 16-way SECDED can detect up to 47-bit burst 

errors instead of 32-bit burst errors. The reason for this is that for the 16-way SECDED, at least one of 

SECDED ways will have no more than a two-bit error in the case of a 47-bit burst error (If all 16 

SECDED ways had more than a two-bit error, there would be at least a 3 × 16 = 48 bits burst error). 

Therefore, at least one of SECDED will report an error in the case of a 47-bits burst error. 

Similarly, 8-way SECDED can correct up to 8-bit burst errors, and detect up to 23-bit burst errors; 

8-way DECTED can correct up to 16-bit burst errors, and detect up to 31-bit burst errors; 4-way 

DECTED can correct up to 8-bit burst errors, and detect up to 15-bit burst errors; 4-way 4EC5ED can 

correct up to 16-bit burst errors, and detect up to 23-bit burst errors; and, 2-way 4EC5ED can correct 

up to 8-bit burst error, and detect up to 11-bit burst error. 

Figures 6 and 7 show the error detection and correction capabilities of various fault-tolerant 

methods for 1024-bit and 512-bit cache lines, respectively. In the case of 1024-bit cache line, we set  

kc = kr = 32 to achieve minimal storage overhead; and in the case of 512-bit cache line, we set kc = 32, 

and kr = 16 for the same goal. The proposed approach can achieve the highest burst error detection and 

correction capability. If we take a 1024-bit cache line as example, the proposed approach can detect a 

1024-bit burst error, which is 22×, 45×, 33×, 68×, 45×, 93× that achieved by 16-way SECDED, 8-way 

SECDED, 8-way DECTED, 4-way DECTED, 4-way 4EC5ED and 2-way 4EC5ED, respectively. 
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Meanwhile, the proposed approach can correct 33-bit burst errors, which is 4.1×, 2.1×, 4.1×, 2.1×, 

4.1×, 2.1× of that achieved by 16-way SECDED, 8-way SECDED, 8-way DECTED, 4-way DECTED, 

4-way 4EC5ED and 2-way 4EC5ED, respectively.  

Figure 6. Burst error (a) detection capability; and (b) correction capability (1024-bit cache line). 

 
(a)      (b) 

Figure 7. Burst error (a) detection capability, and (b) correction capability (512-bit cache line). 

 
(a)      (b) 

4.3. Mean-Error-to-Failure Evaluation 

In this subsection and the following one, we evaluate the random error control capability.  

Mean-error-to-failure (METF), which represents the average number of errors that cause failure of the 

whole cache system, and Mean-time-to-failure (MTTF), which represents the average time before 

reaching cache failure, are two metrics to evaluate system reliability. In this section, we evaluate 

METF of various cache error management solutions. C simulation models for cache systems with 

various fault-tolerant methods are built. Our simulations run for various cache sizes, such as 128 kb, 

512 kb, 1 Mb, 2 Mb, 4 Mb, 8 Mb and 16 Mb. For each cache size, 1000 simulations are tested. 

Figure 8 plots METF results achieved with our simulation for 1024-bit cache line. As shown in the 

figure, the proposed approach achieves the highest METF, which means our solution can tolerate the 

most errors. For example, METF of the proposed approach for 16 Mb cache is 5.43 × 104, while 

METF of 16-way SECDED, 8-way SECDED, 8-way DECTED, 4-way DECTED, 4-way 4EC5ED, 

and 2-way 4EC5ED are 562, 442, 3.84 × 103, 3.12 × 103, 1.76 × 104, and 1.08 × 104, respectively. The 

proposed two-layer ECCs can improve METF by 96×, 123×, 14×, 17×, 3× and 5×, respectively. Even 

for a cache size of 128 kb, the proposed approach provides METF of 1241, while 16-way SECDED,  
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8-way SECDED, 8-way DECTED, 4-way DECTED, 4-way 4EC5ED, and 2-way 4EC5ED only obtain 

METF of 56, 41, 183, 112, 44 and 206 respectively. The proposed two-layer ECCs can improve METF 

by 22×, 30×, 6.8×, 11×, 2.8×, and 6.0×, respectively. 

Figure 9 plots METF results achieved by our simulation for 512-bit cache line. As shown in the 

figure, the proposed approach achieves the highest METF, which means our solution can tolerate the 

most errors. For example, METF of the proposed approach for 16Mb cache is 7.18 × 104, while METF 

of 16-way SECDED, 8-way SECDED, 8-way DECTED, 4-way DECTED, 4-way 4EC5ED, and 2-way 

4EC5ED are 629, 538, 5.91 × 103, 3.89 × 103, 3.16 × 104, and 1.87 × 104, respectively. The proposed  

two-layer ECCs can improve METF by 114×, 133×, 12×, 18×, 2.3× and 3.8×, respectively. Even for a 

cache size of 128 kb, the proposed approach provides METF of 1507, while 16-way SECDED, 8-way 

SECDED, 8-way DECTED, 4-way DECTED, 4-way 4EC5ED, and 2-way 4EC5ED only obtain 

METF of 68, 53, 298, 178, 700 and 449, respectively. The proposed two-layer ECCs can improve 

METF by 22×, 28×, 5.1×, 8.5×, 2.2×, and 3.4×, respectively. 

Figure 8. Mean-Error-to-Failure (METF) comparison (cache line size = 1024 bits). 

 

Figure 9. METF comparison (cache line size = 512 bits). 
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4.4. Mean-Time-to-Failure Evaluation 

The MTTF, which represents the average time before reaching the failure of a cache system, can be 

given using the following equation: ܨܶܶܯ = ݁ݖ݅ܵ_ℎ݁ܿܽܥܨܶܧܯ ×  ݁ݐܴܽ_ݐ݈ݑܽܨ
 

Figure 10 plots MTTF achieved by various approaches for 1024-bit cache line given a fault rate of 

10−5/day and 10−4/day, respectively. As shown in the figure, the proposed approach can achieve the 

highest MTTF compared to all other approaches. For example, in the case of a 10−5/day fault rate, the 

proposed approach can correctly work for 947, 786, 762, 616, 481, 441, 408, and 323 days before 

reaching cache failure for cache sizes of 128 kb, 256 kb, 512 kb, 1 Mb, 2 Mb, 4 Mb, 8 Mb, and 16 MB, 

which are about 2.8×–3.3× those achieved by the next-best solution, the 4-way 4EC5ED. Even in the 

case of the high fault rate of 10−4/day, the proposed approach can still provide MTTF of 95, 79, 76, 62, 

48, 44, 41, and 32 days for various cache sizes, while the next-best solution, 4-way 4EC5ED, can only 

achieve MTTF of 16, 13, 13, 12, 9.5, 9.5, 7.2 and 6.4 days, respectively. 

Figure 11 plots MTTF achieved by various approaches for 512-bit cache line given fault rates of 

10−5/day and 10−4/day, respectively. As shown in the figure, the proposed approach can achieve the 

highest MTTF compared to all other approaches. For example, in the case of a 10−5/day fault rate, the 

proposed approach can correctly work for 1150, 1024, 907, 727, 669, 556, 523, and 428 days before 

reaching cache failure for cache sizes of 128 kb, 256 kb, 512 kb, 1 Mb, 2 Mb, 4 Mb, 8 Mb, and 16 MB, 

which are about 2.0×–2.3× those achieved by next-best solution, the 4-way 4EC5ED. Even in the case 

of the high fault rate of 10−4/day, the proposed approach can still provide MTTF of 115, 102, 91, 73, 

67, 56, 52 and 43 days for various cache sizes, while next-best solution, 4-way 4EC5ED, can only 

achieve MTTF of 34, 30, 24, 20, 19, 15, 13 and 11 days, respectively.  

Figure 10. METF comparison (a) Cache line size = 1024 bits, fault rate 10−5/day; and  

(b) Cache line size = 1024 bits, fault rate 10−4/day. 

(a) (b) 
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Figure 11. METF comparison (a) Cache line size = 512 bits, fault rate 10−5/day, and  

(b) Cache line size = 512 bits, fault rate 10−4/day. 

(a) (b) 

4.5. Overhead Evaluation 

Various cache error management approaches introduce redundant check parity bits, which introduce 

extra storage overhead into cache. Here, we evaluate storage overhead required by the proposed 

approach and other solutions. t-bit error correction codes require t × m check bits, and t-bit error 

correction and (t + 1) detection codes require t × m + 1 check bits, where m is the smallest possible 

integer which meets the requirement (k + t × m + 1) < 2m. Therefore, SECDED requires 9, 8, and 7 

check bits for data lengths of 128, 64 and 32 bits; DECTED requires 19, 17, and 15 check bits for data 

lengths of 256, 128 and 64 bits; and 4EC5ED requires 41, 37 and 33 check bits for data lengths of 512, 

256 and 128 bits. In addition, SEC requires six and five bits for data lengths of 32 and 16 bits, and the 

parity code requires 1 bit for any data length. Based on this information, we can evaluate the storage 

overhead of various cache error control methods.  

Table 3(a) shows the comparison of storage overhead between various cache fault-tolerant methods 

and the proposed approach for 1024-bit cache line. Here, the proposed approach introduces a 64-bit 

storage overhead for each cache line, while 16-way SECDED, 8-way SECDED, 8-way DECTED, 4-way 

DECTED, 4-way 4EC5ED, and 2-way 4EC5ED lead to storage overheads of 128 bits, 72 bits,  

136 bits, 76 bits, 148 bits and 84 bits, respectively. Therefore, the proposed approach can reduce the 

storage overhead by 70%, 11%, 53%, 18%, 57%, and 24%, respectively. Table 3(b) shows the 

comparison of storage overheads for a 512-bit cache line, and the proposed approach still introduces 

the least storage overhead. 
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Table 3. Overhead evaluation. (a) 1024-bit cache line; (b) 512-bit cache line. 

(a) 
Data/ 

Way 

Check  

bits/Way 
#Way 

#Total 

bits 
(b) 

Data/

Way 

Check  

bits/Way 
#Way 

#Total 

bits 

16-way SECDED 64 8 16 128 16-way SECDED 32 7 16 112 

8-way SECDED 128 9 8 72 8-way SECDED 64 8 8 4 

8-way DECTED 128 17 8 136 8-way DECTED 64 15 8 120 

4-way DECTED 256 19 4 76 4-way DECTED 128 17 4 68 

4-way 4EC5ED 256 37 4 148 4-way 4EC5ED 128 33 4 132 

2-way 4EC5ED 512 41 2 84 2-way 4EC5ED 256 37 2 74 

Proposed * * * 64 Proposed * * * 48 

4.6. Performance Degradation 

Various fault-tolerant approaches can increase cache access time because of the introduction of a 

ECC encoder/decoder. Additionally, the proposed approach can possibly increase next-level memory 

access numbers although the latency of the parity code, which is adopted by the proposed approach, is 

trivial. Therefore, fault-tolerant approaches can degrade system performance to some extent. In order 

to evaluate system performance, instruction per-cycle (IPC) for cache line sizes of 1024 bits and 512 

bits are plotted in Figure 12. In our evaluation, we add zero cycle latency for parity code, one cycle 

latency for SECDED, two cycle latencies for DECTED, and seven cycle latencies for 4EC5ED [23,33]. 

As shown in the figure, the proposed two-layer ECCs achieves similar IPC with 8-way SECDED and 

16-way SECDED because the two-layer ECCs only requires simple parity code encoding / decoding 

processes for most cache accesses. All other approaches, including the 8-way DECTED, 4-way 

DECTED, 4-way 4EC5ED, and 2-way 4EC5ED, obtain less IPC because they require complex 

DECTED or 4EC5ED encoding/decoding processes. Especially, the 4-way 4EC5ED and 2-way 

4EC5ED, which introduce high latencies to every cache access, can degrade system IPC. For instance, 

8-way 4EC5ED and 4-way 4EC5ED provide a 1.1%–7.2% lower IPC than the proposed approach for 

different SPLASH2 benchmarks, including FFT, LU, Radix, Cholesky and Barnes, when cache line 

size is 1024 bits. 

Figure 12. Instruction per cycle (IPC) (a) 1024-bit cache line, and (b) 512-bit cache line. 

 
(a)       (b) 
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5. Conclusions  

As technology improves, high reliability and low cost cache fault-tolerant approaches are required 

to ensure reliable systems while meeting strict budgets of area and latency overheads. In this paper, we 

propose a novel two-layer ECCs combining rectangular and Hamming product codes in an efficient 

way to address cache error for high error rate while reducing area and latency overhead. Our 

experimental results show that the proposed approach can improve METF and MTTF up to 2.8×, 

reduce storage overhead by over 57%, and increase IPC by to 7% compared to the 4-way 4EC5ED 

code, which belongs to the high reliability and high cost ECC codes. Additionally, the proposed 

approach can increase METF and MTTF up to 133×, reduce storage overhead by over 11%, and 

achieve a similar IPC degradation compared to the 8-way SECDED code, which belongs to the group 

of low reliability and low cost codes. Our future work is to minimize the memory access overhead 

introduced by the proposed approach. 
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