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Abstract: This paper presents the first known timing-error detection (TED) 
microprocessor able to operate in subthreshold. Since the minimum energy point (MEP)  
of static CMOS logic is in subthreshold, there is a strong motivation to design  
ultra-low-power systems that can operate in this region. However, exponential 
dependencies in subthreshold, require systems with either excessively large safety margins 
or that utilize adaptive techniques. Typically, these techniques include replica paths, 
sensors, or TED. Each of these methods adds system complexity, area, and energy 
overhead. As a run-time technique, TED is the only method that accounts for both local 
and global variations. The microprocessor presented in this paper utilizes adaptable  
error-detection sequential (EDS) circuits that can adjust to process and environmental 
variations. The results demonstrate the feasibility of the microprocessor, as well as energy 
savings up to 28%, when using the TED method in subthreshold. The microprocessor is an 
8-bit core, which is compatible with a commercial microcontroller. The microprocessor is 
fabricated in 65 nm CMOS, uses as low as 4.35 pJ/instruction, occupies an area of 
50,000 μm2, and operates down to 300 mV. 

Keywords: subthreshold; ultra-low-power; timing-error detection; subthreshold source-
coupled logic; SCL; weak inversion; dynamic supply voltage; dynamic voltage scaling 
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1. Introduction 

Exploiting the full potential of ubiquitous ambient intelligence, smart sensor networks, and  
energy-harvesting, requires extremely low power processing. One of the saving graces is that, in many 
cases, power can be traded for performance, and thus the main target in these systems should be low 
energy per operation. Targeting low energy per operation, while simultaneously taking advantage of 
the relaxed performance requirements, can mainly be achieved by using a lower operating voltage. 
Low energy (and low power) operation extends the operating time of the systems, which reduces 
maintenance costs, device size, and unit cost. Systems with a small form-factor and low energy 
operation can also utilize alternate energy sources (e.g., they can harvest energy from body heat). 
These systems might be deployed in smart sensor network applications where it is cost prohibitive or 
not feasible to replace batteries [1–3]. 

In addition to sensor networks, a large number of applications exist that benefit from extremely low 
energy processing. One application that benefits from low energy processing is a fully autonomous 
robot capable of learning and adapting. The intelligence behind such robots is likely to be enabled by 
neuromorphic algorithms [4]. Such algorithms are inherently parallelizable, run efficiently on 
architectures resembling graphics processing units (GPU), and, if parallelized sufficiently, do not 
require high performance in a single processing element. Therefore, the brain behind a future small 
autonomous robot could very likely be a massively parallel computing unit running at a low energy 
point for a single processing node. 

For CMOS static logic technologies down to 45 nm, the minimum energy per operation point 
(MEP) is achieved in the subthreshold operation region [3,5], thereby making subthreshold operation a 
target for the above-mentioned applications. However, design for the subthreshold region is more 
complicated than for strong inversion. The effects of process, supply voltage, temperature, and aging 
(PVTA) variance are amplified in the subthreshold region due to the exponential dependency of the 
subthreshold current on parameters that are susceptible to PVTA variance. Without intelligent design 
solutions, countering the increased variance effects requires large design margins or individual  
post-fabrication measurements of the components. In terms of these options, the former negates the 
minimum energy operation, while the latter increases production costs considerably. Further, in a 
massively parallel system these measurements would have to be performed separately for each 
processing node. Otherwise, the system would operate at the speed of the slowest node. In strong 
inversion, a popular solution for overcoming margining has been to use canary (replica) circuits [6]. 
However, canary circuits cannot compensate for local variations and, therefore, they are not suitable 
for subthreshold operation. 

To compensate for global and local variations, timing-error detection (TED) can be used [6]. By 
allowing for the detection and correction of timing errors, TED systems are able to reduce the safety 
margins required to ensure the correct timing under PVTA variations [6–8]. Furthermore, TED can be 
used to mitigate thermal and power supply variations across the chip in massively parallel systems and 
take into account the effects of ageing without extra effort. 

This paper presents a subthreshold TED microprocessor, which could represent a computation node 
for a future, massively parallel system. To our knowledge, this is the first known subthreshold TED 
system. The paper is organized as follows. Section 2 explains the characteristics and benefits of 
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subthreshold design, describes the motivation behind using TED techniques, and discusses previous 
works on subthreshold and TED. Section 3 explains the architecture and operation of the subthreshold 
TED microprocessor that we designed. Section 4 provides design and measurement results. Finally, we 
present our conclusions in Section 5. 

2. Background 

2.1. Minimum Energy Point and Subthreshold Operation 

The minimum energy point (MEP) denotes the operating point where the energy per operation is 
minimized. The energy per operation is composed of switching and leakage energy. Theoretically, the 
MEP for static CMOS logic depends on the technology [5]. For a given technology, the absolute MEP 
is tied to a certain threshold voltage. For newer technologies, there is typically a choice of devices with 
different threshold voltages (e.g., high threshold voltage, HVT, or low threshold voltage, LVT). These 
devices have their own respective MEPs which may differ from the absolute MEP. When the threshold 
voltage is fixed, the MEP is mainly dependent upon the technology and activity factor. For example, a 
90 nm CMOS process has a MEP that ranges from 250 mV to 400 mV depending on the architecture 
and activity factor [3,5].  

The MEP is situated in the subthreshold region for technologies down to 45 nm [5]. Figure 1 shows 
the MEP for a 65 nm process. A ring oscillator, with an activity factor (α) of 0.1, was used to generate 
the MEP curves. Different process corners change the leakage energy and, thus, change the MEP. 

Figure 1. Simulation of a 65 nm ring oscillator with an activity factor (α) of 0.1. The 
energy per operation (E/op) is normalized to the SS corner. 

 

As shown in Figure 1, the MEP of 65 nm CMOS lies in the subthreshold region. The functional 
boolean design of static CMOS gates for the subthreshold region is comparable to a design for the 
strong inversion region with a few exceptions, which are mainly due to logic level deterioration due to 
leakage. However, in the subthreshold region, Ids has exponential dependencies [3]: 
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,  exp 1 exp  (1) 

where IO is the drain current when Vgs = Vt, Vt is the threshold voltage, n is the subthreshold slope 
factor, and Vth is the thermal voltage. As can be seen from Equation (1), PVTA variations cause 
exponential changes in the subthreshold current (e.g., a change in Vt due to process variations).  

To show the impact of the exponential effects of Equation (1), different process corners and 
temperatures were simulated on an inverter chain. As shown in Figure 2(a), at 1.2 V, the SS and FF 
corners are, respectively, 1.26 and 0.78 times the delay at the TT corner. At 0.3 V, the SS and FF 
corners are, respectively, 2.56 and 0.39 times the delay at the TT corner. Low temperatures further 
exacerbate the variation impact. For example, the delay is 60 times larger at a voltage of 0.3 V, a 
temperature of −40 °C, and the SS corner, than at the TT corner. Figure 2(b) shows the coefficient of 
variation (σ/µ) for the local variance at 0.3 V and 1.2 V. The σ/µ at 0.3 V is 10 times larger than at 
1.2 V. A 1000-point Monte-Carlo is used to generate both Figure 2(a) and (b).  

Figure 2. (a) Relative delay compared to the TT corner at different corner and voltage 
combinations. The delays at each corner are the mean value of distribution generated from 
the Monte-Carlo runs; (b) Coefficient of variation for the TT and SS corners.  

    
(a)      (b) 

Several subthreshold processors have been presented previously. In a recent study by Kwong et al. 
a 16-bit processor that is based on the MSP430 microcontroller and built in 65 nm is presented [9]. The 
processor achieves a frequency of 434 kHz and consumes 27.2 pJ/cycle at a Vdd of 0.5 V. In another 
study, Zhai et al. present an 8-bit custom ISA processor fabricated in 130 nm [10]. The processor 
achieves a frequency of 833 kHz and consumes 2.6 pJ/instruction at a Vdd of 360 mV.  

Typically, the functionality of processors during variations in temperature is not analyzed in modern 
low voltage processors. Recently, Bol et al. addressed the issue of global PVT variation by utilizing a 
compensation system [11]. However, both the study by Kwong et al. [9] and the one by Zhai et al. [10] 
show frequency measurements over temperature but do not comment on the functionality of the circuit 
during variations in temperature. Prior studies also rarely focus on active variance robustness methods 
are also slightly commented. In a study by Hanson et al. [12], body bias is used to achieve variance 
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robustness in 130 nm technology. However, the effect of body bias decreases with smaller process 
nodes [2].  

2.2. Timing-Error Detection 

Timing-error detection (TED) has been shown to remove PVTA variation-incurred safety 
margins [6,7,13], which would conventionally guarantee operation across all corners with a sufficient 
yield. The lower safety margins can then either be turned into power savings (i.e., lower Vdd [13]) or a 
higher yield [6]. The TED methodology is based on having the system operate at a voltage and 
frequency point in which the timing of critical paths fails intermittently. The failed timing occurrences 
are detected and corrected, for example, with an instruction replay system. If the error rate is low 
enough (e.g., 0.04% in a study by Blaauw et al. [13]), then an energy consumption benefit is achieved 
as a result of operating at a lower Vdd. If the error rate is too high, the instruction replay portion of the 
TED system begins to consume too much energy. 

The key component of a TED system is an error-detection sequential (EDS) circuit. EDS circuits 
generate error signals when the path setup timing fails. This is also known as late signal detection, and 
it is a well-known synchronization concept. With a TED system, the EDS circuits are placed at critical 
logic paths where timing errors can occur. When using an EDS circuit, a timing error is flagged when a 
transition of D occurs in the TED window, as shown in Figure 3(a). The TED window for the EDS 
circuits can be tied to the clock signal [13], or it can be independently generated [6].  

There are two main types of EDS architectures: a dynamic node [13–15] and a delayed shadow 
latch [7,8]. Of these architectures, the dynamic node can achieve a lower power and lower clock node 
capacitance. The dynamic node implementation typically uses an inverter delay chain and a logic gate 
(e.g., XOR) to produce a signal pulse. The signal pulse, or PULSE, as shown in Figure 3(a), is used to 
change the state of a dynamic node and generate a timing error signal. The inverters and logic gates 
used to produce the PULSE signal require a high level of precision across all PVTA variations, 
especially at low voltage levels. In addition to being robust, the size of the PULSE should be 
minimized since it limits the speed of the entire TED system as is further explained in Section 3.3.  

Figure 3. (a) Basic timing-error detection (TED) operation with a dynamic node-style 
error-detection sequential (EDS) circuit. The generated PULSE signal is used to flip the 
state of a dynamic node and generate a timing error, or ERRf [15]; (b) Block diagram of a 
TED system.  
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Figure 3(b) shows a high-level block diagram of a TED system using EDS circuits rather than 
normal FFs. The EDS circuits, called TEDsc, are explained in more detail in Section 3.3. Since the 
TED window is reserved for detecting timing errors in the previous clock cycle, no signals from the 
current clock cycle can arrive within the TED window. A signal that propagates too quickly through 
the combinational logic leads to a false error being flagged. Thus, the minimum delay for the 
combinational logic is the TED window. To prevent these false errors from being generated because of 
fast transitions, additional buffers are required as is described in more detail in Section 3.4.  

In practice, the minimum and maximum delay are both limited by the design uncertainties rather 
than by the logical operation. More specifically, the design of the EDS circuit defines two uncertainty 
regions, during which an error is captured with a finite probability (Figure 4). Local variation in an 
EDS circuit results in an uncertainty region at the microprocessor’s clock signal (CLK) positive and 
negative edges, as shown in Figure 4. Near the CLK edges, the probability that N EDS circuits in a 
system would generate a timing error may not be 100% at some positions of the CLK (i.e., uncertainty 
regions A2 an A4). In Figure 4, tedge2 and tedge4 are defined as the position before the positive CLK edge 
at which the probability of a timing error is 100% and the position before the falling CLK edge at 
which the probability of detecting a timing error is 0%, respectively.  

Thus, the uncertainty region can be defined as the location within a CLK cycle (TCLK) in which the 
probability of a timing error for N EDS circuits (EDS0 to EDSN) is between 0 and 100%: 

, 1 1 ,  (2)  

A study by Bull et al. refers to a similar concept at the positive CLK edge as setup pessimism [6]. 
For new processes or applications with weak to moderate inversion voltage levels, it is essential to 
understand the size and location of the uncertainty region. Since the uncertainty region is largely 
determined by the EDS circuit, it needs to be considered at the same time as the EDS design. 

Figure 4. Local variation (e.g., in PULSE) causes the uncertainty region ta2 and ta4. At the 
positive microprocessor’s clock signal (CLK) edge, local variation in the PULSE signal 
makes it possible for tCLKh,min to be met earlier for some EDS circuits than for others. 
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3. Subthreshold TED Microprocessor 

We studied timing error detection in a microprocessor that is capable of subthreshold operation. The 
central processor unit (CPU) that we implemented had an 8-bit core, which is compatible with a 
commercial microcontroller. The design was done in VHDL and the entire code was developed in-
house for TED design testing purposes. By using an existing instruction set, we were also able to use 
of a readily available assembler and other software development tools. 

3.1. Architecture 

The architecture of the general purpose processor is an accumulator-based style in which the second 
operand is always the accumulator register. The processor core is pipelined into three stages: “Fetch”, 
“Execution”, and “Write”. The instruction memory, which has a size of 256 bytes, resides in a separate 
block; the size of the block is 256 bytes. Due to design-time resource constraints, we do not consider 
here the memory design associated with the processor. The memory is designed for functionality and is 
not optimized in any way. 

As explained in Section 2, the EDS-cells are inserted on the critical paths. The three-stage pipeline 
is configured so that the first stage, “Fetch,” and the last stage, “Write,” are shorter than the “Execute”. 
Thus, the “Fetch” or the “Write” stages never fail before the “Execute” stage, and only the paths on the 
“Execute” stage had to be considered as potential candidates for critical paths. This design choice 
limits both the length of the clock cycle and the number of EDS circuits, and it facilitates the 
placement of the EDS latches by limiting the critical paths to one pipeline stage of the core. Since the 
error signals from the EDS circuits are combined using a logical OR tree, this design choice keeps the 
OR tree shallow. This simplifies the error control, keeps the control delay short, and reduces the 
control overhead. The study by Bull et al. solves this control delay by adding two stages to the 
pipeline [6]; in this study the clock cycle remains unchanged, but the clock cycles per instruction may 
increase. In the solution presented in this paper, the length of the clock cycle may be limited depending 
on how balanced the logic is between the pipeline stages of the core.  

Figure 5 shows the block diagram of the core. The paths that can generate timing errors are 
highlighted in red. The core contains a total of 20 EDS circuits; 8 of them are in the accumulator 
register, 8 of them in the register file write buffer, and 4 of them are used for the arithmetic and logic 
unit (ALU) flags. The error signal paths are highlighted in blue. 

The design requires more circuit modifications than a conventional design. For example, we 
inserted buffers on the fastest paths during the place and route stage to ensure that the hold time 
requirement for the TED error detection window was met. During the "Decode" stage, there are 
significant modifications to allow for error recovery. 
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Figure 5. TEDsc-enabled subthreshold microprocessor architecture. The timing error 
signal propagation paths (EPP) are highlighted in blue and the critical paths (CP) in red. 

 

3.2. Timing-Error Detection and Recovery 

Both the architecture of the core and the timing constraints set during the synthesis ensure that 
timing errors can only occur during the “Execution” stage. A timing error occurs when a data signal on 
a critical path arrives too late to the subsequent EDS data storage element (i.e., the latch). At this point, 
incorrect values can be written to the accumulator and register file. In addition, the Program Counter 
(PC) and the stack might be incorrectly updated due to incorrect ALU flags. 

After a timing error, the core needs to be able to restore the previous state using the following 
methods. First, when a timing error is detected, the system operation is halted by disabling the 
clocking. Next, the data stored during the previous cycle is restored (i.e., the previous values of the PC, 
the accumulator, and the last stack push/pop are stored in the data FFs). Thus, the system stage 
becomes the previous stage. Finally, the failed instruction is re-executed using two clock cycles instead 
of one to guarantee an error-free operation. After the two clock cycle execution, the normal operation 
frequency is restored. 

The error signals are not distinguished from each other, but are, instead, combined with one another. 
Thus, the system does not know which path generated an error. This arrangement is simple and it 
enables fast operation. With regards to functionality, it is not necessary to know on which path an 
error occurred. 

Correct TED operation requires that signals do not arrive too early or late with respect to a TED 
window (TEDwin,N), since these signals are not accounted for in real time at the system level or within 
the EDS. A signal that arrives too early has an insufficient delay time and, thus, it incorrectly arrives in 
the previous TED detection window (TEDwin,N−1). In other words, a timing error is incorrectly 
generated (false positive). False positives are avoided by constructing correctly sized delay buffers. 
When a signal arrives too late (i.e., at TEDwin,N+1), it means that the delay is too large and that an error 
has not been correctly detected. To avoid these false negatives, timing constraints within the design are 
implemented to ensure that a signal cannot be delayed too greatly.  
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3.3. TEDsc 

TEDsc is an EDS circuit [Figure 6 (a)] that uses subthreshold source-coupled logic (STSCL) to 
detect timing errors [15]. Depending on the logic depth, the leakage current, the activity factor, and the 
operation frequency of a system, STSCL can have several advantages over static CMOS (e.g., tunability, 
reduced power consumption, and a decreased sensitivity to supply noise [16,17]). STSCL has been 
shown to be advantageous for ultra-low-power (ULP) systems.  

Figure 6. (a) TEDsc circuit [15]; (b) TEDsc timing. 

    
(a)      (b) 

An STSCL gate is composed of a network of differential NMOS pairs, an adjustable PMOS load 
(M3,M4) with output resistance RP, and an adjustable tail current ISS [Figure 7(a)]. The NMOS pairs are 
used to construct logic gates. The voltage swing is defined as VSW = RP·ISS, and it is maintained by 
dynamically adjusting the size of RP and the magnitude of ISS. Since ISS can be reduced to the pA range, 
RP needs to be in the GΩ range to achieve a proper VSW (i.e., VSW > 150 mV). By connecting the bulk 
of the PMOS load devices to the drain, a large RP is achieved without excessively large transistor 
lengths [16,17].  

The size of RP and the magnitude of ISS are both adjusted by the voltage swing control (VSC) block 
as shown in Figure 7(b). The VSC decreases the dependence on global variations (e.g., supply noise, 
temperature fluctuations, and ageing). The VSC ensures a voltage swing greater than 150 mV across 
all global variations. The VSC for TEDsc uses a two-stage, miller-compensated opamp for ASW. The 
opamp is able to maintain an open loop gain of 40 dB for all the global process corners. The bias 
voltage (VP) from one VSC can be used for a large number of TEDsc gates [16]. 
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Figure 7. (a) Subthreshold source-coupled logic (STSCL) circuit; (b) Voltage swing 
control (VSC). 

        
(a)     (b) 

Since TEDsc uses STSCL, it has the unique ability to adjust its D-to-timing error delay (D-ERRf 
delay); this results in an adjustable TED window. This ability to adjust the D-ERRf delay can be 
explained by first understanding that during a D transition, TEDsc requires a minimum amount of 
charge (Qemin) to move from the dynamic output node in order to induce a differential timing 
error  [15]. Reaching Qemin is dependent on ITEDsc and the β-delay that is extended under the CLK high  
(i.e., tβCLK). For example, when ITEDsc is increased, the TED window is widened at both of the CLK’s 
edges since the required tβCLK is decreased to meet Qemin. 

The starting point of the TED window (ta2 + tedge2 from Figure 4) has two important implications. 
First, at the positive CLK edge, an excessively early starting point of the TED window (i.e.,  
(ta2 + tedge2)/TCLK is too large) does not allow for the maximum clock frequency to be reached and, thus, 
the energy consumption is increased. Second, for a flip-flop based pipeline, an overly delayed TED 
window starting point (i.e., due to a low ITEDsc) does not correctly report all setup time failures as 
timing errors, which results in a non-functional design. In the presence of large global variation 
susceptibility, as found in subthreshold, the tunable TED window enables fine tuning on the 
system level.  

Fine tuning of the TED window is achieved by adjusting ITEDsc within TEDsc. To understand how 
the ITEDsc affects the TED window, three TEDsc circuits were measured on the same die. TEDsc and 
VSC used the following settings: Vdd,scl = 400 mV, VL = 200 mV, and Vdd = 300 mV. A total of  
500 positions of D were applied as input to TEDsc. There were 16,384 transitions of D at each of the 
500 positions. The duty cycle of the CLK was at 50%. The TED window for TEDsc in Figure 8 is 
located between (Position of D Transition) 250 and 500. Figure 8 shows the error probability of the 
three TEDsc circuits as a function of the D transition. For this measurement, the frequency of the CLK 
was 10.37 kHz. 

As shown in Figure 8, by adjusting ITEDsc, TEDsc can adjust its D-ERRf delay. This subsequently 
makes fine tuning of the TED window (and the uncertainty region) possible. For example, to reduce 
the D-ERRf delay, ITEDsc was increased from 300 pA to 1.56 nA (Figure 8). In previous designs [14,15], 
the uncertainty region and TED window have been fully defined at design time, which is not favorable 
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for weak inversion TED design. Simulations showed an uncertainty region (i.e., A2, A4) of 
approximately the same size as found in measurement [15]. 

Figure 8. (a) ITEDsc at 300 pA; (b) When ITEDsc is increased to 1.5 nA, the size of the TED 
window increases. 

 

As the microprocessor’s performance is altered by local and global variations, it is essential that the 
EDS circuit operate correctly and accurately. Through simulations, TEDsc was shown to be robust to 
both local and global variations. Local variations were accounted for by applying Monte-Carlo 
simulations at each process corner (i.e., TT, FF, SS, SF, and FS). This simulation also showed a 
robustness to global process corners due to the VSC. Additionally, TEDsc showed a correct 
functionality from −40 °C to 90 °C as a result of the VSC. Using STSCL also reduces the sensitivity of 
TEDsc to changes in the supply voltage [17]. In addition, the probability of a fast change in the supply 
voltage at the exact same time that D transitions is low. To verify this, we applied a sawtooth-wave 
ripple voltage from 0 to 40 mV and a frequency from 10 MHz to 100 MHz to TEDsc; the correct 
functionality was shown under these ripple conditions. 

The effects of local variations on TEDsc are minimized by proper sizing techniques developed by 
Wang, Calhoun and Chandrakasan [3] and Alioto and Leblebici [18]. The effects of global variations 
on TEDsc are minimized due the STSCL design choice. As mentioned in Section 3.3, STSCL uses the 
VSC to maintain proper operation during the application of both static and dynamic global 
variations [17]. As mentioned in Section 2.2, larger local variations increase the size of ta2 and tedge2. 
This fundamentally limits the speed of the entire TED system since if (ta2 + tedge2)/TCLK is too large, 
there is not ample time to detect errors.  

3.4. Implementation of Core 1 and 2 

To compare the benefits of TED, we designed a TED-enabled core (Core 1) and a non-TED core 
(Core 2). The designs of both cores were fabricated in 65 nm CMOS. The supply voltage range of both 
designs is from 300 mV to 500 mV, which is at the edge or below the strong inversion region for the 
process and all the digital cells. However, we optimized TEDsc to work deep into subthreshold; the 
analysis below will only include 300 mV and 400 mV operation points.  
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To simplify the design process of Core 1, two power domains were used in the design. The 
instruction memory and the error propagation path are located within one power domain, while the rest 
of the design is in a second power domain. The size of the instruction memory is 256 instructions and 
the size of the register file is 68 bytes. The area of the TED core (without instruction memory) is 
approximately 50,000 μm2. The length of the CLK period is approximately 160 times the FO4 delay. 
The clock period is limited by the “Execute” stage and EDS design. 

The foundries did not provide digital EDA tool library information for subthreshold operation. To 
acquire the library’s timing and power information for the EDA tools, we re-characterized the standard 
cells for subthreshold operation by using the Synopsys library characterization workflow. During the 
re-characterization process, we used the standard libraries as templates, considered all the timing arcs, 
and acquired the new timing and power information via analog simulation. The re-characterization 
process was repeated for the typical, best, and worst corners. The acquired library information was 
used by the EDA tools in the automated design flow. Due to their sensitivity variation in subthreshold, 
the smallest gates were removed from the libraries. 

It was not possible to characterize the EDS element and include it to the digital library due to the 
asynchronous nature of the element’s error signal. Furthermore, the VSC block that generates bias 
voltages for the TEDsc blocks is inherently analog. Therefore, a digital simulation of the full system 
was not possible. An analog simulation of the system would have been excessively long. Thus, we 
performed a mixed-mode simulation on the system. The VCS and TEDsc blocks were simulated using 
Spice transistor level models. All of the digital blocks were simulated using the post-layout netlist 
(including parasitics). Mentor Graphics Questa ADMS was used to perform the mix-mode simulation. 

The die microphotograph of Core 1 (TED) and Core 2 without instruction memory is shown in 
Figure 9. Both Cores include all the logic, delays, and buffers. The VSC block and the EDS circuits are 
also shown in Core 1 (TED). 

Figure 9. (a) The microcontroller core with and without TED are shown as Core 1 (TED) 
and 2, respectively; (b) Core 1 (TED) including the VSC and TEDsc circuits. 

       
(a)     (b) 

Table 1 shows a comparison of Core 1 and Core 2. The area of Core 2 is approximately 18,000 µm2, 
which is approximately 64% smaller than that of the TED version. For the comparison, the chip I/O 
compatibility level-shifters present in the subthreshold version are excluded, which gives the total area 
for the TED version as approximately 50,000 µm2. The VSC block occupies an area of approximately 
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1750 µm2 in the subthreshold design. It should be noted that in a larger design, the VSC area gets 
proportionally smaller. The areas of the different blocks were measured so that only the active area 
occupied by the blocks was taken into account. 

The data in Table 1 shows that both the clock delay cells and the buffer cells occupy a substantially 
larger area than in the nominal voltage design. The number and the area of the logic ports are 
comparable. The area of the data storage elements is approximately two times larger in the 
subthreshold design, which can be explained by the fact that the EDS cells in general are larger in area 
than their conventional style counterparts. This applies especially to the EDS circuits designed for 
subthreshold operation due to their variation immunity requirements as explained in Section 3.3. The 
area in the table that is unaccounted for is occupied by the decap and antenna protection elements, and 
in Core 1 by the VSC block. It should be noted that the Core 1 (TED) design has not been optimized 
area-wise. Also, the I/O port functionality has been excluded from the Core 1 design. This makes the 
comparison somewhat less favorable for the Core 1 design in terms of the area. Also, the error 
recovery mechanism modification adds to the logic size slightly. The last columns of the table show 
the percentage of the area of the Core 1 design compared to the area of the nominal voltage design 
(Core 2). 

Table 1. An area comparison of Core 1 (TED) and Core 2. 

 

Core 2 
(Total Area ≈ 18,000 µm2) 

Core 1 (TED) 
(Total Area ≈ 50,000 µm2) 

Area of Cells in Core 1 ÷ 
Area of Cells in Core 2  
(i.e., % larger area that 

Core 1 uses than Core 2) 
Number of 

Cells 
% of the 

Total Area 
Number of 

Cells 
% of the 

Total Area 
Buffer Cells 139 2.5% 934 5% 538% 

Clock Buffer Cells 223 3.5% 66 <1% 45% 
Clock Delay Cells 37 1% 1580 21% 4644% 
Data Storage Cells 777 35% 897 27% 205% 

Logic Port Cells 1942 45% 2191 17% 108% 
Filler Cells 563 10% 4756 19% 539% 

4. Silicon Measurement Results  

Measurements were done using an automated measurement setup that used Labview to manage the 
measurement instruments. Due to the nature of the effects of PVT variance in subthreshold, the correct 
start-up values for the supply voltage and operation frequency were known in advance. Thus, the 
aforementioned parameters were swept to adjust the core to the safe area of operation. This was 
accomplished by inputting test vectors to the core and monitoring the register dump and the timing 
error signals. 

The test programs were coded using an assembler and uploaded to the instruction memory using a 
pattern generator. The error rate was recorded during run-time. After the program execution, the 
register dump was loaded from the chip, and the dumped register values were compared against known 
results to verify the correct functionality.  

Tables 2 and 3 show shmoo plots for Core 1 (TED), running at 300 mV and 400 mV, respectively. 
The x-axis indicates the CLK operation period (TCLK) and the y-axis indicates the duty cycle (Dcycle). 
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The green squares display the duty cycle and frequency pairs in which the circuit is able to operate 
correctly. As the duty cycle is increased, the size of the TED window is also increased since the 
amount of minimum delay is directly proportional to the size of the TED window size. Additionally, as 
the frequency is decreased, the minimum delay requirement increases.   

Table 2 shows that the maximum usable duty cycle at Vdd = 300 mV is 20%–25%. Those values 
will still give approximately a 50% tuning range of the frequency. As Table 2 shows, the circuit does 
not function more quickly than 2.95 kHz. This limitation is set by the HVT logic speed at the supply 
voltage of 300 mV. 

Table 3 shows that the maximum usable duty cycle at Vdd = 400 mV is 15%–20%. As Table 3 
shows, the circuit does not function more quickly than 37.2 kHz. This limitation is set by the HVT 
logic speed at a supply voltage of 400 mV. 

Table 2. Shmoo plot of Core 1 (TED) at Vdd = 300 mV. The maximum clock frequency, 
fmax1, is 2.95 kHz. The green squares (and checkmarks) display the duty cycle and 
frequency pairs in which the circuit is able to operate correctly. 
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Table 3. Shmoo plot of Core 1 (TED) at Vdd = 400 mV. For this Core, fmax1 is 37.2 kHz. 
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To compare the energy per operation of Core 1 (TED) and Core 2, Core 1 (TED) was first set to a 
nominal Vdd (e.g., 300 mV). At this Vdd, or VddCore1, the maximum clock frequency (fmax1) was 
determined as explained in Table 2. In order to guarantee the operation of Core 2 under worst case 
conditions and at the same frequency as Core 1 (i.e., fmax2 = fmax1), a safety margin was found for 
Core 2. Similarly to other TED implementations [19], the safety margin was found from the worst case 
delay due to a SS process corner, a temperature of −40 °C, and a voltage droop of 10%. This worst 
case delay required that VddCore2 be increased from 300 mV to ensure that fmax2 = fmax1. This increase in 
voltage increased the energy per operation of Core 2 relative to Core 1 when operating at fmax1.  

Figure 10 shows the energy per operation for both cores. At 300 mV, Core 1 (TED) uses 28% less 
energy per operation than Core 2. At 400 mV, Core 1 and Core 2 consume approximately the same 
amount of energy per operation. However, Core 1 still has an advantage considering its ability to 
compensate for all local and global variations. Table 4 shows a summary for Core 1. It is important to 
note that at 400 mV, the operation speed is more than 10 times faster than at 300 mV while keeping 
energy consumption per operation essentially the same. 

Figure 10. Energy per operation of both Core 1 (TED) and Core 2. 

 

Table 4. Summary of the subthreshold-capable microprocessor (Core 1) performance in 
65 nm CMOS. 

Core 1 (TED) Summary 
Process Technology 65 nm CMOS 
Number of TEDsc’s 20 

Clock cycle length (TCLK) 160 FO4 
Vdd Clock Frequency Energy/Operation (pJ/op) 

300 mV 2.95 kHz 4.35  
400 mV 37.2 kHz 4.71  
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5. Conclusions  

The presented microprocessor proves that timing-error detection (TED) is feasible in subthreshold 
and that TED reduces the energy per operation. When combined with a start-up algorithm, TED would 
guarantee a correct operation at time zero even under a wide range of global and local variations. 
However, the adaptive system presented here was not optimized, especially in terms of area. This was 
mostly due to the fact that conventional synthesis and place and route design was not optimized for 
subthreshold and the optimization for subthreshold here was restricted to characterizing the library. 
Thus, there is still great potential for optimization in the subthreshold TED system in order to further 
reduce energy consumption and area usage.  
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