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Abstract: Functional safety is a key requirement in several application domains in which micropro-
cessors are an essential part. A number of redundancy techniques have been developed with the
common purpose of protecting circuits against single event upset (SEU) faults. In microprocessors,
functional redundancy may be achieved through multi-core or simultaneous-multi-threading ar-
chitectures, with techniques that are broadly classifiable as Double Modular Redundancy (DMR)
and Triple Modular Redundancy (TMR), involving the duplication or triplication of architecture
units, respectively. RISC-V plays an interesting role in this context for its inherent extendability and
the availability of open-source microarchitecture designs. In this work, we present a novel way to
exploit the advantages of both DMR and TMR techniques in an Interleaved-Multi-Threading (IMT)
microprocessor architecture, leveraging its replicated threads for redundancy, and obtaining a system
that can dynamically switch from DMR to TMR in the case of faults. We demonstrated the approach
for a specific family of RISC-V cores, modifying the microarchitecture and proving its effectiveness
with an extensive RTL fault-injection simulation campaign.

Keywords: fault-tolerance; fault-detection; fault-injection; microprocessors; RISC-V; Interleaved-
Multi-Threading (IMT)

1. Introduction

In the last few decades, the growing complexity of electronic systems employed in the
automotive, aerospace, military, and generally in safety-critical applications has increased
the importance of fault-tolerant design and fault simulation. Moreover, the probability of
faults in digital electronic devices has increased with technology scaling, voltage margin
reduction, and statistical process variations magnification [1–3]. As a consequence, fault-
tolerance (FT) techniques for functional safety support in microprocessor cores have become
a requisite in many system designs. It is widely known that the FT challenge is best
approached through the application of different redundancy techniques, often placed at
different abstraction levels: software [4], system architecture, microarchitecture, and single
functional units [5]. RISC-V has recently gained attention for safety applications, thanks
to its extendable instruction set and its many open-source implementations that allow for
the exploration of multiple techniques to achieve FT [6–8]. On one hand, Triple Modular
Redundancy for some fault models, regardless of the abstraction level at which it is inserted
(i.e., registers, units, or system), could have the advantage of a virtually immediate error
correction action, at the expense of a triplication of hardware resources or of the execution
time. On the other hand, Double Modular Redundancy intrinsically has a lower overhead,
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but it usually relies on recovering the correct state of the architecture using a relatively
expensive procedure. DMR just allows for error detection, since voting techniques require
three units to detect and to correct an error: in the case of a mismatch, some kind of higher-
level handler (typically a software exception handler) is called to restore a previously
saved safe state. Periodically saving the safe state (checkpoint) intrinsically has a cost
in terms of performance. As a consequence, conventional DMR implementations have
a cost that is more than two times the non-redundant system. Yet, considering a typical
space application with SEU events in the order of one per day [9], a classical TMR scheme
may be too expensive to protect the architecture, while applying a DMR solution could be
the easiest choice in terms of power consumption and hardware overhead, with the only
drawback being the implementation of some checkpoint and restore methodologies to save
the last correct state of the core and restore it in case of mismatches in the DMR logic due
to faults.

This work is centered on the application of the DMR paradigm within an Interleaved-
Multi-Threading (IMT) RISC-V architecture, gaining the low overhead advantages of the
DMR technique, and yet overcoming the cost of saving checkpoints and restoring the
software state using Dynamic TMR (DTMR) protection, which actually implies the behavior
of a TMR only in the case of error detection.

The contributions of the proposed work are:

• To demonstrate that thanks to the inherent behavior of an Interleaved-Multi-Threading
structure, the use of restoring mechanisms through checkpointing routines is unneces-
sary and can be replaced by a Dynamic TMR mechanism;

• To demonstrate the concept of Dynamic TMR and how it can be applied to an existing
RISC-V IMT core;

• To report the evaluation of the effectiveness of the proposed technique in a RISC-V
IMT core through an extensive fault-injection (FI) simulation.

The rest of the paper is organized as follows: Section 2 discusses the related works
on DMR approaches and multi-thread fault-tolerant processors, Section 3 outlines the
proposed methodology, Section 4 details the implementation of the methodology in a
critical unit of the processor core, Section 5 describes the validation setup, Section 6 reports
the experimental results, and Section 7 summarizes our conclusions.

2. Related Works

A considerable number of redundancy techniques at the processor architecture level
have been developed over the past decades. These methods span from software approaches
with instruction redundancy [10–12] to multi-threading systems that have been realized via
Simultaneous Multi-Threading (SMT) [13–15] and Multi-Core (MC) approaches [16–18]. In
those systems, multiple logical or physical cores run the same computation at the instruction
or task level, thus obtaining FT through modular redundancy [19]. Some works try to find
ways to increase the reliability of basic TMR or DMR approaches. In [20], a DMR with
global/partial reservation is introduced and compared in terms of reliability with TMR.
DMR with global reservation presents a duplicated DMR structure with a total of four
identical modules. When one of the first pair fails, the pair is replaced at runtime with the
other pair. Similarly, the DMR with partial reservation has four identical units, and when
one of the two units fails, only the failed unit is replaced by a reserved unit. The work
concludes that TMR is more reliable than global reservation DMR, but that it is less reliable
than partial reservation DMR, which is in any case more expensive in terms of hardware
resources.

Other works try to mitigate the overhead in performance, power consumption, or the
hardware of TMR and DMR. In [21,22], we presented the advantages of combining spatial
and temporal redundancy techniques in an Interleaved Multi-Threading (IMT) RISC-V
core, implementing a Buffered Triple Modular Redundancy (BTMR) with limited hardware
costs and good results in terms of fault-tolerance. In [23], we explored the extension
of the same approach to a fault-tolerant vector coprocessor, targeting high performance
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edge computing applications. Other studies on DMR techniques show that it allows
significant savings with respect to TMR, especially considering the benefits regarding the
area overhead and power consumption. In [24], the authors use DMR and introduce design
diversity between two modules to produce different error patterns and easily detectable
mismatches, yet still relying on checkpointing and restoring. The authors of [25] compare
three different checkpointing schemes for DMR multi-core architectures, Store-Compare-
Checkpointing (CSCP), Store-Checkpointing (SCP), and Compare-Checkpointing (CCP),
finding the optimal Checkpointing number to minimize the Mean Execution Time of a single
task. In [26], a novel Complementary DMR (CDMR) technique is described, inspired by the
Markov Random Field (MRF) theory, with two voting stages being optimized with MRF
and exhibiting a high performance in merging the results, obtaining better values in terms of
the performance overhead, and fault resilience in the voting logic. Introducing redundancy
is not always necessary: The authors in [27] present a way to perform sampling-DMR,
enabling DMR for only a small fraction of time (1% of a 5 million cycles time slot), gaining in
power consumption and design complexity. DMR can be applied at different architectural
levels and it can be activated only in the case of need, through runtime Architectural
Vulnerability Factor (AVF) estimation [28]. The authors of [29] present an FPGA-CPU
architecture with a self-monitoring scheme and health indicators, where parameters such as
temperature, usage, etc., are monitored to obtain the health state for both systems, choosing
the best one and performing software voting when the results are available.

The authors in [30] build a DMR system combining a lock-step technique for error
detection and checkpointing, with rollback for error recovery. They use a checker logic
block to detect the errors and to periodically issue an interrupt request for a checkpoint
using a DMA transfer. In [31], similar to [30], DMR is realized through a dual-core lock-
step architecture, using two CPUs in a ARM Cortex-A9 processor, running FreeRTOS
and using interrupts to handle the checkpoint operations and rollback. When the CPU
raises an interrupt, the actual thread is stalled and the processor registers are saved in the
stack [31]. Another solution is described in [32], where a 666 MHz Arm A9 hard-core and
a 25 MHz LowRISC soft-core on Zynq-7000 is run in a dual-core lock-step configuration.
The system can stop, restart, restore from a checkpoint, or continue execution. In [33],
the authors present CEVERO, a RISC-V System-on-Chip that implements FT on a PULP
platform [34–36]. It comprises two Ibex cores running in a lock-step configuration, which
are monitored via an FT hardware module that checks whether an error occurs for every
executed instruction. The lock-step technique, combined with rollback recovery and
checkpoints, for cores synthesized in an FPGA, was first introduced by [37] using a Virtex
II-Pro.

3. Proposed Approach
3.1. Klessydra-fT03 Microarchitecture

Klessydra-fT03 [21,22] is a fault-tolerant RISC-V processor core that uses an Interleaved-
Multi-Threading (IMT) architecture as a basis for the implementation of a radiation hard-
ening technique called Buffered TMR. Klessydra-fT03 is based on an open-source RISC-V
softcore family, namely Klessydra-T, which interleaves three or more hardware threads in
a round-robin fashion on a four-stage in-order pipeline that is fully compatible with the
PULPino open-source microcontroller platform [34,38].

The basic concept of Klessydra-fT03 is the intrinsic FT capability of an IMT core
running three identical threads, each having its own Register File (RF), Program Counter
(PC), and Control/Status Registers (CSRs), thus incorporating spatial redundancy, yet sharing
the pipeline logic and registers to execute the same instructions at different clock cycles in
order to vote on the results, thus providing temporal redundancy without adding additional
main memory locations to save the data that are produced by the redundant instructions.
Differently from the FT approaches based on Simultaneous Multi-Threading (SMT) or Multi-
Cores (MC) schemes [15,18,20], the technique exploits IMT by introducing specific logic
structures to deal with the fact that the instruction results are not simultaneously available.



J. Low Power Electron. Appl. 2023, 13, 2 4 of 13

Executing the same instructions in duplicated threads on the same hardware at different
clock cycles protects the architecture from Single Event Upset (SEU) in sequential logic and
from Single Event Transient faults (SET) that may occur in combinational logic. The Buffered
TMR paradigm defines precise architectural modifications with general validity. The values
produced by the three hardware threads in specific architectural units (PC, Register File,
Write Back unit, and Load Store Unit) are buffered in dedicated registers and voted at the end
of each instruction, thus performing an intrinsic TMR protection and correct data retention.

3.2. The Dynamic TMR Principle

The principle of the Dynamic TMR is implemented in a new core that we named
Klessydra-dfT03 (microarchitecture in Figure 1), where “d” stands for dynamic. It builds
on the idea of turning the Buffered TMR into a DMR technique, to reduce the power
consumption and to increase the speed. In fact, leveraging the multi-threaded architecture
to use only two replicated threads instead of three, we ideally save 1/3 of the execution
time and dynamic energy consumption. Yet, a checkpoint and restore mechanism causes
the re-execution of many instructions that have already been completed correctly, and it
also introduces hardware overheads to store checkpoints, and time overheads to execute
the software routines for the restoring procedures. So, we exploited the IMT operation to
retrieve the correct state as the one corresponding to the instruction preceding the clock
cycle in which the fault was detected. This is achieved by introducing a single register
that saves the address of the last correct instruction and restores it in the PC with a latency
overhead of four clock cycles, without any changes in the data memory or the Register
File. A fundamental aspect of the approach is the capability of maintaining the same fault
resilience performances of a Buffered TMR system.

Figure 1. Klessydra-dfT03 microarchitecture. Blue arrows: Normal mode; black arrows: Restore
mode; brown arrows: End Restore Phase.

The feature at the basis of the methodology is the ability to dynamically turn threads
on and off within a RISC-V Klessydra core. We use three hardware threads, numbered as
Thread 2, Thread 1, and Thread 0 (blue, red, and green colors in Figure 1), and we leave
only the threads 2 and 1 active while turning off Thread 0, which we call the auxiliary thread
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that is activated only in case of fault detection. The auxiliary thread does not take part in the
pipeline normal operations, it does not fetch any instruction, and its dedicated hardware
units (PC, Registers, and Control-Status Registers), although present, are inactive and they
therefore have no dynamic consumption. The operation of the processor is organized into
three operating modes:

• Normal or “Buffered DMR” mode: Threads 2 and 1 work in interleaved mode (blue
arrows in Figure 1), executing the same instructions and thus implementing spatial
and temporal redundancy, with a buffered voting mechanism implemented in the
critical units PC, Register File, Write Back unit, and Load Store Unit, that check for the
correctness of the program execution.

• Restore or Recovery mode: If the voting logic gives a negative result due to a fault,
specific control signals named restore_ signals (Figure 1) are asserted, and the core
enters the recovery mode. Notably, a fault is always detected before the Register File
would be updated with a wrong result using the faulted instruction. Following the
black arrows in Figure 1, the restore_ signals activate the restore block (black unit in
Figure 1), which wakes up the sleeping auxiliary thread. As the new thread enters
the IMT pipeline, it fetches the last successfully executed instruction indicated by the
dummy PC register (see next section), while the other threads are stalled.

• End of Restore Phase: Once the recovered instruction is completed, the produced
result is compared with the results previously produced by the other two mismatching
threads (brown arrows in Figure 1), thus obtaining a majority voting similar to a
TMR system, and writing back the correct value into the Register File. The recovery
procedure ends with the suspension of the auxiliary Thread 0, and the loading of the
address of the next instruction in the PCs of Threads 2 and 1, so that they restart from
the instruction following the one that faulted.

Thanks to this technique, it is possible to obtain all of the characteristics of a Buffered
TMR system, gaining in terms of speed and energy. We refer to the above described
mechanism as Dynamic TMR, as we can dynamically add TMR redundancy only when a
fault occurs.

4. An Example of Implementation and Operation

As mentioned in the previous section, in an IMT pipeline, there are several critical
points in the architecture to perform voting in order to reveal the presence of faults and
to activate the recovery mode. We implemented checking units in the PC, Register File,
Write Back unit, and Load Store Unit of the microarchitecture, for which we report the FT
performance results in Section 6. For the sake of conciseness, here we report the details of
the PC unit design. The PC is the most critical unit for the Restore mode as it contains the
logic providing the checkpoint of the correct instruction.

In an IMT structure, each Thread has its own Program Counter. In the dfT03 microar-
chitecture, the PC of the auxiliary Thread 0 is used as a dummy register to save the last
correct instruction address to restart in the case where a fault is detected.

During the normal mode of operation, executing one instruction per clock cycle, the
PC belonging to Thread 0 is updated every two clock cycles, with the correct value coming
from the voting between the PC of Thread 1 and Thread 2, respectively, in the Decode and
Execute stage. Figure 2 represents the temporal flow of the instructions (distinguished by
the different colors) in the different threads within the pipeline. A fault inside the Program
Counter unit could lead to unwanted jumps or invalid instructions. For this reason, if a fault
hits a thread with a consequent change of the address value inside the Program Counter,
the voting procedure manages to detect the mismatch between the two PC registers and it
raises a signal that is capable of starting the Restore mode. As can be seen in Figure 2, once
the restore procedure starts, the PC of Thread 0 already contains the address of the last
correctly executed instruction (green color in the figure); thus, the instruction is fetched and
inserted in the pipeline, and it is executed again. Assuming that there are no further faults
during the restore procedure (which is by far a statistically realistic assumption according
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to the typical fault rates [9]), the execution of the last correct instruction produces the valid
address of the next instruction, contained in the Thread 0 PC. The address is loaded in the
PCs of Thread 2 and Thread 1, so they can perform a fetch of the next correct instruction,
and they resume the regular operation. As a proof of concept, in Figure 3, we report the
waveforms referring to a restore procedure for the PC unit, activated by a fault. It is possible
to distinguish the various phases described above, such as the awakening of Thread 0
due to the fault on the signal pc_ID, which changes the instruction address from 0×714
to 0×734. The restore procedure starts with the restore_fault_PC_signal and the previous
instruction at address 0×710 is executed again; then the core fetches the next instruction at
address 0×714, for both the remaining threads.

Figure 2. Restore Phase for Program Counter unit. The green stars represent voting performed
correctly, while the red x represents a detected error

Figure 3. Restore Phase example for Program Counter unit.

5. Validation Setup

The setup used for FI analysis is based on the Time Frame Spanning method [39],
which targets all of the synchronous register bits in the microarchitecture under analysis,
while simulating the execution of a set of software test programs on the microarchitecture.

5.1. The Time Frame Span Approach

Unlike the statistical Monte Carlo FI methods, the adopted method consists of the
deterministic injection of faults into the architecture, within a time interval for each target
bit, during the application program execution simulation. The technique divides the whole
execution time into m subintervals called time frames. For each time frame and for each ACE
bit in the microarchitecture, a simulation is run, injecting bit flips on the target bit at intervals
of a very few clock cycles. The methodology identifies whether a bit is ACE for a specific
program to be executed. The approach is well suited to relatively simple programs such as
repetitive computation kernels, such as in the case of many microcontroller applications.
The analysis ends when all of the ACE bits have been tested in all of the time frames,
totaling m × n simulation runs, with n being the number of ACE bits to be targeted.

Supposing the fault simulation analysis targeting the j-th bit of the microarchitecture
reports system failures in only mf frames out of the total m time frames, we know the
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deterministic information that in (m – mf ) frames, the execution does not fail even if a fault
hits the target bit in that time interval, so that assuming a uniform time distribution of SEU
events (a statistically realistic assumption according to the typical SEU fault rates [9]), we
can state:

Pf(j) , Pr
{

a SEU hitting jth bit causes a system fault
}
≤ mF/m (1)

The obtained Pf(j) represents a lower bound value of the resilience of the core with
respect to the faults on the the j-th bit when running the specific software application
program. In other words, it identifies the time frames during program execution in which
the system (hardware + software) is immune to faults on the j-th bit. For example, if 6 out
of 10 time-frame simulations result in a failure for a certain bit, the obtained probability
of failure due to SEUs on that bit is below 60%. By performing a sub-division of failure-
affected frames into smaller frames, it is possible to further increase the accuracy grade of
the obtained probability, which depends not only on the number of injected errors, but is
also proportional to the number of time frames.

This method is particularly valid in space applications where the SEU rate can be
in the order of 1 per day, and the embedded processor repeats the application program
routine continuously [9]. The event can damage any bit of the architecture with the same
probability since the execution of the program routine and the occurrence of a physical
event are uncorrelated.

In the baseline T03 microarchitecture (having no fault-tolerance mechanism), the Time
Frame Spanning fault simulation campaign targets all of the register bits. In addition to
characterizing the failure probability, the analysis also identifies the bits that may actually
cause a program failure when faulted. In the literature, such bits are referred to as the
Architecturally Correct Execution (ACE) bits associated with the program being run. By
definition, non-ACE bits do not produce a program failure when faulted. When doing
the Time Frame Spanning fault simulation campaign on the hardened microarchitecture
(e.g., fT03 and dfT03), injecting faults on non-ACE bits would produce no failure any-
way: therefore, the simulation time is optimized by avoiding injecting faults on non-ACE
bits [21,40].

As we mentioned in the previous section, we assume that during the restore mode of
the processor following a fault, no additional faults occur in the microarchitecture. In the
statistically unlikely case that a second fault occurs, the system will fail. Thus, in our fault-
injection simulation analysis, the injection of bit flips inside a DMR core is disabled during
the restore procedure. The presented analysis is limited to SEU effects to demonstrate
the potential of the DTMR technique with respect to other FT approaches. For a space-
qualification of a full product based on the proposed microarchitecture, other effects of
perturbations should also be modeled and analyzed. The underlying assumption made to
estimate the failure probability, based on the results of the fault-injection characterization,
is that physical SEU faults occur with a uniform random distribution in space and time,
with respect to the duration of a program execution on the processor. The approach is
detailed in [39]. The concepts of error margin and confidence level are not applicable to the
proposed approach because it is not based on testing a statistical sample of the population
of the bits, like in a Monte Carlo approach, but on testing the whole population of the bits
of the microarchitecture. In the view of a characterization of the risk according to standards
such as ISO 26262, which are beyond the scope of the reported research, the error margin
may be studied with respect to the time resolution of the fault-injection campaign. For
the purpose of the proposed research, we limit our analysis to give an upper bound of the
failure probability.

5.2. Test Programs

We analyzed the DTMR dfT03 core running specific computational kernel benchmarks,
representative of typical code executed in embedded numerical applications: FFT, CRC32,
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and the FIR filter. A summary of the benchmark setup is shown in Table 1. In order to
observe the improvements offered by the proposed approach, we compared the Klessydra-
dfT03 core with the non-redundant three-thread Klessydra-T03 core, in which a single
thread ran the benchmark while the others were set idle (by executing a WFI—Wait For
Interrupt RISC-V instruction). As an additional case, we compared the new architecture
with the fault-tolerant Klessydra-fT03 core [21,22], where redundancy is obtained with the
BTMR technique. Looking at the total clock cycles shown in Table 1, it is possible to note
that completing the same program in the dfT03 core requires about 2/3 of the total cycles
with respect to fT03; this is due to the fact that dfT03 works as a DMR core in absence of
faults. As for the T03 core, maintaining two threads in a WFI state allows for program
completion in slightly less cycles with respect to fT03.

Table 1. Test setup with clock cycles required to complete the benchmarks; number of frames used by
the Time Frame Spanning techniques [39] and the total faults per frame, with an average of 1 fault
every 35 clock cycles.

fft crc32 fir
core dfT03 fT03 T03 dfT03 fT03 T03 dfT03 fT03 T03
Total clock
cycles

106,090 159,492 134,192 15,042 20,037 18,563 49,140 72,566 64,653

# frames 10 10 10
faults /
frame

250 425 355 40 53 50 131 194 170

Deterministic
fault rate

1 every 35 cycles 1 every 35 cycles 1 every 35 cycles

6. Experimental Results

The FI test campaign led to the results summarized in Figure 4. The diagram shows
the probability of failure (Pf) regarding the non-protected T03 core (red bars) and the
protected fT03 and dfT03 cores (light and dark green bars) for all the target registers
(registers containing ACE bits). For registers larger than 1-bit, we plotted the arithmetic
average of all its bits.

The non-protected architecture experiences failure rates of close to 100% in most
registers. It is possible to see when observing the dfT03 bars that for all the benchmarks
there has been a significant reduction in failures in almost all of the signals. It is possible
to note that the failures completely disappear in many registers, even for relatively large
bit-widths (e.g., 32-bit). A particular outcome regards the highest failing ACE register in
the protected dfT03 architecture, the LS_WB register, which contains the value read from
the load-store unit in the case of a load operation. The register cannot be buffered to apply
the DMR check, because in the adopted method, the load operation is performed only
once by the already buffered control signals and the data from LSU. Even if the memory
bus is ECC-protected, so the value loaded into LS_WB can be considered correct; when
a fault occurs in the register, there is no way to protect it since its value arrives at the
end of the buffered load operation [21,22]. In this case, a standard TMR mechanism to
protect the register should be the preferred choice. The other registers with non-zero failure
probability in the dfT03 core are just three, and they all stay below 2% Pf. Comparing
the two redundant architectures, it is possible to note that the dfT03 core has a higher
fault-tolerance than the fT03 core in the case of single-event failures.
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Figure 4. Fault-injection results with a Time Frame Spanning approach for the T03, fT03, and dfT03
cores, running the FFT, CRC32, and FIR benchmarks. Target registers on the vertical axis and failure
probability (%) on the horizontal axis.
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7. Performance Comparison Analysis

In order to clarify the gain in terms of execution time, it is possible to compare the
performance of our core with MC DMR + checkpointing architectures. In [30,31], the
checkpoint and the restore routines are implemented as a software interrupt handler. In the
fault-free case, only the checkpoint routine affects the overall execution time, depending
on the checkpointing interval period. In the same case, the dfT03 core does not exhibit
a time overhead for the checkpoint operation, as this is automatically performed by the
hardware architecture, saving on a dedicated register the last correct program counter for
every executed instruction. As an example, authors in [30] chose to perform a checkpoint
every 300 write cycles, obtaining a time overhead ranging from 17% for a FIR benchmark to
54% for a Kalman filtering benchmark. Similarly, the authors in [31] compare a matrix mul-
tiplication benchmark executed as bare-metal, and in a FreeRTOS environment, showing
an overhead ranging from 59% for the bare-metal case up to 81% for the FreeRTOS case.

In the presence of faults, the restore routine additionally affects the program execution
time depending on the fault rate, making direct comparisons more difficult. The mean
recovery time for the dfT03 architecture is four clock cycles, as the affected instruction must
be reintroduced into the pipeline, starting from the fetch stage. The others approaches
require the restoration of the entire register file, in addition to the time spent on the interrupt
routine. The recovery time of dfT03 is then smaller than any other technique using software
rollback routines.

From the fault-tolerance point of view, it is not very meaningful to directly compare
different FT cores, unless they are subject to the same FI tests. However, it is possible to
observe the quality of a protection technique by evaluating the percentage of mitigated
faults with respect to the total injected faults. In [37] the work presents a fault mitigation of
around 54%, while in [30], the mitigation value is 84%. In [31], the authors report a range
from 60% to 70% for the bare-metal environment, and a range from 50% up to 60% for the
FreeRTOS environment. The works in [32,33] do not report the number of injected faults,
while [33] refers to FI focused on protected units only, claiming that the system can detect
errors, but no numerical data about FT performance and fault coverage are shown, except
for the recovery time overhead, which is reported as being 40 cycles long. In the present
work, by averaging the results in Figure 4, the error mitigation rate ranges between 96.8%
and 98.6% for the ACE bits in the architecture on the tested benchmarks.

8. Impact on Hardware Resources

All the architectures have been synthesized using Xilinx Vivado 2019 on a Genesys2
board, based on Xilinx Kintex-7 FPGA. Table 2 shows the hardware resource utilization. All
of the designs have been constrained to a 107 MHz clock frequency, which is the maximum
frequency for the Klessydra-dfT03 core. It is possible to see that the proposed design,
compared to fT03, has a slight increase in the number of LUTs and FFs, due to the thread
recovery logic. Comparing dfT03 to the original T03 version, the increase in hardware
resource requirements is justified by the introduction of fault-tolerance features.

Table 2. Synthesis results using Xilinx Vivado 2019 on a Genesys2 board (Kintex-7 FPGA).

Core LUTs FFs Energy [pJ/cycle]
T03 (non-hardened) 5524 4489 380
fT03 (hardened) 6429 4905 390
dfT03 (hardened) 6923 5019 390

9. Conclusions

In this work, we started from an open-source RISC-V microprocessor core design to
implement and to evaluate the new hardening-by-design DTMR technique conceived for
the IMT RISC-V cores, demonstrating its resilience to SEU faults through an extensive fault-
injection simulation analysis. We compared the new DTMR design to the non-protected
version of the core, and the previous BTMR technique from the fault-tolerant point of view
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and hardware cost. We observed that the proposed DTMR design has better fault-tolerance
levels at the cost of a slight increase in hardware resources with respect to the BTMR core.
The DTMR technique relies on dynamically waking up an auxiliary thread only in the
case of fault detection in the two active redundant threads, allowing us to recover the
correct state of the machine without using any checkpoint/restore software procedure,
over an average time of four clock cycles. The FI simulation was based on a Time Frame
Spanning deterministic simulation, achieving a full coverage of the microarchitecture
registers, unlike the Monte Carlo statistical FI, and the results showed a drastic reduction
in the system failure probability when running numerical processing software benchmarks.
The technique opens the way to further investigations to extend the approach to more
complex architectures composed of heterogeneous cores and accelerators.
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