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Abstract: This paper presents a systematic approach to extract electrical equivalent circuit model
(ECM) parameters of the Li-ion battery (LIB) based on electrochemical impedance spectroscopy (EIS).
Particularly, the proposed approach is suitable to practical applications where the measurement noise
can be significant, resulting in a low signal-to-noise ratio. Given the EIS measurements, the proposed
approach can be used to obtain the ECM parameters of a battery. Then, a time domain approach is
employed to validate the accuracy of estimated ECM parameters. In order to investigate whether the
ECM parameters vary as the battery’s state of charge (SOC) changes, the EIS experiment was repeated
at nine different SOCs. The experimental results show that the proposed approach is consistent in
estimating the ECM parameters. It is found that the battery parameters, such as internal resistance,
capacitance and inductance, remain the same for practical SOC ranges starting from 20% until 90%.
The ECM parameters saw a significant change at low SOC levels. Furthermore, the experimental data
show that the resistive components estimated in the frequency domain are very close to the internal
resistance estimated in the time domain. The proposed approach was applied to eight different
battery cells consisting of two different manufacturers and produced consistent results.

Keywords: Li-ion battery (LIB); battery management system; electrochemical impedance spectroscopy
(EIS); electrical equivalent circuit models; battery impedance estimation

1. Introduction

Lithium-based rechargeable battery packs have been widely adopted in electric ve-
hicles (EVs). The behavior of the lithium-ion battery (LIB) is highly nonlinear. A battery
management system (BMS) [1] ensures the safety, efficiency and reliability of electric vehi-
cles by continuously monitoring the battery packs. The main component of a BMS is the
battery fuel gauge (BFG). The BFG estimates all the critical parameters of the battery, such
as state of charge (SOC), state of health (SOH), time to shut down (TTS) and remaining
useful life (RUL) [2–4]. In order for the BFG to achieve all these aspects, identifying a
battery model and estimating its parameters remains a crucial step [5].

So far, two approaches have been developed in the literature for estimating a battery’s
electrical equivalent circuit model (ECM) parameters: time domain and frequency domain
approaches [6]. In the time domain approach, voltage and current measurements from the
battery are used [7,8] to estimate the ECM parameters. The EIS is a well-known frequency
domain technique in which the output response is the impedance of the battery [9] at
different frequencies; it was introduced by Heaviside in 1894 [10]. In electrochemical
impedance spectroscopy (EIS), special excitation signals with varying frequencies are
superimposed on the charging or discharging current of the battery. The measured time
domain responses (voltage and current) are converted to frequency domain using Fast
Fourier Transform (FFT) [11] and the impedance is computed in the frequency domain.
The battery’s ECM parameters can be estimated based on the impedance computed at a
specified range of frequencies.
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Significant work has been reported in the literature about the application of the EIS
technique in battery management. In [9], the measurement accuracy was enhanced by using
an improved input excitation method and a precise impedance measurement technique
which can clip offset and amplify signals together with FFT. Insteading of using FFT
to estimate the battery’s EIS, Felder et al. [12] estimated a battery’s EIS by computing
the signal’s amplitude and phase; furthermore, changing sampling frequency does not
affect the accuracy of this approach. Allagui et al. [13] analyzed the stability, linearity,
dissipation, and degradation of a battery cell’s electrochemical behavior in frequency and
time domain and found that a modified constant phase element can be used to fit EIS
data in low frequency. Physics-based battery modeling was addressed in [14] by using
the EIS technique. Models using the EIS technique to estimate the battery’s SOC based on
fractional order impedance have been developed in [15,16]. Battery aging identification
and quantification was completed using EIS for four parallel Li-ion cells in [17]. A power
converter was used in a closed loop with a step perturbation current for better control of
the output from EIS [18].

Nonlinear least square (NLS) estimation techniques were used in [19] to estimate the
ECM parameters of the battery. NLS techniques were employed to estimate battery ECM
parameters in the presence of Gaussian noise with a high signal-to-noise ratio (SNR) [20].
However, in [20], the estimated parameters were not analyzed against SOC. A circuit
parameter extraction algorithm for the LIB charging system using online EIS was per-
formed in [21]. In [22], ECM parameters were extracted using the recursive time and
frequency domain estimation approach. Additionally, EIS at different SOC levels of a
battery was performed in [23]; however, the estimation accuracy was not shown. Parameter
estimation in both the time and frequency domain using the least square genetic algorithm
(LSGA) was demonstrated in [16]; however, the resulting parameters at different SOC
levels were not shown. In [24], EIS at different SOC levels was performed; however, the
experimentation was not for estimating parameters but rather for investigating the effect
in SOH. Feng et al. [25] applied complex nonlinear least-squares (CNLS) to estimate ECM
parameters with the EIS data measured from one battery at different SOC and temper-
atures; however, their parameter estimation approach was based on a simplified ECM
(SECM) which aims to model the solid–liquid electrolyte lithium-ion batterie (SLELB); in
addition, they only estimated resistive components of the SECM and did not employ any
independent approaches to validate the estimated parameters. Pastor-Fernández et al. [26]
applied a CNLS fitting algorithm to extract ECM parameters with the EIS data measured
from four 3 Ah 18650 NCA-C Lion-ion batteries; their estimation approach is based on
AR-ECM, but they only estimated the ohmic, solid electrolyte interface (SEI), charge transfer
(CT), and Warburg resistance of the AR-ECM at 20%, 50%, and 90% SOC over different
aging cycles.

In general, the EIS approach has been significantly employed in the literature for
battery analysis. However, little had been accomplished to develop closed-form approaches
to estimate the ECM parameters of the battery. Such approaches to battery parameter
estimation need to be tested using data from multiple, yet identical batteries for consistency.
It is also important to verify the efficacy of the parameter extraction approach with alternate
methods. The existing works in the literature lack these avenues, and the present paper
aims to contribute toward closed-form battery parameter estimation based on EIS.

The contributions of this paper can be summarized as follows:

1. This paper uses the parameter estimation approach presented in [27] to extract the
battery ECM parameters based on EIS at multiple SOC levels.

2. For the first time, the closed-form ECM parameters obtained using the frequency do-
main (EIS) approach were compared to the ECM parameters obtained using a time
domain approach at multiple SOC levels. This time domain ECM parameter estimation
approach [28] exploits the pulse stream current profile to reduce the error due to mea-
surement noise. Furthermore, the proposed parameter estimation approach was partially
tested based on parameters reported by the scientific grade measurement system.
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3. The ECM parameter estimation approach was applied to four different battery cells
belonging to two different manufacturers, and the results were found to be consistent.

The remainder of the paper is organized as follows: Section II describes the algorithms
used to estimate ECM parameters in the frequency domain. Section III describes the
algorithms used to estimate ECM parameters in the time domain. The experimental
procedure is explained in Section IV. Results are discussed in Section V. Section VI concludes
the paper.

2. Frequency Domain Approach to ECM Parameter Estimation

EIS is a widely used technique to study the impedance response of the battery. In EIS,
a small perturbation current with a wide range of frequencies (0.01 Hz to 10 kHZ) is
supplied to the battery, and its impedance at those frequencies can be measured. The battery
impedance is then represented by real values on the x-axis and imaginary values on the
y-axis in a Nyquist plot [29,30]. This plot represents the impedance spectrum of the battery
from which the model parameters are estimated with algorithms using identified feature
points on the curve.

The frequency domain approach uses the Adaptive Randles equivalent circuit model
(AR-ECM) shown in Figure 1. The AR-ECM consists of the following elements: battery
voltage source, ohmic resistance (RΩ), stray inductance (L), resistance due to SEI layer
(RSEI), capacitance due to SEI layer (CSEI), charge transfer resistance (RCT), double layer
capacitance (CDL) and Warburg impedance (Zw). Figure 2.1(b) in [27] shows the Nyquist
plot relevant to the AR-ECM.

−
+

EMF

L RΩ

CSEI

RSEI

CDL

RDL Zw

Ĩ(ω)

+

−

Ṽ(ω)

Figure 1. Adaptive Randles equivalent circuit model (AR-ECM) of a battery.

According to Figure 1, the AC impedance Z(w) corresponding to AR-ECM can be
written as [27]

Z(ω) , Z(jω)

= jωL + RΩ +
1

1
RSEI

+ jωCSEI
+

1
1

RCT+Zw(jω)
+ jωCDL

= jωL + RΩ︸ ︷︷ ︸
ZRL

+
RSEI

1 + jωRSEICSEI︸ ︷︷ ︸
ZSEI

+
RCT + Zw(jω)

1 + jω(RCT + Zw(jω))CDL︸ ︷︷ ︸
ZCT&DF

(1)

whereZRL denotes the impedance in the RL arc, ZSEI denotes the impedance in the SEI arc,
and ZCT&DF denotes the impedance in the CT arc and Diffusion arc.

In Figure 2, the feature points are selected manually, which are indicated by index
kDF1, kDF2, kCT1, kCT2, kSEI1, kSEI2, kRL1 and kRL2. From Figure 1, it is clear that the measured
Nyquist plot needs to be divided into several parts to see how it is directly related to
the AR-ECM. Different parts of the Nyquist plot represent the battery’s impedance at
different frequencies.

• kDF1 is the index of the first data point, that is, kDF1 = 1.
• kDF2 is selected such that the data points from kDF1 to kDF2 follow the linear line.
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• kCT1 is selected at the beginning of the CT arc such that the data points start to follow
the arc.

• kCT2 is selected at the end of CT arc such that kCT1 to kCT2 follows the CT arc to achieve
the best fit.

• Similarly, kSEI1 is selected at the beginning of the SEI arc.
• kSEI2 is selected at the end of the SEI arc such that kSEI1 to kSEI2 follow the SEI arc to

achieve the best fit.
• kRL1 is selected at the beginning of the RL arc.
• kRL2 is selected at the end of the RL arc.

To solve the problem of ECM parameter estimation, using the least squares (LS)
algorithm to fit the real Nyquist plot as shown in Figure 2 is a promising approach, as this
can reduce the effect of measurement noise to increase the accuracy of estimated parameters.
The following section will summarize the LS approach [27] to ECM parameters estimation
based on the manually selected feature points.

Figure 2. Selection of feature points from the real Nyquist plot.

2.1. Estimation of Ohmic Resistance and Stray Inductance

From the previous work in [27], ohmic resistance RΩ can be estimated as

R̂Ω =
1

kRL2 − kRL1 + 1

kRL2

∑
k=kRL1

zr(k) (2)

and stray inductance L can be estimated as

L̂ =
1

kRL2 − kRL1 + 1

kRL2

∑
k=kRL1

zi(k)
ωk

(3)

where zr(k) = Re(Z(ωk)) and zi(k) = Im(Z(ωk)), and ωkRL1 ≤ ωk ≤ ωkRL2 .

2.2. Estimation of Warburg Coefficient

Warburg impedance is defined mathematically as

Zw(jω) = (1− j)
σ√
ω

(4)

where σ is the Warburg coefficient.



J. Low Power Electron. Appl. 2023, 13, 29 5 of 23

From Figure 1, it is clear that the Warburg impedance is significant only at lower
frequencies (ω < ωk1). In Figure 2, feature points from kDF1 to kDF2 are selected (where
kDF1 = 1), considering the real part of the impedance zr in the diffusion arc:

zr(1)− zr(kDF2) = σ

(
1√
ω1
− 1
√

ωkDF2

)

zr(2)− zr(kDF2 − 1) = σ

(
1√
ω2
− 1
√

ω(kDF2−1)

)
...

zr(n)− zr(kDF2 − n + 1) = σ

(
1√
ωn
− 1
√

ω(kDF2−n+1)

)
(5)

where n = f loor( kDF2−kDF1+1
2 ). The expression zr(i)− zi(j) is used to reduce the effect of

noise in the measurements.
The observation model corresponding to (5) is

z̃ = bσ (6)

where

z̃ =


zr(1)− zr(kDF2)

zr(2)− zr(kDF2 − 1)
...

zr(n)− zr(kDF2 − n + 1)

, b =



(
1√
ω1
− 1√

ωkDF2

)
(

1√
ω2
− 1√

ω(kDF2−1)

)
...(

1√
ωn
− 1√

ω(kDF2−n+1)

)


The LS estimate of σ is

σ̂ = (bTb)−1(bT z̃) (7)

2.3. Estimation of RSEI and CSEI

The impedance for frequencies ωkSEI1
≤ ω ≤ ωkSEI2

is in a practical Nyquist plot as
shown in Figure 2; to fit the SEI arc precisely, we select feature points that lie between kSEI1
and kSEI2. Therefore, the impedance of the SEI arc between ωkSEI1

≤ ω ≤ ωkSEI2
is given as

ZSEI =
1

1
RSEI

+ jωCSEI
(8)

The impedance measurements in the SEI arc can be denoted as:

sr , zr(k) s.t. kSEI1 ≤ k ≤ kSEI2

si , zi(k) s.t. kSEI2 ≤ k ≤ kSEI2
(9)

where zr(k) = Re(Z(ωk)) and zi(k) = Im(Z(ωk)).
Estimation of the SEI arc is essentially the problem of fitting a semicircle with its center

lying on the real axis; the coordinates of this semicircle’s center can be noted as (xs, 0);
the radius of the semicircle can be noted as Rs; therefore, the measurements in (9) should
satisfy the equation of the semicircle, which are given by

(sr − xs)
2 + (si − 0)2 = Rs

2 (10)

s2
r − 2xssr + x2

s + s2
i = Rs

2 (11)
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Let c = −2xs and d = x2
s − Rs

2, thus

Rs
2 =

c2

4
− d (12)

Rs =

√
c2

4
− d (13)

In addition, (11) can be rewritten as

s2
r + s2

i + csr + d = 0 (14)

In the matrix form, (14) can be written as
−(sr(kSEI1)

2 + si(kSEI1)
2)

−(sr(kSEI1 + 1)2 + si(kSEI1 + 1)2)
−(sr(kSEI1 + 2)2 + si(kSEI1 + 2)2)

...
−(sr(kSEI2)

2 + si(kSEI2)
2)


︸ ︷︷ ︸

z

=


sr(kSEI1) 1

sr(kSEI1 + 1) 1
sr(kSEI1 + 2) 1

...
sr(kSEI2) 1


︸ ︷︷ ︸

B

[
c
d

]
︸︷︷︸
xSEI

+


nv(1)
nv(2)

...
nv(n)


︸ ︷︷ ︸

n

(15)

Using the LS algorithm, the estimate of x̂SEI will be given by

x̂SEI = (BTB)−1(BTz) (16)

The estimates of c and d are:

ĉ = x̂SEI(1), d̂ = x̂SEI(2) (17)

From Figure 2.1(b) in [27], the solid electrolyte interface resistance RSEI is the diameter
of the SEI arc; thus, by substituting the values of c and d in (13), the estimate of RSEI is

R̂SEI = 2Rs = 2

√
ĉ2

4
− d̂ (18)

In (1), when the frequency is very high, we assume the impedance in the CT arc and
Diffusion arc will be very small so that it is negligible; thus, the ZCT&DF term will become
zero, that is

Z = ZRL + ZSEI + 0 (19)

Therefore, the impedance in the SEI arc can be expressed as:

ZSEI = Z− ZRL (20)
RSEI

1 + jωRSEICSEI
= Z(ω)− jωL− RΩ (21)

1 + jωRSEICSEI =
RSEI

Z(ω)− jωL− RΩ
(22)

jωRSEICSEI =
RSEI

Z(ω)− jωL− RΩ
− 1 (23)

Taking the imaginary part on both sides of the above equation,

CSEI =

(
1

ωRSEI

)
Im
(

RSEI

Z(ω)− jωL− RΩ
− 1
)

(24)
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Substituting the expression for RSEI, RΩ, and L from (18), (2), and (3), respectively,
in (24) at ω = ωk (kSEI1 ≤ k ≤ kSEI2):

C̃SEI(k) =
(

1
ωkR̂SEI

)
Im
(

R̂SEI

Z(ωk)− jωk L̂− R̂Ω
− 1
)

(25)

Finally, we average all the estimates C̃SEI(k) to obtain the final estimate

ĈSEI =
1

kSEI2 − kSEI1 + 1

kSEI2

∑
k=kSEI1

C̃SEI(k) (26)

2.4. Estimation of RCT and CDL

The practical Nyquist plot is shown in Figure 2; to fit the CT arc precisely, we select
feature points that lie between kCT1 and kCT2; therefore, the impedance of the CT arc
between ωkCT1

≤ ω ≤ ωkCT2
is given as

ZCT =
1

1
RCT+Zw(jω)

+ jωCDL
(27)

The impedance measurements in the CT arc can be denoted as:

cr , zr(k) s.t. kCT1 ≤ k ≤ kCT2

ci , zi(k) s.t. kCT1 ≤ k ≤ kCT2
(28)

where zr(k) = Re(Z(ωk)) and zi(k) = Im(Z(ωk)).
Similar to the estimation of RSEI, RCT can be estimated by fitting a semicircle to the CT

arc. Assuming that the center of the semicircle lies on the real axis, which is noted as (xc, 0),
the radius of the semicircle can be noted as Rc; therefore, the measurements in (28) should
satisfy the equation of the semicircle, which is given by

(cr − xc)
2 + (ci − 0)2 = Rc

2 (29)

c2
r − 2xccr + x2

c + c2
i = Rc

2 (30)

Let a = −2xc and b = x2
c − Rc

2; thus,

Rc
2 =

a2

4
− b (31)

Rc =

√
a2

4
− b (32)

Now, (30) can be rewritten as

c2
r + c2

i + acr + b = 0 (33)

In the matrix form, (33) can be written as
−(cr(kCT1)

2 + ci(kCT1)
2)

−(cr(kCT1 + 1)2 + ci(kCT1 + 1)2)
−(cr(kCT1 + 2)2 + ci(kCT1 + 2)2)

...
−(cr(kCT2)

2 + ci(kCT2)
2)


︸ ︷︷ ︸

p

=


cr(kCT1) 1

cr(kCT1 + 1) 1
cr(kCT1 + 2) 1

...
cr(kCT2) 1


︸ ︷︷ ︸

C

[
a
b

]
︸︷︷︸
xCT

+


nv(1)
nv(2)

...
nv(n)


︸ ︷︷ ︸

n

(34)
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From (34), xCT can be estimated using the LS algorithm

x̂CT = (CTC)−1(CTp) (35)

Thus, the estimates of a and b are:

â = x̂CT(1), b̂ = x̂CT(2) (36)

From Figure 2.1(b) in [27], the charge transfer resistance RCT is the diameter of the CT
arc; thus, by substituting the values of a and b in (32), the estimate of RCT is

R̂CT = 2Rc = 2

√
â2

4
− b̂ (37)

From (1),

Z = ZRL + ZSEI + ZCT&DF (38)

Therefore, the impedance in the CT arc and Diffusion arc can be expressed as:

ZCT&DF = Z− ZRL − ZSEI (39)

RCT + Zw(jω)

1 + jω(RCT + Zw(jω))CDL
= Z(ω)− jωL− RΩ −

RSEI

1 + jωRSEICSEI
(40)

jω(RCT + Zw(jω))CDL =
RCT + Zw(jω)

Z(ω)− jωL− RΩ − RSEI
1+jωRSEICSEI

− 1 (41)

jωCDL =
1

Z(ω)− jωL− RΩ − RSEI
1+jωRSEICSEI

− 1
RCT + Zw(jω)

(42)

Taking the imaginary part on both sides of the above equation, and substituting
Zw(jw) with the expression given in (5), we obtain

CDL =

(
1
ω

)
Im

 1

Z(ω)− jωL− RΩ − RSEI
1+jωRSEICSEI

− 1
RCT + (1− j) σ√

ω

 (43)

Substituting L, RΩ, RSEI, CSEI, RCT and σ with the estimations given in (3), (2), (18),
(26), (37), and (7), respectively, in (24) at ω = ωk (kCT1 ≤ k ≤ kCT2):

C̃DL(k) =
(

1
ωk

)
Im

 1

Z(ωk)− jωk L̂− R̂Ω − R̂SEI
1+jωk R̂SEIĈSEI

− 1
R̂CT + (1− j) σ̂√

ωk

 (44)

Finally, we average all the estimates C̃DL(k) to obtain the final estimate

ĈDL =
1

kCT2 − kCT1 + 1

kCT2

∑
k=kCT1

C̃DL(k) (45)

3. Time Domain Approach to ECM Parameter Estimation

Time domain approaches are widely used to estimate the internal resistance of the
battery. Due to requiring less time consumption for its implementation, this approach is
more suitable for real-time applications [7,8,29]. One of the methods is to use the pulse
stream current profile [28], as shown in Figure 3, to estimate the internal resistance of
the battery.
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In Figure 4, considering a simple R-int model: when current i(k) is supplied to the
battery, voltage zv(k) across its terminal is given by

zv(k) = E + i(k)R0 (46)

where E denotes the open circuit voltage, and R0 is the internal resistance of the battery.
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Figure 3. Current profile for pulse stream test. Use pulse stream A when the battery’s SOC is between
0% and 90%; use pulse stream B when the battery’s SOC is 100%. (a) Pulse stream A (frequency:
20 Hz; Duty Cycle: 50%). (b) Pulse stream B (frequency: 20 Hz; Duty Cycle: 50%).

−
+E

i(k) + −R0
i(k)

V

+

−

zv(k)

Figure 4. R-int model of battery.

Considering the presence of noise in measured voltage zv(k), (46) can be rewritten as

zv(k) = E + i(k)R0 + nv(k) (47)

Assuming there are n measurements in (47), the following can be written

zv(1) =E + i(1)R0 + nv(1)
...

zv(n) =E + i(n)R0 + nv(n)

(48)

Equation (48) can be written in the matrix form
zv(1)
zv(2)

...
zv(n)


︸ ︷︷ ︸

z

=


1 i(1)
1 i(2)
...
1 i(n)


︸ ︷︷ ︸

P

[
E
R0

]
︸ ︷︷ ︸

k

+


nv(1)
nv(2)

...
nv(n)


︸ ︷︷ ︸

n

(49)

E and R0 can be estimated using the LS approach:

k̂ = (PTP)−1(PTz) (50)
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Ê = k̂(1), R̂0 = k̂(2) (51)

4. Experimental Procedure

This section explains the experimental procedure for data collection. The specifications
of LG and Molicel batteries are shown in Table 1; four LG batteries are labeled as LG01,
LG02, LG03, and LG04; and four Molicel batteries are labeled as MCL01, MCL02, MCL03,
and MCL04. The data are collected using the Arbin battery cycler (Model: LBT21084UC).
The Arbin cycler has 16 channels that can operate in parallel; eight channels were used to
collect data simultaneously at room temperature (23 ◦C ).

The EIS data are collected by the EIS device (Gamry interface 5000P). A Gamry
EIS device and Arbin battery cycler are operated using the software named Mits Pro
provided by Arbin. The voltage measurement error of the Gamry EIS device, as specified,
is 0.2 mV [31].

All experiments presented in this paper started with a fully charged battery (SOC = 100%)
and the SOC is reduced by 10% at a time until the SOC reached 0%; after that, the SOC
is increased by 10% at a time until the SOC returned to 100%. In this paper, discharging
the battery with Cd/10 A constant current or charging the battery with Cc/10 A constant
current for 1 hour will decrease/increase the SOC by 10%; here, Cd is the discharge capacity
and Cc is the charge capacity of the battery, which are given in Table 2.

At each of these SOC levels except for 100% and 0%, an EIS experiment is performed;
additionally, a time-domain experiment is also performed. For the time-domain experiment,
the current profile detailed in Figure 3 is applied right after the EIS experiment is conducted
at the corresponding SOC. The detailed procedure is shown as follows:

• Find the cut-off voltage Vc
To ensure the maximum current in the CC-CV charging process below the safety limit,
we need to set a conditional voltage, which should be greater than the cut-off voltage
to decide when to start the CC or CV charging; the cut-off voltage can be written as:

Vc = Vmax − ImaxR0 (52)

From Table 1, the internal resistance of the LG battery is less than 40 mΩ, and the
internal resistance of the Molicel battery is less than 15 mΩ. The maximum current
Imax = 4.2 A, and the maximum voltage Vmax = 4.2 V. Therefore, in the OCV test,
we set the conditional voltage Vcon = 4.1 V for LG batteries and Vcon = 4.15 V for
Molicel batteries.

Table 1. Specifications of LG and Molicel battery [32,33].

Specification
Value

Molicel INR-21700-P42A LG INR-18650-MJ1

Nominal voltage 3.6 V 3.635 V
Nominal capacity 4200 mAh 3500 mAh

End of charge voltage 4.2 V 4.2 V
End of discharge voltage 2.5 V 2.5 V

Internal resistance ≤15 mΩ ≤40 mΩ
Height 70.2 mm 65 mm

Diameter 21.7 mm 18 mm
Weight 70 g 49 g

• OCV Test

– Figure 5 shows the detailed test procedure.
– Table 2 shows the actual discharge and charge capacity of the LG batteries and

Molicel batteries, which are computed after the OCV test.
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• EIS Test

– The experimental procedure is shown in Figure 6a.
– The experimental setup is shown in Figure 6b.

Figure 5. Procedure of OCV test.

Table 2. Discharge and charge capacity of different batteries. Models LG01/02/03/04 use the LG
INR 18650 MJ1 battery, models MCL01/02/03/04 use the Molicel INR 21700-P42A battery.

Battery Discharge Capacity (Ah) Charge Capacity (Ah)

LG01 3.4063 3.3918
LG02 3.4272 3.4228
LG03 3.493 3.4972
LG04 3.4853 3.4912

MCL01 3.9867 3.98
MCL02 4.0105 3.9953
MCL03 4.0115 4.0249
MCL04 3.9889 4.0025
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(a) EIS test procedure.

(b) Experimental setup.

Figure 6. Experimental procedure and setup.

5. Results

In this section, the results obtained from the experiment are shown and discussed.
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Nyquist plots of eight batteries at different SOC levels are shown in Figures 7 and 8,
where the SEI effect can be seen clearly in the Nyquist plot corresponding to 10% SOC
while batteries are in the discharging or charging process.

In Tables 3–6, the estimated ECM parameters for LG and Molicel batteries are obtained
using the algorithms explained in Section 2. We can observe that the internal resistance
Ri measured by Arbin is quite close to the ohmic resistance RΩ. Furthermore, Figure 9a
shows the fitted Nyquist plot of LG01 battery at 10% SOC while discharging, and Figure 9b
shows the fitted Nyquist plot of MCL01 battery at 10% SOC while discharging.

From Figures 10 and 11, it can be observed that the ohmic resistance RΩ, charge
transfer resistance RCT and double-layer capacitance CDL all reached the highest value
at 10% SOC; this phenomenon applies to both LG and Molicel batteries. The Warburg
coefficient σ of LG batteries reached the highest value at 10% SOC; as for Molicel batteries,
the highest σ occured at 80% while discharging and 60% while charging. In addition, no
regularity can be found in LG and Molicel batteries with respect to the variations of L, RSEI
and CSEI at the 10% SOC level; also, the variations of all ECM parameters between 20%
and 90% SOC are not significant in general.

Figure 12 shows all the estimated internal resistance R0 using the time domain ap-
proaches presented in Section 3. It can be seen that at 0%, both LG and Molicel batteries’
internal resistance R0 declined to the lowest value, whereas at 10% SOC, all the Molicel
batteries’ internal resistance R0 reached the highest value.

Table 3. Estimated ECM parameters of LG batteries at each SOC while discharging. (Note: Ri is the
internal resistance measured by Arbin.)

Battery SOC (%) Ri(mΩ) RΩ (mΩ) L (nH) RSEI (mΩ) CSEI (F) RCT(mΩ) CDL (F) σ (×10−3)
90 34.12 467.72 3.04 0.22279 4.91 1.7651 2.12
80 34.09 464.57 3.2 0.2151 4.29 1.6712 2.28
70 34.11 470.99 2.33 0.21431 4.04 1.0928 2.24
60 34.08 466.42 2.88 0.21156 4.01 1.4976 2.05

LG01 50 33.82 34.21 473.66 2.82 0.23089 3.62 1.7077 1.54
40 34.22 468.48 2.72 0.21218 3.84 1.3592 1.50
30 34.17 465.74 3.22 0.20842 4.38 1.6185 1.47
20 34.28 473.25 3.36 0.23364 5.35 2.1996 1.54
10 34.55 465.79 3.4 0.20285 15.04 3.7892 3.12

90 33.33 448.08 3.35 0.22329 4.82 1.926 2.04
80 33.3 444.73 2.84 0.20036 4.46 1.2474 2.31
70 33.29 449.46 3.14 0.21614 3.89 1.7315 2.26
60 33.3 442.35 2.3 0.18748 4.38 0.84849 1.96

LG02 50 33 33.35 451.24 2.34 0.21002 3.75 1.0752 1.54
40 33.38 444 3.21 0.20429 3.93 1.6539 1.50
30 33.33 444.65 3.58 0.20997 4.21 1.9187 1.47
20 33.46 451.29 3.91 0.24557 5.12 2.7591 1.68
10 33.75 457.08 3.90 0.1923 16.51 4.1721 2.80

90 30.41 491.69 4.07 0.17069 4.8 1.6651 2.07
80 30.37 496.55 3.82 0.17129 3.92 1.5633 2.26
70 30.41 480.42 3.61 0.17819 3.71 1.5579 2.35
60 30.44 480.88 3.43 0.17851 3.62 1.4463 2.33

LG03 50 30.88 30.48 495.02 3.76 0.16739 3.85 1.5345 1.65
40 30.54 492.51 3.86 0.16338 3.95 1.5042 1.53
30 30.6 493.95 4.14 0.16388 4.2 1.6635 1.58
20 30.73 497.38 4.95 0.19313 4.96 2.5082 1.65
10 31.18 486.93 4.52 0.14924 14.1 2.7819 2.65

90 31.25 459.39 4.21 0.1715 4.76 1.7413 2.10
80 31.22 461.43 3.36 0.1601 4.37 1.0751 2.37
70 31.21 467.46 3.48 0.17395 3.74 1.4256 2.27
60 31.22 466.49 3.53 0.1736 3.76 1.4251 2.28

LG04 50 31.8 31.24 462.1 4.02 0.17255 3.76 1.8098 1.67
40 31.27 461.36 4.01 0.16519 3.94 1.6283 1.53
30 31.30 462.34 3.20 0.1527 4.79 0.93301 1.57
20 31.40 463.75 4.65 0.18473 5.21 2.1757 1.64
10 31.82 469.83 4.23 0.13732 14.01 2.9987 2.64

Figures 13 and 14 show the comparison of estimated total resistance RΩ + RSEI + RCT
and the estimated internal resistance R0 of LG batteries and Molicel batteries, respectively.
As for LG and Molicel batteries, RΩ + RSEI + RCT is slightly higher than R0 at all SOC,
and it reached the highest value at 10% SOC.

Furthermore, Figure 15 shows the percent error of the estimated resistive elements
RΩ + RSEI + RCT with respect to the internal resistance R0 in the charging and discharging
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process. As for LG batteries, it can be seen that the percent errors are within 5% when
the batteries’ SOC is between 30% and 80% while charging or discharging; at 10% SOC,
the percent errors are between 28% and 38% in the discharging process, and they are
between 25% and 43% in the charging process. As for Molicel batteries, when the SOC
is between 20% and 90%, the percentage errors are within 8% while discharging and are
within 11% while charging; at 10% SOC, the percentage errors are between 6.8% and 9.5%
in the discharging process, and they are between 12% and 15% in the charging process.
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Figure 7. Nyquist plots of LG batteries.
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Figure 10. ECM parameters of LG batteries vs. SOC. Left column is for discharging and right column
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Figure 11. ECM parameters of Molicel batteries vs. SOC. Left column is for discharging and right
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Figure 13. LG batteries’ resistance estimate in time domain and frequency domain.
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Table 4. Estimated ECM parameters of LG batteries at each SOC while charging. (Note: Ri is the
internal resistance measured by Arbin.)

Battery SOC (%) Ri(mΩ) RΩ (mΩ) L (nH) RSEI (mΩ) CSEI (F) RCT(mΩ) CDL (F) σ (×10−3)
10 34.46 470.15 4.38 0.24722 13.95 3.9242 2.31
20 34.31 474 3.68 0.24631 4.86 2.5783 1.6
30 34.32 474.07 3.69 0.2751 3.53 3.4651 1.52
40 34.25 475.98 2.97 0.24166 3.42 2.0166 1.74

LG01 50 35.17 34.21 471.19 3.18 0.23648 3.63 2.1106 2.09
60 34.2 470.72 3 0.23176 3.66 1.8533 2.07
70 34.3 464.58 3.17 0.22409 3.76 1.9357 1.7
80 34.33 461.21 3.54 0.22834 4.03 2.2135 1.77
90 34.31 457.45 3.5 0.21421 5.58 2.2336 1.71
10 33.62 446.24 4.34 0.23464 14.76 4.0039 2.29
20 33.43 450.27 4.15 0.25904 4.63 3.3461 1.58
30 33.43 452.72 3.33 0.24237 3.59 2.3318 1.52
40 33.37 449.45 3.25 0.22934 3.64 2.087 1.7

LG02 50 34.45 33.32 447.91 3.54 0.23246 3.5 2.5096 2.08
60 33.3 447.1 3.18 0.22511 3.66 1.8996 2.06
70 33.35 441.77 3.5 0.22536 3.56 2.2455 1.75
80 33.38 438.19 2.74 0.19386 4.38 1.2153 1.74
90 33.37 451.99 4.52 0.24856 5.04 3.4536 1.68
10 31.09 489.85 4.99 0.22245 10.4 3.6818 2.33
20 30.83 494.27 3.43 0.19534 4.8 1.6213 1.68
30 30.77 488.72 3.65 0.19079 3.87 1.7747 1.62
40 30.74 485.46 3.4 0.18028 3.84 1.4483 1.88

LG03 50 31 30.67 487.89 2.11 0.16878 3.96 0.63426 2.12
60 30.66 485.13 3.17 0.17787 3.66 1.2994 2.04
70 30.72 479.05 3.31 0.16892 3.84 1.3108 1.71
80 30.75 480.36 3.44 0.18174 3.78 1.5759 1.86
90 30.71 477.52 4.26 0.19437 4.36 2.2802 1.67
10 31.64 470.56 4.42 0.19099 16.9 3.9463 2.35
20 31.48 470.95 4.85 0.2201 5.39 3.1217 1.56
30 31.4 473.72 4.04 0.20236 3.95 2.2992 1.68
40 31.35 471.8 2.42 0.16841 4.2 0.78514 1.8

LG04 50 32.68 31.31 469.59 2.71 0.17051 4.08 0.9391 2.12
60 31.31 474.04 3.22 0.19627 3.57 1.5973 2.06
70 31.34 465.67 3.35 0.1785 3.73 1.4949 1.7
80 31.38 464.39 3.73 0.1844 3.96 1.7888 1.76
90 31.41 467.86 3.46 0.18651 4.35 1.9457 1.69

Table 5. Estimated ECM parameters of Molicel batteries at each SOC while discharging. (Note: Ri is
the internal resistance measured by Arbin.)

Battery SOC (%) Ri(mΩ) RΩ (mΩ) L (nH) RSEI (mΩ) CSEI (F) RCT(mΩ) CDL (F) σ (×10−3)

90 12.19 127.7 2.96 0.14838 3.02 1.9264 1.91
80 12.18 128.64 2.99 0.14925 2.95 1.7723 2.03
70 12.22 123.27 2.86 0.15021 2.82 1.6021 1.98
60 12.21 127.87 2.78 0.14041 2.84 1.4092 1.93

MCL01 50 12.76 12.27 124.19 2.63 0.14448 3 1.3045 1.83
40 12.23 129.51 2.69 0.14108 2.91 1.349 1.77
30 12.27 127.53 2.89 0.14477 3.11 1.4313 1.74
20 12.3 124.27 2.87 0.14921 3.14 1.5283 1.68
10 12.4 123.74 3.16 0.15457 3.64 1.9338 1.97
90 12.32 94.58 2.83 0.13917 3.22 1.8474 1.92
80 12.29 95.12 2.98 0.14524 3.1 1.6911 2.02
70 12.3 94.88 2.83 0.14501 2.86 1.6404 1.94
60 12.34 95.93 2.48 0.13526 3.2 1.1881 1.89

MCL02 50 12.78 12.32 97.55 2.68 0.14322 2.91 1.4888 1.79
40 12.32 97.06 2.58 0.13936 3 1.2418 1.71
30 12.33 95.73 2.83 0.14179 3.28 1.499 1.73
20 12.37 98.06 2.75 0.1471 3.24 1.5932 1.66
10 12.44 97.97 3.05 0.14893 3.97 1.8782 1.97
90 12.73 112.93 2.88 0.15149 3.16 1.7869 1.91
80 12.7 113.23 2.55 0.14004 3.45 1.1063 2.06
70 12.72 113.18 2.76 0.14458 3.24 1.3804 1.96
60 12.75 114.47 2.23 0.14188 3.14 0.97923 1.9

MCL03 50 13.19 12.76 114.33 2.94 0.16119 2.74 1.9954 1.82
40 12.74 113.87 2.86 0.15321 2.96 1.6035 1.73
30 12.77 114.98 2.98 0.1558 3.1 1.7348 1.79
20 12.8 115.57 3.02 0.16174 3.09 1.8559 1.62
10 12.86 114.67 3.72 0.17899 3.32 3.0123 1.89
90 12.27 110.09 2.35 0.13018 3.7 1.0107 1.96
80 12.25 111.65 3.09 0.1497 3.2 1.6986 2.1
70 12.27 110.12 2.83 0.14016 3.39 1.334 2.01
60 12.28 112.54 2.49 0.13854 3.2 1.1365 1.92

MCL04 50 12.8 12.27 111.96 2.89 0.1482 2.94 1.5953 1.84
40 12.29 112.02 2.73 0.14128 3.3 1.2619 1.81
30 12.27 112.62 2.79 0.14323 3.31 1.3253 1.77
20 12.32 114.22 2.96 0.15357 3.41 1.5857 1.72
10 12.37 113.14 3.22 0.1474 4.19 1.6458 1.93
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Table 6. Estimated ECM parameters of Molicel batteries at each SOC while charging. (Note: Ri is the
internal resistance measured by Arbin.)

Battery SOC (%) Ri(mΩ) RΩ (mΩ) L (nH) RSEI (mΩ) CSEI (F) RCT(mΩ) CDL (F) σ (×10−3)
10 12.44 127.69 3.5 0.16041 3.91 2.5303 1.97
20 12.37 123.65 3.22 0.15903 3.34 1.9775 1.7
30 12.33 123.16 2.78 0.14601 3.25 1.3636 1.74
40 12.31 127.87 2.82 0.14565 3 1.3831 1.8

MCL01 50 13.7 12.28 127.65 2.52 0.13408 3.2 1.0172 1.9
60 12.27 126.8 1.47 0.12357 3.29 0.45992 2.09
70 12.29 125.84 2.65 0.13586 2.94 1.2557 1.83
80 12.28 127.24 2.85 0.14256 2.85 1.5845 1.82
90 12.27 125.7 2.84 0.13672 2.96 1.7427 1.73
10 12.48 96.43 3.61 0.16464 4.14 3.0663 1.89
20 12.41 97.55 3.1 0.15 3.27 1.8899 1.66
30 12.33 96.18 3.17 0.15212 2.87 2.1141 1.71
40 12.34 95.6 2.93 0.14508 3.1 1.5808 1.78

MCL02 50 13.69 12.34 95.24 2.83 0.14004 3.09 1.4919 1.89
60 12.33 94.88 2.79 0.13887 2.9 1.4831 2.06
70 12.34 94.34 1.37 0.1225 3.33 0.48037 1.8
80 12.36 94.63 1.53 0.1241 3.36 0.5577 1.78
90 12.36 93.96 2.88 0.13771 3.32 1.8098 1.67
10 12.88 113.27 3.94 0.17241 4.05 2.9983 2.05
20 12.87 114.83 3.37 0.17392 3.1 2.4794 1.74
30 12.8 114.72 2.36 0.14214 3.22 1.0772 1.7
40 12.78 112.61 2.75 0.14392 3.18 1.3912 1.78

MCL03 50 14.06 12.77 111.85 2.63 0.13862 3.19 1.1738 1.89
60 12.77 114.16 2.1 0.13627 2.98 0.86353 2.07
70 12.79 114.4 2.04 0.13671 2.96 0.88326 1.75
80 12.77 111.48 1.37 0.12773 3.38 0.47767 1.81
90 12.78 112.13 2.67 0.1439 3.01 1.6431 1.72
10 12.45 113.81 3.46 0.16651 3.98 2.2854 1.95
20 12.37 115.03 2.79 0.15239 3.38 1.5069 1.7
30 12.37 114.91 2.45 0.14681 3.18 1.1633 1.7
40 12.35 113.93 2.54 0.14354 3.19 1.1937 1.82

MCL04 50 13.6 12.35 113.45 2.05 0.13807 3.27 0.78896 1.98
60 12.33 114.16 2.44 0.14425 2.88 1.2123 2.09
70 12.35 113.42 2.4 0.13905 2.84 1.2617 1.8
80 12.33 111.68 2.61 0.13576 3.08 1.2558 1.88
90 12.33 110.33 2.83 0.14168 2.93 1.7636 1.74

6. Conclusions and Discussions

This paper demonstrates the parameter estimation to identify the resistive and induc-
tive components in an AR-ECM based on the battery’s EIS.

The ECM parameter estimation approach is applied to the EIS data collected from
LG 16850 and Molicel 21700 batteries at multiple SOC levels. The proposed approach is
implemented via the manual selection of feature points from actual Nyquist plot; this relies
on the precise separation of SEI arc, CT arc, and Diffusion arc from the real Nyquist plot,
which has a low signal-to-noise ratio.

From the experiment, it is clear that the internal resistance measured by Arbin is
actually the ohmic resistance RΩ from the AR-ECM; besides, whether it is an LG or Molicel
battery, the variation of all estimated ECM parameters is very small when the SOC ranges
from 20% to 90%; furthermore; RΩ, RCT and CDL reached the highest value at 10% SOC,
whereas the variation of L, RSEI , and CSEI show irregularity at 10% SOC; moreover, the total
resistance RΩ + RSEI + RCT reaches the highest value at 10% SOC.

In addition, a time domain approach is developed to check the validity of the estimated
ECM parameters; the validation is performed by using data collected from eight different
batteries at nine different SOC levels both in the discharging and charging process, which
shows good agreement between the time domain and frequency domain approaches when
the battery’s SOC is between 20% and 90%. It must be noted that this approach is well
suited to estimate resistive components only. When the RC effect increases, the accuracy
of resistance estimation is expected to drop. The prominent error observed at 10% SOC
is due to the significant RC effect; this makes sense, since there are two RC elements in
the AR-ECM. As a result, it can be concluded that there exists an inadequacy in the time
domain approach for modeling all resistive elements at low SOC.

In future works, the automatic detection of feature points will be developed to improve
the efficiency of ECM parameter estimation. Another limitation of the present work is that
all the experiments were conducted at room temperature. Future studies will repeat these
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experiments at various temperatures to investigate whether the variation of temperature
has an impact on ECM parameters.
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