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Abstract: Edge AI accelerators are utilized to accelerate the computation in edge AI devices such as
image recognition sensors on robotics, door lockers, drones, and remote sensing satellites. Instead of
using a general-purpose processor (GPP) or graphic processing unit (GPU), an edge AI accelerator
brings a customized design to meet the requirements of the edge environment. The requirements
include real-time processing, low-power consumption, and resource-awareness, including resources
on field programmable gate array (FPGA) or limited application-specific integrated circuit (ASIC)
area. The system’s reliability (e.g., permanent fault tolerance) is essential if the devices target radiation
fields such as space and nuclear power stations. This paper proposes a dynamic reconfigurable
column streaming-based convolution engine (DycSe) with programmable adder modules for low-
power and resource-aware edge AI accelerators to meet the requirements. The proposed DycSe
design does not target the FPGA platform only. Instead, it is an intellectual property (IP) core design.
The FPGA platform used in this paper is for prototyping the design evaluation. This paper uses the
Vivado synthesis tool to evaluate the power consumption and resource usage of DycSe. Since the
synthesis tool is limited to giving the final complete system result in the designing stage, we compare
DycSe to a commercial edge AI accelerator for cross-reference with other state-of-the-art works. The
commercial architecture shares the competitive performance within the low-power ultra-small (LPUS)
edge AI scopes. The result shows that DycSe contains 3.56% less power consumption and slight
resources (1%) overhead with reconfigurable flexibility.

Keywords: edge AI accelerator; CNN; dynamic reconfiguration; fault tolerance

1. Introduction

Artificial Intelligence (AI) has been used commonly to achieve tasks by mimicking
human problem-solving skills, learning from given data, and utilizing the learned skills to
process future missions. Artificial neural network (ANN) is a sub-category of AI, which is
used to solve applications that are difficult to be reached by the traditional problem-solving
algorithm by leveraging approximation theorem. Thanks to the development of VLSI and
Moore’s law, the hardware resources make ANN possible to develop and become more
complicated and powerful. This intricate, multiple-layered ANN is called deep learning
neural network (DNN). DNN utilizes big data as the training source to generate a complex
model for individual applications. Convolution neural network (CNN), a kind of DNN
that mainly targets image-related processing, has shown its capability as it outperformed
human ability regarding image object recognition [1].

CNN is commonly used by AI frameworks such as TensorFlow and Caffe in data
center platforms. The platform typically runs on the central processing unit (CPU) and
graphic processing unit (GPU) to train the big data for future inference. The applications
utilizing CNN, such as autonomous vehicles, image recognition door locks, wearable
devices, robotics, and remote sensing satellites, are seeking to be addressed in the edge
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scenario. The requirements for edge scenarios are real-time processing, power consumption
awareness, and device size limitation. These applications are not suitable to be covered
by the general-purpose processor (GPP) and GPU. GPP and GPU are general-purpose
designs for sequential works and graphic processing due to their non-size, non-energy, and
non-computation efficiency.

Hence, edge-cloud coordination is proposed, which utilizes connections (e.g., the
internet) to connect the cloud server and edge sensors to distribute the processing load
and balance the system size. In this technique, the sensors collect and transfer the data
to the cloud server for inference, which cleverly eliminates the computing load from the
edge device. However, edge-cloud coordination technology has its downside for real-
time applications. The edge-cloud coordination system, which utilizes the protocol that
transfers the collected data back to the cloud server and gets the inference result back for
a response, demands an internet connection and cannot run in areas without network
coverage. Furthermore, while data privacy and security are an issue to be reckoned
with (e.g., applying to face door locker), the edge-cloud coordination system shows the
disadvantages. The edge-cloud coordination system might pay the penalty for the real-time
computation due to the communication latency, which is not ideal for real-time devices
(e.g., surveillance drones).

As a result, edge AI accelerators are proposed to target edge AI devices to meet the
unique edge scenario’s requirements. Edge AI systems can be generally divided into two
categories, power-size sensitive (PSS) and non-power-size sensitive (NPSS). Non-power-
size sensitive edge AI systems include unmanned shops, surveillance systems, etc. These
systems acquire power through fixed power supply facilities with a relatively extensive
area to locate. Hence, NPSS systems do not urgently care about power consumption and
system size but tend to be aware of data privacy. As a result, some NPSS systems also
avoid using edge-cloud coordination platforms.

This paper mainly targets PSS edge AI systems, but the proposed design can also be
used on NPSS edge AI systems. Edge AI technology has the following advantages to deal
with PSS and NPSS systems’ demands. The benefits of the edge AI technology are:

• Edge AI can improve the user experience regarding real-time data processing when
AI technology is applied near customers.

• Edge AI utilizes customized dataflow to pursue the compact size and manages power
consumption to meet the mobility and limited power source.

• Edge AI can run without internet coverage to offer privacy using local processing.

Furthermore, numerous natural hazards applications have adopted and applied the
edge AI system in several hard-to-reach fields, such as space or nuclear power stations.
These deployment scenarios are more critical than usual consumer products. It has been
seen that the usage of robotics deals with the radiation leakage of nuclear power stations [2]
and remote sensing satellites in space [3]. Devices that work in these fields should have
the self-fault elimination ability to tolerate the radiation since these critical environments
can cause a system failure. As a result, edge AI devices targeting hard-to-reach environ-
ments should meet the abovementioned requirements and demonstrate fault tolerance to
guarantee reliability.

Regarding fault tolerance, a technique called dynamic reconfiguration plays a vital
role, and is leveraged in the design to bypass the faulty modules. Overall, the PSS edge
AI systems targeting hard-to-reach fields require the following conditions: (I) Size limita-
tion, (II) Power source limitation, (III) Real-time and no internet coverage, and (IV) Fault
tolerance. Conditions (I) to (III) are the three key features of edge AI accelerators.

This paper mainly targets designing a competitive convolution engine module for
edge AI accelerators to meet conditions (I) to (IV). A convolution engine is an essential
module in an edge AI accelerator system and contains control units, convolution engines,
memories, etc. In order to provide a convolution engine architecture for a PSS edge AI
accelerator to meet the designing trend, we did an investigation [4], an algorithm pilot
study [5], and a trial study [6]. The introduction of the three preliminary studies is described
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in three paragraphs below. The paragraphs clarify what has been done and the contribution
of this paper.

The refine content of [4] added two recent state-of-the-art works, which will be dis-
closed in Section 2, design trend of edge AI accelerators. The investigation shows that
the low-power ultra-small (LPUS) edge AI accelerators fall into the same scope regard-
ing the three key features, which are said to be hundreds of Giga operation per second
(GOPs) ability, with less than 10 mm2, and below a watt power consumption. This LPUS
scope is the scenario for this paper. Several state-of-the-art works [7–9] show that an effi-
cient dataflow architecture can reduce an accelerator’s area size and power consumption.
Du et al. [7] use dataflow-aware architecture in the convolution engine to meet the area
and power consumption limitation for the PSS edge AI accelerators. Since a convolution
engine plays a primary role in an edge accelerator, we decided to design a dataflow-aware
oriental architecture. Because the work [7] stands out in the PSS edge AI scope (LPUS
scope) and has been commercialized [4], this paper uses [7] as a cross-reference to evaluate
the proposed convolution engine architecture within the LPUS scope containing [7,8,10,11].
The detail of why this work chose [7] as a ‘targeting reference’ among state-of-the-art works
will be refined in the trend of the design chapter.

After a scenario scope and reference target have been set, the following task is the
dataflow of the mapping algorithm pilot study [5], which has shown a competitive result.
A convolution engine should be able to process the images or data with different CNN
algorithm variables, such as filter size or stride.

After the algorithm has been designed, a preliminary showing the idea of the hardware,
the trial study [6] implements a 48-processing element array of the convolution engine, a
smaller scale of a complete size design in this paper without an adder module. The trial
study mainly evaluates the reconfiguration bus within the PE array and shows the potential
ability to compete with a scale-down PE array of [7] in terms of power and area size.
However, they do not include the adder module, an essential component in a convolution
engine, and do not set any clock constraints, which makes the synthesis result different
from this paper.

As a result, to give a full size of the convolution engine architecture, this paper
completes the full-sized dynamic reconfigurable column streaming-based convolution
engine (DycSe) with a reconfigurable adder module. It shows its competitive resource
usage and power consumption results with fault tolerance ability on the field programmable
gate array (FPGA) tool for prototyping. Due to the fast implementation feature of FPGA in
the earlier stage of an application-specific integrated circuit (ASIC) or intelligent property
core (IP core) design, FPGA is an excellent platform for structure evaluation. As a result,
this paper utilizes FPGA for prototyping our IP core but does not intend to design a pure
FPGA-based product. To meet the scope of the PSS edge AI accelerators, we put DycSe and
the targeting reference [7]’s convolution engine architecture on the FPGA synthesis tool
Xilinx Vivado for a fair comparison as a cross-reference within the LPUS scope.

The detail of this paper is organized as follows. Section 2 introduces the design trend
of edge AI accelerators and describes why the work [7] is chosen as a targeting reference
in competitive state-of-the-art works. Section 3 gives essential background knowledge of
convolution neural networks. Section 4 explains the column streaming-based mapping
algorithm. The subsections contain convolution computation mapping strategy, mapping
strategy comparison, and mapping methods/varieties for flexibility. Section 5 releases
the architecture design, which includes the processing elements, programmable Bus, re-
configurable adder module, and their connections. System verification and experiment
results are analyzed in Section 6. Finally, Section 7 summarizes the conclusion and gives
out future work.

2. Design Trend of Edge AI Accelerators

Several recently released academic/commercial edge AI accelerators, such as [7–22],
are proposed to meet the compact size, low-power consumption, and high computation
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ability for edge devices. According to [4], LPUS edge AI accelerators should consume
power in the order of hundreds of mWs, operate with hundreds of GOPs, and occupy under
unit-mm2 area size. The state-of-the-art edge AI accelerators in this scope are [7,8,10,11],
as shown in Table 1, which refines from [7–22]. Table 1 introduces the three features:
computation ability, power consumption, and the area size of the edge AI accelerators.
Although the computation abilities of the accelerators [9,22] are under hundreds of GOPs,
they contain relatively lower power consumption. As a result, they are worth to be
mentioned in the LPUS edge AI accelerator category in a broad sense. Evaluation value E
was introduced by [4] and can be defined as (1). In (1), cFixed16 represents the computation
ability of an edge AI accelerator with 16 fixed-point precision, and its unit is Giga operation
per second (GOPs). On the other hand, the p and s represent power consumption in W and
area size in mm2, respectively.

Table 1. List of low-power ultra-small edge AI accelerators.

Three Key
Features and the
Evaluation Value

Edge AI Accelerators

IECA 2021 [9] CARLA 2021 [22] Du et al. 2018 [7] Softbrain 2017 [8]
SURE-Based
REDEFINE

2016 [10]

Sparsity-Aware
2020 [11]

Computation ability 84 GOPs 75.4 GOPs 152 GOPs 452 GOPs
(test under 16-bit)

450 Faces/s
≈201.6 GOPs (ref.) 102.4 GOPs

Precision 16-bit Fixed 16-bit Fixed 16-bit Fixed 64-bit Fixed
(DianNao) 32-bit Fixed 16-bit Fixed

Power consumption 114.6 mW 247 mW 350 mW 954.4 mW 1.22 W 194 mW

Size 2.75 mm2 6.2 mm2 5 mm 3.76 mm2 5.7 mm2 3.98 mm2

Evaluation value E 266.53 49.24 86.86 (core) 125.96 29.48 132.62

Implementation UMC 55 nm 65 nm TSMC 65 nm 55 nm 65 nm TSMC 40 nm

Commercial
product example – –
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Evaluation value (E) = cFixed16/(p × s) (1)

As mentioned, state-of-the-art works [7,8,10,11] fall in the LPUS consumption scope,
and three of them [7–9] use the streaming/systolic technique, which shows that stream-
ing/systolic architecture in implementing edge AI accelerators proves its efficiency regard-
ing the three features. Furthermore, Du et al. [7] have been commercialized and utilized in
a face recognition door lock system powered by batteries; this proves that the streaming
dataflow technique is competitive for a convolution engine. Inspired by the streaming
approach of [7] and the coarse-grain reconfigurable array design of [8], DycSe is designed
to tolerate a certain degree of permanent faults.

To make the comparison in the specifications of the collected edge AI accelerators
falling in the LPUS consumption scope clearer, Figure 1 illustrates the three key features
with the evaluation E in a line-column chart. Figure 1 shows that [8,10] contain relatively
higher power consumption than others, while the design computation of [9,22] is rela-
tively lower. Hence, Sparsity-Aware [11] and Du et al. [7] are the two edge AI accelerators
performing more balance in terms of the three key features within the LPUS scope. Further-
more, we also need to be aware that although Sparsity-Aware [11] seems to have the best
general performance in the scope, its ASIC design technology is also the smallest, making
the general performance better beyond just the architecture design. Since the design in this
work targets the convolution engine, which is a component in the whole edge AI system, it
is hard to release the three key features in the final ASIC encapsulation form of an IP core.
Hence, this work uses a cross-reference [7] to prove that the proposed convolution engine
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architecture can potentially be integrated into an edge AI accelerator without making the
whole system’s performance worse than [7], which has a similar standard with all the
arts [7,8,10,11] listed in the scope.
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3. Convolution Neural Networks Layers

The convolution function is applied in the convolution layer to calculate the inner
product of the input features and weight filters. This process can be understood as mapping
the input or previous layer’s features to the next layer according to the emphasized features.
At the beginning of the convolution computation, the feature detectors (a set of weight
filters) generate the output features of a 2D input image. The output features become the
following layer’s input features. Each layer can have multiple input feature channels, such
as the RGB color channel, so that the convolution features can be realized as 3D data sets.
The convolution output data is obtained by computing the inner product of the filter weight
and the part of the input feature masked by the filter.

Figure 2 shows an example of a convolution layer. In Figure 2, k represents a weight
filter’s height and width, known as the kernel size. Variable n represents the input layer’s
height and width, and m represents the output layer’s height and width. We set a Cartesian
coordinate system on the input features to clearly show them. Let O(0, 0) be the origin, and
each input feature’s height and width are n, so point B locates at (n,−n). At the beginning
of the convolution computation, the weight filter’s point ν0,0 is located at O(0,0), so ν0,0 is
mapped to V(α, β), α = β = 0, in the input feature’s coordinate system. Stride sd means the
distance that a weight filter would move from the last location V(α, β) to its new location
V(α′, β′), which can be realized in Figure 3. When it comes to the output layer, its height
and width are m, which can be obtained by (2).

M = b(n − k)/sd + 1c (2)

After specifying the variables and their relationships in a convolution layer, we can dis-
cuss how a convolution layer can be achieved in computing. The convolution computation
of input features and weights obtains an output feature in an output layer. Figure 4 shows
the detail of a convolution computation. In Figure 4, we flip the x- and y-axis (x increases to
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the west; y increases to the south) compared to Figure 3, without the loss of generality. The
rest of the paper uses the reversed axes system to represent the convolution computation.
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Figure 4. Convolution computation.

Convolution computation can be seen as a filter scanning through an input layer
according to the stride size to generate and direct the result to an activation function with
an extra bias. The overlapping input feature’s pixel and weights in the weight filter during
the scanning should do the inner product, as shown in Figure 4. Each output feature is
obtained by summating the inner products produced by each input feature and weight
filter. After the sum is received, an additional bias weight is added to each summed result,
followed by applying the final result to an activation function ReLU.

4. Column Streaming-Based Mapping Algorithm

According to our investigation and [23], several kinds of reconfigurable strategies
are used in these state-of-the-art accelerators [7,8,11,24,25]. Among these accelerators, the
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reconfiguration of [7,11] is limited to dataflow, while Jiao et al. [24] and Ryu et al. [25]
target word size type reconfiguration. SOFTBRAIN [8] utilized a coarse-grained cell
array to compute the stream-dataflow DNN. Except for [7,11,24,25], only SOFTBRAIN [8]
falls into components or module reconfiguration (i.e., structure-wise reconfiguration).
Du et al. [7] and SOFTBRAIN [8] adopt the competitive streaming architecture, as in Table 1
and Figure 1.

Hence, streaming architecture is chosen for DycSe to provide a convolution engine
for edge AI accelerators. An edge AI accelerator requires processing AI algorithms (i.e.,
CNN in this paper). Since CNN algorithm is a general term for different CNN nets, which
contain many different convolution layers, a convolution engine in an edge AI accelerator
with the ability to adapt arbitrary weight filters is becoming essential. Structure-wise
reconfiguration is proposed to offer the ability to process arbitrary weight filter size and the
fault tolerance requirement (i.e., condition IV in chapter 1). Structure-wise reconfiguration
includes hardware rearrangement through programmable connections, such as muxes or
demuxes. Hence, it differs from a dataflow-wise reconfiguration such as the weight filter
decomposition technique proposed by [7]. The detail of the structure-wise reconfiguration
is described in chapter 5.

Before designing a convolution engine structure, a hardware mapping algorithm
should be created first, deciding the structure’s developing flexibility. Hence, a proper
mapping algorithm for weight filters and input features to be mapped to the convolution
engine architecture is discussed in this chapter. Section 4.1 introduces the strategy, while
Section 4.2 examines the concept. Finally, Section 4.3 releases all the mapping varieties
categorized by mapping methods, which are represented by the notation method, equal
to 1 or 2.

4.1. Convolution Computation Mapping Strategy

Figure 5 shows DycSe’s data mapping strategy for convolution computation, achieved
by the column streaming methods. Figure 5 is composed of three blocks, input features
(I/f), weight filters (W/f), and the PE array (module), where the convolution computation
executes; the weight values in the W/f block preload to the PE array in column form. The
filter size decides the weight-mapped position and how the PE module is configured.
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Figure 5. Convolution computation mapping strategy.

A k × k-sized W/f is decomposed into k columns. When k = 3 in Figure 5’s case, the
first column, {w0,0, w0,1, w0,2} in blue, preloads into the array, and the weight column stays
in the PE array until the input feature data finishes the multiplication.
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The input feature is decomposed into j data (pixel) sets, and a data set is steamed into
the PE array at each clock cycle. The variable j is also decided by the mapping method
that, according to the PE module reconfiguration, j in Figure 5 is 21. The 21 inputs of data
are streamed into the PE array in two subsets, through Bus1 and Bus2. Variable j can be
obtained by using (3). In (3), variable k represents the kernel size, variable c represents
the streaming data set, and variable method represents the mapping methods. Variable AH
means PE array heights.

jk,c,m = AH × 2− 1, k ≤ 5, c = 0, method = 1
jk,c,m = AH × 2− 2, k ≤ 5, c > 0, method = 1
jk,c,m = AH × 2− k, k ≤ 5, c ≥ 0, method = 2

jk,c,2 = AH × 2− 1− k, k > 5, c ≥ 0, method ≡ 2

(3)

4.2. Mapping Strategy Comparison

For evaluating the column streaming-based convolution engine, we use MATLAB to
count the execution cycles needed for DycSe and [7] to compute a 227 × 227 size feature
map in the pilot study [5]. A 227 × 227 size feature map is the input size of AlexNet, one of
the famous CNN.

As shown in Figure 6, the calculation result shows that the proposed convolution
engine requires fewer cycles to compute the feature map when the weight filter size is
equal to four, seven, and 10. When the weight filter size equals five and eight, the proposed
convolution engine shares similar execution cycles. The proposed convolution engine
needs more cycles to compute the operations when the weight filter size equals three, six,
nine, and 11. Figure 6 shows that the dash line, indicating the result of the algorithm
adopted by DycSe, goes through the solid line Du et al. [7]. The dash line looks like the
regression line of the solid line because the column streaming algorithm [5] tries to avoid
the zero-padding boundary penalty of [7].
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After the LPUS scope has been decided, an efficient convolution engine structure is
expected to be proposed by following the LPUS scope’s standard. The dataflow oriental
structure is the DycSe’s core design idea, indicating that the input data, such as I/f and
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W/f, demand an algorithm to be mapped on the hardware. Since Du et al. [7] share similar
performance in the three key features within the LPUS scope accelerators, retaining the
data processing cycles not worse than [7] is the goal, making DycSe stand at the same level
as the other architectures in the scope.

The column streaming algorithm [5] tries to eliminate the zero-padding [7] to reduce
the cycles, which are only for passing through the data but are not used for computing the
multiplication under specific filter sizes. The filter sizes require zero-paddings, which do
not equal a multiple of three. When zero-padding is used, although the multiplier in the
unused PE is turned off to avoid power consumption, the flip-flop in the PE is still working
for streaming the data. The result also indicates that the worst penalties happen at the filter
size, which equals 3k + 1, {k|k ∈ N+and 1 ≤ k < 4}, which can be observed in Figure 6.

4.3. Mapping Methods and Varieties for Flexibility

This section introduces the input feature and weight mapping strategy according
to the different mapping varieties. In this section, there are two mapping methods
(i.e., method = 1 and 2) introduced. Mapping method = 1 contains several mapping varieties,
while method = 2 only has one. In Section 4.3.1, we present how the input feature is streamed
into the PE array and defines the Bus’s location. According to the input feature’s mapped
location in the PE, Section 4.3.2 introduces the preloaded weight’s mapping destinations.

4.3.1. Input Feature Mapping

Providing different mapping varieties (v) for particular-sized filters is the featured
function of the proposed convolution engine. The mapping varieties (v) of filter size (k × k),
{3 ≤ k ≤ 11, and k ∈ N0} can be found in (4). Each mapping variety is equivalent and can
be regarded as each other’s substitution when some PEs fail. The upper bound of k in a
w × h PE array is h (in this paper, w = 11, h = 11), but the array can be flexibly enlarged and
customized. Table 2 lists all the possible mapping varieties and compares them to [7].

Table 2. Mapping varieties of different weight filters.

Du et al. [7] DycSe Differential

Filter Size Decomposition * method = 1 method = 2 Total Mapping Method Counts

3 × 3 1 3 1 4 +3

4 × 4 1 2 1 3 +2

5 × 5 1 1 1 2 +1

6 × 6 1 0 1 1 +0

7 × 7 1 0 1 1 +0

8 × 8 1 0 1 1 +0

9 × 9 1 0 1 1 +0

10 × 10 1 0 1 1 +0

11 × 11 1 0 1 1 +0

* The mapping method name of Du et al. [7].

v for filter size (k)
{
≥ 2, i f k ≤

⌊w
2
⌋
≤ h

= 1, i f
⌊w

2
⌋
< k ≤ h

(4)

According to the Bus2 location, we define two mapping methods, method = 1 and
2. When method = 1, Bus2 can locate at Coli (k ≤ i ≤

⌊w
2
⌋
), by default i = k. Mapping

method = 1 can only be adopted when the filter k ≤
⌊w

2
⌋
. Different from the case, method = 1,

generally for k >
⌊w

2
⌋
, the case method = 2 is also available for k ≤

⌊w
2
⌋

when providing the
PE array flexibility and reliability. Bus2 streams data to the rightest column, Col(w − 1),
when in method = 2. For example, Figure 7 shows a 4 × 4-sized filter method = 1, and
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Bus2 streams the data into Col4 (i = 4). Bus2 can also pour data into Col5 (i = 5) when
a 4 × 4-sized filter uses the other mapping variety with method = 1. On the other hand,
Figure 8 shows a 4 × 4-sized filter method = 2, and Bus2 streams data into Col10 (i = 10).
The data from Coli, i = 10, is streamed to Colj (0 < j < 10) cycle by cycle. Overall, there are
three mapping varieties (two types when method = 1 and 1 type when method = 2) for a
4 × 4-sized filter.
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Figure 7. The data mapping in the convolution engine for a 4 × 4-sized filter (method = 1, Coli = Col4),
data {0, 1, 2, . . . , 22} propagates 4 cycles.
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Figure 7. The data mapping in the convolution engine for a 4 × 4-sized filter (method = 1, Coli = Col4), 

data {0, 1, 2,…, 22} propagates 4 cycles. 
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Figure 8. The data mapping in the convolution engine for a 6 × 6-sized filter (method = 2), data {0, 1, 

2,…, 20} propagates 4 cycles. 
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Figure 8. The data mapping in the convolution engine for a 6 × 6-sized filter (method = 2), data {0, 1,
2, . . . , 20} propagates 4 cycles.

In the k >
⌊w

2
⌋

cases, the mapping method is limited to one variety, method = 2, as
shown in (4). Figures 9 and 10 show the case a 7 × 7-sized filter case. Since the k in the case
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is 7 and is bigger than
⌊w

2
⌋

so that method = 2 is adopted. Table 2 concludes the mapping
varieties for the filters 3× 3 to 11× 11, indicating that one-third of the filters contain at least
two mapping methods to provide flexibility. For increasing the flexibility and providing
more mapping methods for the filters k >

⌊w
2
⌋
, the array can be flexibly enlarged and

customized to increase w and h.
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Figure 9. The data mapping in the convolution engine for a 7 × 7-sized filter (method = 2), data {0, 1, 

2,…, 10} propagates 11 cycles from Bus1, data{11, 12, 13,…, 20} propagates 7 cycles from Bus2. 
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Figure 10. The data mapping in the convolution engine for a 7 × 7-sized filter (method = 2), the 7th 

cycle of the whole dataflow. 

4.3.2. Weight Mapping 

Weight mapping varieties follow the mapping varieties of input features. Bus2 is set 

to a different position in different mapping varieties to let the input features stream into 

the PE array. Before streaming, the weights are preloaded to the array according to the 

required variety. The following examples show the weight mapping location when using 

the 4 × 4-sized and 7 × 7-sized filters with method = 1 and 2. 

Figures 11 and 12 illustrate the weight filters map to the required location according 

to the different mapping varieties. Without loss of generality, Figure 11 uses a 4 × 4-sized 

Figure 9. The data mapping in the convolution engine for a 7 × 7-sized filter (method = 2), data {0, 1,
2, . . . , 10} propagates 11 cycles from Bus1, data{11, 12, 13, . . . , 20} propagates 7 cycles from Bus2.
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Figure 9. The data mapping in the convolution engine for a 7 × 7-sized filter (method = 2), data {0, 1, 

2,…, 10} propagates 11 cycles from Bus1, data{11, 12, 13,…, 20} propagates 7 cycles from Bus2. 
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Figure 10. The data mapping in the convolution engine for a 7 × 7-sized filter (method = 2), the 7th 

cycle of the whole dataflow. 

4.3.2. Weight Mapping 

Weight mapping varieties follow the mapping varieties of input features. Bus2 is set 

to a different position in different mapping varieties to let the input features stream into 

the PE array. Before streaming, the weights are preloaded to the array according to the 

required variety. The following examples show the weight mapping location when using 

the 4 × 4-sized and 7 × 7-sized filters with method = 1 and 2. 

Figures 11 and 12 illustrate the weight filters map to the required location according 

to the different mapping varieties. Without loss of generality, Figure 11 uses a 4 × 4-sized 

Figure 10. The data mapping in the convolution engine for a 7 × 7-sized filter (method = 2), the 7th
cycle of the whole dataflow.
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4.3.2. Weight Mapping

Weight mapping varieties follow the mapping varieties of input features. Bus2 is set
to a different position in different mapping varieties to let the input features stream into
the PE array. Before streaming, the weights are preloaded to the array according to the
required variety. The following examples show the weight mapping location when using
the 4 × 4-sized and 7 × 7-sized filters with method = 1 and 2.

Figures 11 and 12 illustrate the weight filters map to the required location according to
the different mapping varieties. Without loss of generality, Figure 11 uses a 4× 4-sized filter
to show the mapping method, method = 1 (Coli = Col4), while Figure 12 uses a 7 × 7-sized
filter to demonstrate the mapping method, method = 2. In Figure 11, the 4 × 4-sized filters
preload their first column, circled by the blue squire, to the PE array. Hence, the first
column {w0,0, w0,1, w0,2, w0,3} loads to the required positions and waits for streaming input
feature data. Then, the multiplication action happens in the circled PEs shown in Figure 7.
On the other hand, Figure 12 shows the mapping method, method = 2, using a 7 × 7-sized
filter as an example. Figure 13 shows the other case, k ≤

⌊w
2
⌋
, of using mapping method,

method = 2, for the flexible purpose of utilizing a 4 × 4-sized filter as an example.
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Figure 11. The preloaded filter columns of a 4 × 4-sized filter in the PE (method = 1, Coli = Col4). 
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5. Column Streaming-Based Convolution Engine Architecture 

This section introduces the hardware structures that implement the mapping algo-

rithm [5]. The hardware structures comprise several modules, processing elements (PE), 

programmable Bus2, and an adder module. Unlike prior trial work [6] that only imple-

ments a small PE array for primary evaluation, the work in this section contains a full-size 

convolution engine structure. 

The detail of the structure is organized below. Section 5.1 introduces PEs with con-

nections, including the bi-directional design. The programmable Bus and connection for 

data reusing are explained in Section 5.2. Finally, the adder module is shown in Section 

5.3. 

5.1. Processing Elements and Their Connections 

Each PE comprises a D flip-flop-based register and a multiplier, as shown in Figure 

14a. The data width of the components and connections are set to be 16-bits fixed as the 

trend of the edge AI accelerators [7,9,11,13,14,22,], already proving that DNN can be rep-

resented with 16-bit fixed-point numbers with fewer logic gates.  
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5. Column Streaming-Based Convolution Engine Architecture

This section introduces the hardware structures that implement the mapping algo-
rithm [5]. The hardware structures comprise several modules, processing elements (PE),
programmable Bus2, and an adder module. Unlike prior trial work [6] that only imple-
ments a small PE array for primary evaluation, the work in this section contains a full-size
convolution engine structure.

The detail of the structure is organized below. Section 5.1 introduces PEs with connec-
tions, including the bi-directional design. The programmable Bus and connection for data
reusing are explained in Section 5.2. Finally, the adder module is shown in Section 5.3.

5.1. Processing Elements and Their Connections

Each PE comprises a D flip-flop-based register and a multiplier, as shown in Figure 14a.
The data width of the components and connections are set to be 16-bits fixed as the trend of
the edge AI accelerators [7,9,11,13,14,22], already proving that DNN can be represented
with 16-bit fixed-point numbers with fewer logic gates.
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This section introduces the hardware structures that implement the mapping algo-
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5.1. Processing Elements and Their Connections 

Each PE comprises a D flip-flop-based register and a multiplier, as shown in Figure 

14a. The data width of the components and connections are set to be 16-bits fixed as the 

trend of the edge AI accelerators [7,9,11,13,14,22,], already proving that DNN can be rep-
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The PEs shown in the green dashed lines in the above data mapping figures, such as
Figure 9, are designed to be bi-directional. For selecting the input data from the required di-
rection, a two-to-one multiplexer (mux) is added ahead of the input of the D flip-flop in the
bi-directional PEs. Figure 14b shows how the bi-directional PEs broadcast their output to the
two adjacent PEs by programming wire selection. If a PE’s location locates at column x and
row y, it can be represented as PE(Colx, Rowy), {0 ≤ x ≤ 10, 0 ≤ y ≤ 10, and (x, y) ∈ N0}.
The coordination system can be found in Figures 7–13. PE_outL represents the data that
comes from the left side PE(Col(x− 1), Row(y + 1)) output. For example, in Figure 7, the
PE(Col6, Row5) is programmed in the left-to-right direction and accepts the input from
PE(Col5, Row6).

On the other hand, the bi-directional PEs are programmed to accept data from PE_outR
coming out of PE(Col(x + 1), Row(y − 1)) when the method equals 2. For example, PE(Col6,
Row5) is programmed to propagate data from the right-to-left direction and stream the data
to PE(Col5, Row6) when accepting the input from PE(Col7, Row4), as shown in Figure 9. If
a PE does not need a bi-directional connection but only left-to-right propagation (from Colx
to Coly {0 ≤ x < y ≤ 10, and (x, y) ∈ N0}), the mux in front of the PE input is removed to
save the FPGA resource.

5.2. Programmable Bus and Its Connection

A flexible programmable bus structure is proposed, connecting to the PEs to form a
column streaming array. Bus2 is designed with the demultiplexers (demuxes) for being
programmed to stream the input data to the required column, as shown in Figure 15.
Depending on the mapping methods and varieties, the selected demux output can be Col3,
Col4, Col5, or Col10. The details of the demuxes set up in the programmable Bus2 can be
observed in Figure 16.
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Figure 16. Demuxes in programmable Bus2.

Regarding data reusing, the connections in programmable buses have been designed
to reduce repeated external memory accessing, such as SRAM out of DycSe, and maximize
data reusing, such as a10 and M20’ in Figure 15. For example, a10 is utilized in Figure 7’s
case, and two data subsets {20i, 20i + 1, . . . , 20i + 10)} and {20i + 10, 20i + 11, . . . , 20i + 20}
are streaming the same data ‘20i + 10’ (e.g., data ‘10’ in the first set) to Bus1 and Bus2,
{i|0≤ i, i ∈ N0}. Wire M20’ is another example of data reusing in Figure 15. The ith and
(i + 1)th data set are {20i, 20i + 1, . . . , 20i + 20} and {20(i + 1), 20(i + 1) + 1, . . . , 20(i + 1) + 20},
respectively. The data 20i + 20 and 20(i + 1) are duplicated and appear in both data sets,
such as data ‘20’ in the first and second sets.

5.3. Reconfiguration Adder Module

The adder module should be able to handle multiplication products generated by
different PE groups, whose result requires adding up according to the algorithm. As shown
in Section 4.3, different mapping varieties make each group of multiplications happen at
the different PEs groups (e.g., Figure 7’s PEs in the red rectangles), which generates a partial
sum. If the products of a group of PEs are added together, we call this group a partial sum
group. The examples can be observed in Figures 7–10, and their partial sum group can be
grouped vertically or horizontally.

To identify partial sum groups, we defined a notation system (5)–(8) to represent how
the partial sum was obtained from different PEs. If the partial sum means to generate verti-
cally, the partial sum group can be defined as Psum{PE(Colx, Rowy ∼ Row(y + k− 1)},
of which the definition is shown in (6). If the partial sum generates horizontally, the partial
sum group can be represented as Psum{PE(Colx ∼ Col(x + k− 1), Rowy}, defined in (7).

Psum
{

PE(Colx, Rowy), . . . PE
(
Colx′, Rowy′

)
)
}
= PE(Colx, Rowy) + · · ·+ PE

(
Colx′, Rowy′

)
(5)

Psum{PE(Colx, Rowy ∼ Row(y + k− 1)} =
k−1

∑
i=0

Product generated by PE(Colx, Row(y + i)) (6)

Psum{PE(Colx ∼ Col(x + k− 1), Rowy} =
k−1

∑
i=0

Product generated by PE(Col(x + i), Rowy) (7)

Psum{Psum{. . .}, . . . , PE(Colx, Rowy)} = Psum{. . .}+ · · ·+ PE(Colx, Rowy) (8)
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The other partial sum group cases are the multiplication input data mapped to nonad-
jacent PEs. As shown in Figure 8, Psum{PE(Col0,Col8-9), PE(Col9, Row2)} are generated
by the PEs(Col0, Row8~Row10), containing the output data {8·w00,9·w01,10·w02}, and the
PE(Col9, Row2), containing data {11·w02}. To easily present the partial sum groups com-
posed of nonadjacent PEs, the same color of rectangles is used, such as in Figure 8, to
indicate the same partial group.

For implementing the different summation demands, the adder module is designed
to have the ability to add up the multiplication products vertically and horizontally. The
adder module comprises two submodules: a column and a row adder submodule.

The column adder submodule is shown in Figure 17, which is used to handle the verti-
cal products adding up cases according to different filter sizes k, Psum{PE(Colx, Rowy ∼
Row(y + k− 1)}. There are 11 columns of adders in the column adder submodule. Each
column in the column adder submodule consists of three seven-input adders and a set of
programmable components, such as demuxes and muxes, responsible for remapping the
result from the PE array. Each sub-column adder module generates the partial sum and
sends the result to the accumulator module.
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Figure 17. Programmable column adder submodule.

On the other hand, partial sums from the PEs are required to be added horizontally.
However, the horizontally adjacent PEs stream the input data in the different clock cy-
cles. There is a cycle delay in some cases, such as between PE(Col4, Row7) and PE(Col5,
Row7). As a result, the column adder module requires delay buffers to adjust the addition
operation timing. The delay chain design in the row adder module can be observed in
Figures 18 and 19.

There is a total of five adder rows in the row adder submodule. When k = 3, the
seventh row of the adder (row R7) shown in Figure 18 is utilized. When k = 4, the sixth and
seventh rows of the adder (rows R6 and R7) shown in Figure 19 are utilized. The other name
of adder row R7 is R9_left, which indicates that when k = 3 and 4, in the PE array’s point of
view, R7 is their row 9 and uses the left inputs AR9Ci in Figures 7, 17 and 19. In the same
way, the other name of adder row R6 is R8_left, which means it is also utilized by PE array
row 8 in the k = 4 case. In Figure 7, the four partial sum groups, Psum{PE(Col0~3, Row8)},
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Psum{PE(Col0~3, Row9)}, Psum{PE(Col4~7, Row8)}, and Psum{PE(Col4~7, Row8)}, are
required to be added up horizontally. Hence, in this case, R8_left and R9_left are used.
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Figure 19. Programmable adder R7 (R9_left) in the row adder submodule.

Row adders R8~10 are shown in Figure 20, which are utilized by the cases of k = 6~10.
Figure 20 is a condensed version of all three adder rows R8~10, which uses the dash
line rectangles to represent the three different adder rows’ structure, r = 8~10. The input
amount of the output mux in the figure is a variable according to how many wires are
circled by the individual dash line rectangle. For example, there is a five-to-one mux
utilized when r = 9. Figure 9 is an example of k = 7. In the example, it can be noticed that
there are four partial sum groups, rows 7~10, required to be added. To implement the
Psum{PE(Col4 ∼ Col10, Rowy}, y = 7~10, adder row R7~10 is utilized.
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Figure 20. Programmable adder rows 8~10 in the row adder submodule.

6. System Verification and Experiment Results

This section summarizes the hardware verifications and simulation results by using
the Xilinx Vivado high-level synthesis tool. This section is divided into two subsections:
structure verification and synthesis results. In the structure verification subsection, we
preload the weights into DycSe, and the weight mapping method is according to the weight
filter size. Then, we stream the input data to the PE array and collect the partial sum results
from the output of the adder module to verify the structural correctness. The experiment
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results are shown in the subsections containing the synthesis result comparisons between
DycSe and Du et al. [7], since it has proven its advantage in the LPUS scope. The result lets
DycSe show its potential to be integrated into the edge AI accelerators to increase flexibility
without using too many resources.

6.1. System Verification

We load the testing data to the buses to verify the convolution engine and extract the
output from the adder module. Due to the limitation of the pages, we only show a few
testing data, which may not comprehensively represent the whole convolution engine,
but it does not lose the generality. Figure 21 shows how the data is imported to Bus1
and streamed to other PEs. First, the weights are preloaded to the PE array, and in this
case, the weights {w0,0, w0,1, w0,2, w0,3} are {weight00, weight01, weight02, weight03} in
Figure 21, which equal to {1, 0, −1, 1}. We extract four sets of data as an example to
show the waveform. The data that comes into Bus1 are Bus1_in0, Bus1_in1, Bus1_in2,
and Bus1_in3, which multiply the weights and generate the products. The products are
product00, product01, product02, and product03. As shown in Section 4.3.1, the PE(Col0,
Row0), accepting the data from BUS1_in0, streams the data to PE(Col1, Row0) and PE10_in
in Figure 20, in the next clock cycle.
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Figure 21. Example of the input feature data loading into Bus1 and streaming to Col1.

For verifying the adders, the filter cases k = 7 are used as an example, which contain
the utilization of both column adder and row adder. Figures 22 and 23 show the column
adder Col0 and Col9’s operations for summing up the products from the PE array. All the
data signals in Figures 22 and 23 are illustrated in the schematic view in Figure 24.

Figure 9 shows that rows 7~10 in the PE array are also used to map the input features
and weights. To present the signals in the row adder module, we use PE array row 7
as an example. The example uses the row adder, R7, to summarize the products. In
Figure 25, the signals, product47, product57, product67, product77, product87, product97,
and product107, are the products generated by the PE(Col4, Row7), PE(Col5, Row7),
PE(Col6, Row7), PE(Col7, Row7), PE(Col8, Row7), PE(Col9, Row7), and PE(Col10, Row7),
respectively. The signal product97 locates at Col9 wire (b) in Figure 24 and is redirected to
wire AR7C9 in Figure 19. Similarly, all the other products, such as product47, product57,
product67, product77, product87, and product107, are also redirected to R7 for generating
the partial sum.

It is worth mentioning that the test data are created on our own to verify the struc-
ture. The testing data are 16 binary bits for input features and weights. In future work,
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the testing will use actual picture pixel data and pre-trained weights for performance
specification collection.

6.2. Experiment Results

To evaluate the benefit of the trade-off between the flexibility provided and the resource
used by DycSe, we implement the convolution engine structures of both DycSe and [7]
on the Xilinx Vivado synthesis tool. Both structures contain a PE array, an adder module,
registers, and programmable connections. Since under similar processing cycles, the PE
amount used in DycSe was 121, and the PE amount of [7] requires 144, this indicates that
the column streaming mapping algorithm for the PE array can reduce the PE amount by
eliminating the paddings [5]. Hence, DycSe gains the spare resources for the reconfigurable
connections in terms of flexibility. To move forward and form the full-size multiply-Add
(MAD) modules in a complete convolution engine, an adder module is also integrated
into DycSe and [7] for a fair comparison. The convolution engine implementation result of
DycSe and [7] is released in this subsection. By a cross-reference from [7], we can see the
DycSe’s potential for integrating into a complete system of an edge AI accelerator in terms
of LPUS scope.
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Table 3 releases the primitive usages consumed by DycSe and [7] when choosing
Virtex-7 XC7VX485T as the targeting product. To clearly show the comparison, we direct
the data in Table 3 to a line chart, shown in Figure 26. In the line chart, the blue line
illustrates the primitives used by DycSe, while the orange line shows the resource utilized
by [7]. The result indicates that DycSe contains more resources at LUT2, LUT3, LUT6
(Look-up tables), and LDCE (Latch). Due to the demuxes utilized in the adder module
to provide flexibility for the PE array in DycSe, LUT2 and LUT3 amounts of DycSe are
more than [7]. Similarly, the quantity LUT6 is also larger, mainly utilized by adders. Since
the adder module requires some delay chains, LDCEs are also more than [7]. Although
the primitive number shows that DycSe contains more LUTs than [7], there is only a 1%
overhead of utilization in DycSe compared to [7] in the total FPGA resource, as shown
in Figure 27.
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Table 3. Report Primitives Usage, using Xilinx Vivado to Synthesize.

Primitives Functional Category
Primitive Count

DycSe Du et al. [7]

LUT1 LUT (Look-up table) 44 0

LUT2 LUT 3571 0

LUT3 LUT 6066 1104

LUT4 LUT 1558 1040

LUT5 LUT 2064 2304

LUT6 LUT 2037 416

CARRY4 Carry Logic 548 256

LDCE Flop & Latch 3344 2304

FDCE Flop & Latch 2544 2304

FDRE Flop & Latch 0 16

DSP48E1 Block Arithmetic 121 144

MUXF7 Multiplexer 16 32
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Regarding power consumption, since not every work utilizes the same chip technology,
we use the following methods to present Table 4, which contains the separated convolution
engine’s power consumption along with the whole system. (I) Re-construct the cross-
reference [7]’s convolution engine on the Xilinx FPGA tool as DycSe does. (II) Compare
their power consumption ratio while both are on the same FPGA platform. (III) Disclose
the power consumption of other reference works in convolution engine form along with
the whole system form. (IV) Normalize all the ASIC work to 40 nm technology according to
the datasheets and references [8,26–28]. (V) The result also shows the power consumption
of each work at the same computation ability, normalized.

The results of (I) and (II) show that DycSe contains 0.421 w, nearly 3.6% less power
than [7]. According to the observation, the muxes and demuxes’ power consumption is
relatively lower than PEs’. From the primitive’s point of view, Du et al. [7] contain more DSP
resources, which consume more power. As shown in Table 4, an individual single-direction
PE in DycSe and [7] consumes 0.001 w, while a bi-directional PE’s power consumption is
between 0.001 and 0.002 w. Although DycSe contains bi-directional PEs requiring more
power, DycSe’s total PE amount is less and balances the PEs and reconfiguration circuits
well. Although DycSe has extra reconfigurable circuits, such as muxes, demuxes, and adder
modules, the total on-chip power consumption is still less. Furthermore, thanks to the
column streaming architecture, fewer PEs do not affect the processing cycles significantly.
However, Table 4 also shows DycSe’s bottleneck of power consumption, which is at the
adder module and should progress in the future.

The result of (III) shows each work’s convolution engine (PEs and adders) and whole
accelerator system power consumption under their package technology. For a fair com-
parison, (IV) discloses each ASIC works’ equivalent system power consumption to 40 nm.
Finally, (V) gives out the power consumption of all the ASIC works at 150 GOPs. From
the result, we observe that the power consumption of each work is consistent, which is
between 100–200 s mW. Hence, cross-reference [7], also utilizing streaming architecture,
is convincible and qualified to represent the low-power edge AI accelerators for being
compared to DycSe on the FPGA platform.
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Table 4. Power consumption comparisons.

Comparison Works

Power Categories DycSe (This Paper) Du et al. [7] Sparsity-Aware [11] SOFTBRAIN [8] CARLA [22] IECA [9]

Power evaluation technology FPGA FPGA ASIC @ 65 nm ASIC @ 40 nm ASIC @ 55 nm ASIC @ 65 nm ASIC @ 55 nm

A PE (W)

Single direction:
0.001
Bi-directional:
[0.001, 0.002]

0.001 – – – – –

Adder module (W) 0.008 <0.001 – – – – –

PE amounts 121 144 144 128 160 196 168

Bus2 (W) 0.001 – – – – –

Total PE and adder module (W) 0.180 0.195 –
Sparsity: 0.017
No-Sparsity: 0.041 0.445 – 0.074

Total on-chip power (W)

Logic 0.027 (6.45%) 0.011 (2.70%)

0.35 @ 65 nm [0.124, 0.154] @ 40 nm 0.954 @ 55 nm 0.247 @ 65 nm 0.115 @ 55 nmDSP 0.111 (26.67%) 0.138 (31.95%)

Total 0.421 (100%) 0.436 (100%)

Ratio (FPGA) −3.56% 1 – – – – –

Power (W) @ 40 nm * [8,26–28] – – 0.175 [0.124, 0.154] 0.553 0.124 0.067

Power (W) @ 150GOPs † – – 0.173 0.182, 0.226 0.184 0.247 0.120

* Normalize the technology to 40 nm according to the reference. † Each accelerator’s power consumption when normalizing the computation ability to 150 GOPs.
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7. Conclusions

This paper presents a dynamically reconfigurable column streaming-based convolution
(DycSe) engine containing a reconfigurable adder module. The result shows that (DycSe)
consumes 3.56% less power than [7], as a cross-reference to the research works [8,9,22]
in the LPUS scope. The result also shows that DycSe has the potential to integrate into
LPUS edge AI accelerators without increasing power consumption by the reconfigurable
mechanism. Although DycSe utilizes more FPGA resources, such as lookup tables and
latches, as a trade-off it increases the data mapping flexibility. Furthermore, the overhead
of the resource used by DycSe only occupies 1% more of the total FPGA resources than the
cross-reference [7] in the LPUS scope.

To increase flexibility and control, the resource overhead, look tables, and latches
should be the resources that are reduced. The penalty in the adder module that con-
tains many muxes, demuxes, and delay chains will be addressed to make DycSe provide
more mapping flexibility with a reasonable resource amount and power consumption in
future work.
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