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Abstract: Machine-learning accelerators rely on floating-point matrix and vector multiplication
kernels. To reduce their cost, customized many-term fused architectures are preferred, which improve
the latency, power, and area of the designs. In this work, we design a parameterized fused many-term
floating-point dot product architecture that is ready for high-level synthesis. In this way, we can
exploit the efficiency offered by a well-structured fused dot-product architecture and the freedom
offered by high-level synthesis in tuning the design’s pipeline to the selected floating-point format and
architectural constraints. When compared with optimized dot-product units implemented directly in
RTL, the proposed design offers lower-latency implementations under the same clock frequency with
marginal area savings. This result holds for a variety of floating-point formats, including standard
and reduced-precision representations.

Keywords: floating point arithmetic; vector dot product; high level synthesis

1. Introduction

Deep learning algorithms are ubiquitous in multiple application domains [1]. This
trend has led to increased interest in accelerating them directly in hardware [2,3]. Most
deep learning algorithms rely heavily on matrix and vector operations, both for training
and for inference. To achieve the required dynamic range and numerical accuracy, training
is performed mostly in Floating-Point (FP) arithmetic [2]. Inference, on the other hand, can
be performed either in FP, or with integer arithmetic after data quantization [4].

The IEEE-754 single- and double-precision formats are widely used in general-purpose
computations. To achieve lower-cost implementations when employing FP arithmetic, the
designers need to achieve a balance between numerical performance and cost. For deep-
learning applications, it suffices to use reduced-precision FP arithmetic that uses 16 or fewer
bits in total, in an effort to balance numerical performance and cost [5–7]. For instance, the
new 8-bit FP format [8] that was introduced recently by NVIDIA, Intel, and ARM exhibits
adequate performance for the training and inference tasks of mainstream CNN models.
Figure 1 depicts the formats of standard 32-bit floats, 16-bit Bfloats, and the two 8-bit wide
variants. Reduced precision representations lose some of the accuracy of single-precision
floats, but they approach the hardware cost of integer implementations [2,9].

To reduce the inherent overhead of FP arithmetic when implementing vector-wide
operations, such as dot products, designers have turned to fusing individual FP operations
to more complex ones that implement the needed computation at once [10–14]. In this way,
alignment, normalization, and rounding steps can be shared across independent operations,
thereby leading to more efficient hardware architectures. State-of-the-art fused vector FP
dot product architectures rely on fixed pipeline organizations designed directly in RTL.
Any parameterization within these designs solely facilitates the resizing of certain blocks,
based on the structure of the selected FP format.

J. Low Power Electron. Appl. 2022, 12, 56. https://doi.org/10.3390/jlpea12040056 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea12040056
https://doi.org/10.3390/jlpea12040056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0002-4729-3336
https://orcid.org/0000-0001-6389-6068
https://orcid.org/0000-0003-3688-7865
https://doi.org/10.3390/jlpea12040056
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea12040056?type=check_update&version=1


J. Low Power Electron. Appl. 2022, 12, 56 2 of 14

Figure 1. The structure of the most commonly used and recently proposed FP formats.

Every FP number consists of three fields: the sign bit (s), the exponent (e), and the
mantissa (m). The value of the FP number is given as (−1)s× 1 m × 2e−bias. The bias is a
fixed value that depends on the bit-width of the exponent. The mantissa, combined with a
hidden bit, forms the normalized fraction of the FP number that is equal to 1 m. Corner
cases, such as not-a-number, infinity, or de-normals are also appropriately encoded in every
representation. In most deep-learning hardware operators, de-normals are flushed to zero
for maximum efficiency [5,7].

Another approach to simplifying the implementation of FP operators is to allow wider
precision for the output result than the precision of the inputs [15,16], i.e., operating on
two FP8 operands and presenting the result as a 16-bit FP. In this way, rounding may be
redundant and the overall hardware cost is reduced.

In this work, our goal is twofold. On one hand, we leverage the state-of-the-art fused
dot-product architectures, such as [11,13,14], by modelling them in C++ and synthesizing
then in RTL using High-Level Synthesis (HLS). Thus, the parameterized design allows for
compile-time selection of exponent and mantissa widths, as well as vector sizes. On the
other hand, we go beyond those designs’ fixed-pipeline structure and let HLS optimize
their internal pipeline structure on a per-application basis by appropriately altering the
examined architectural constraints.

Even though all commercial and academic HLS FP libraries [17–20] can synthesize a
vector dot product using efficient primitive FP multiply and add operators, none of them –
to the best of our knowledge – supports fused dot product computation, thus paying the
price of alignment, normalization, and rounding per FP operation.

Overall, the contributions of this work can be summarized as follows:

• A templatized fused vector FP dot product C++ model is presented, which brings the
efficiency of fused FP architectures to High Level Synthesis for the first time, allowing
the design of efficient and customized architectures.

• The design is open-sourced as part of the FastFloat4HLS library [21] that allows the
definition of templatized FP datatypes and primitive operators built on top of the
publicly available ac_int library for integer arithmetic [17].

• Experimental results demonstrate that the proposed designs lead to area and latency
savings at the same clock frequency target. For 32-bit standard floats, this benefit
comes with a power increase, while for reduced precision 16-bit bfloats [5], power is,
in fact, reduced with the proposed architecture.

The rest of this paper is organized as follows: Section 2 describes the architecture
of the proposed fused vector dot product architecture and its usage in HLS C++ models.
Section 3 compares the proposed architecture with state-of-the-art vector dot product for
ASIC implementations. Conclusions are drawn in Section 4.
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2. Fused Vector Dot Product for HLS

The proposed fused dot product operator is applied on arbitrary-precision floating
point datatypes defined in the FastFloat4HLS C++ library developed in house [21]. The
corresponding datatypes are defined as fast_float<M, E>, where constants M and E refer
to the size of the mantissa and the exponent fields, respectively. Single-precision floats cor-
respond to fast_float<23, 8>, while bfloat16 is equivalent to fast_float<7, 8>. Fast-
Float4HLS contains type-cast functions that allow the conversion from standard C++
floating point datatypes to fast_float. Also, similar to all other FP libraries available
for HLS [17–19], FastFloat4HLS implements primitive arithmetic operators, allowing the
designer to implement any algorithm in hardware using typical C++ behavior modeling.

2.1. Using the Dot Product in C++

The differentiating characteristic of FastFloat4HLS relative to other FP libraries is the
implementation of an efficient fused dot product operator through the templatized function
dot that is defined as follows:

The function accepts two vectors a and b of N elements each and computes in a fully
parallel approach

a0b0 + a1b1 + · · ·+ aN−1bN−1.

The only constraint is that the elements of a and b should follow the same fast_float
configuration.

Synthesizing the dot product from primitive FP multipliers and adders would limit the
expected gains due to the high latency, area, and energy cost for alignment, normalization,
and rounding in each step [18,22]. On the contrary, a fused architecture mitigates these
overheads to a single alignment, normalization, and rounding step [14].

The proposed dot product operator can be used in the context of HLS to imple-
ment more complex operations. For instance, Figure 2 depicts the implementation of a
matrix×vector multiplication, where the matrix A is multiplied with vector V using the
proposed vector dot product unit.

Figure 2. An implementation of a matrix-vector multiplication using the dot product operator of
Fast-Float4HLS.

2.2. Architecture of the Fused FP Dot Product

The fused computation of the dot product follows a tree structure that is split in four
consecutive steps, as depicted in Figure 3. This computation pattern may imply that the
hardware organization follows the same four-level fixed-pipeline structure. However, the
actual pipeline is determined automatically by HLS, based on the designer’s constraints.
For, instance, we can get area-efficient single-cycle designs, or high-speed pipelined im-
plementations, without altering the C++ hardware model. Implementing the dot-product
with a chain of multiply-add units is not preferred as it leads to inferior designs according
to [23].
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The N pairs of FP inputs are first unpacked, creating the fraction of each operand by
inserting the hidden bit to the mantissa, before being forwarded to the multiplication units.
Since we target deep-learning accelerators de-normals at the input are flushed to zero [7].

Figure 3. The unrolled architecture of the fused many-term dot product unit modeled for HLS. The
organization resembles other fixed-pipeline organizations, such as these architectures [13,14].

2.2.1. Multiplication of Fractions

Each multiplication unit computes the product of the two fractions 1 mA and 1 mB
and adds their exponents. The product of the two fractions is computed using an integer
unsigned multiplier. The product is positive when the two inputs have equal signs, and
negative otherwise.

The sum of the two exponents is computed in parallel to the multiplication. Since the
exponent of each operand also contains its bias, the sum of two exponents would result in
adding the bias twice, i.e., eA + bias + eB + bias = eA + eB + 2bias. For the result to follow
the correct representation, one constant bias should be removed. Thus, the exponent of the
product is calculated as eY = eA + eB − bias.

This result is correct unless the multiplication operation overflows. Each FP number
represents a value in the range [1,2). This means that by multiplying two numbers, the
range of the product will be [1,4). As a normalized value is always in the range [1,2), a result
that is greater than, or equal to, 2 is denoted as an overflow and needs to be re-normalized.
For example, when multiplying 1.0102 × 1.1102 the result of the multiplication is 10.0011002,
which is greater than 2. To normalize the product, the fraction should be shifted to the
right by one position, while the exponent should be increased by 1. Since we do not want
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this correction of the exponents to be performed after the multiplication, we pre-compute
speculatively the overflowed value for the exponents in parallel to the multiplication. Based
on the outcome of the multiplication (i.e., if the product is larger than 2), the normal of the
overflowed exponent value is selected.

Figure 4 depicts a snippet of the C++ model that describes the functionality of the
multiplication unit. The hls_unroll pragma guides the HLS tool to generate N parallel
instances, equal to the amount of individual multiplications that are defined by the template
parameter N. The two versions of the exponent and the multiplication of the two fractions
are computed in parallel, as all three operations are independent to each other. The correct
exponent is selected depending on the value of the product, when this becomes available.

Figure 4. A snippet of the C++ description that implements the N parallel multiplication units.

2.2.2. Alignment of Products

Each multiplication unit produces the product of the corresponding fractions and the
sum of their exponents. To add these intermediate results, we first need to align them, since
each one is associated with a different exponent.

To perform the necessary alignment, we need to find the maximum of the N exponents
and then right-shift the fraction of each operand so that their exponents become equal to
the maximum. Each right shift on the fraction equals to an increase by 1 in the exponent,
meaning that each operand should be right-shifted as many times as the difference between
the corresponding exponent and the maximum one. To compute the difference between
the maximum exponent and the exponent of each part, the maximum exponent value is
forwarded to all subtraction units, where the amount of shifting for each individual fraction
is calculated.

To design a tree-based max function that finds the maximum exponent of the N inter-
mediate exponents, a recursive template meta-programming [24] approach was adopted, as
recommended in [25] and shown in Figure 5. In each iteration of the recursion, the function
searches for the maximum value in each half of the input vector.

Figure 5. A recursive template meta-programming approach for the design of a maximum-element
identification hardware unit with logarithmic depth.
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2.2.3. Addition

After alignment, we need to transform each pair of (sign, unsigned fraction) to its
appropriate signed representation, in order to add them with the remaining fractions. After
this transformation, the N product fractions are reduced to one using an N-to-1 addition
tree, which is generated through the C++ code depicted in Figure 6.

Figure 6. The C++ description that generates the addition tree by adding the positive or the negative
value of the intermediate shifted product, depending on its sign.

State-of-the-art designs [12–14,23] utilize carry-save adders to implementing this multi-
operand addition. Since we are working at the C++ level, this is not a preferred choice. In
our case, multi-operand addition is abstractly represented as an unrolled reduction C++
loop. Even with this abstract form, this approach does not limit the efficiency of the final
hardware, since carry-save arithmetic will be enabled after all post-HLS processes by the
bit-level transformations of the RTL logic synthesis tool.

If the result of the multi-operand adder is negative, we need to compute its absolute
value. To do so, we need to complement the output of the multi-operand adder and
increment it by 1. To save delay, we postpone the +1 increment for the rounding step.
Therefore, the value that is forwarded to the rounding and normalization stage is selected
between the original and the inverted version of the output of the multi-operand addition,
depending on the sign of this output.

2.2.4. Normalization and Rounding

At the end, the result of the dot product should be normalized and rounded. To
complete normalization, we need to count the number of leading zeros of the fraction,
and then shift the fraction to the left as many positions as the number of leading zeros. In
parallel, the computed Leading Zero Count (LZC) should be subtracted from the exponent.

Leading-zero counting implements in C++ the fast design proposed in [26], using
recursive templates, as depicted in Figure 7a. In this way, LZC is not treated as a monolithic
block, but it can be scheduled in a fine-grained manner along with the exponent update
and mantissa alignment.

The operation initiates through the top LZC function, which receives the input A
and starts the recursion by calling the lzc_s function. In each recursive step of lcz_s,
lzc_reduce decides if the number of leading zeros is an odd, or even number. Initially,
lzc_reduce is applied to the whole input and, in each one of the following steps, the
input is reduced to half by computing the logic OR of neighbor bits. When only one bit
remains, the recursion stops. If the input is the all-zero vector from the beginning, flag ZF is
asserted. In this case, this implementation [26] treats the remaining bits of the leading-zero
count as “don’t care”. Otherwise, the complementary value of the inverted sequence of
the intermediate results, which gets returned by the top function LZC at the end of the
operation, indicates the number of leading zeros in A.

The recursive template, combined with the unrolled loops in the C++ code, lead to
the tree structure of the LZC unit, which is illustrated in Figure 7b. The input is fed at the
top level of the structure, where the first output is generated form the lzc_reduction unit,
and, as it moves to the next level, its size is reduced to half, until a single bit remains. At
each level, the produced output is inverted before its value is used.
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Figure 7. The C++ model of the Leading Zero Count unit (a) and its structure (b).

The M + N least significant bits of the normalized fraction are used to compute the
round bit that will be added to the LSB of the M + 2 most significant bits. If the result of
the addition was negative and the output was inverted, then the increment by 1 that was
postponed from the addition step is also performed. As a single-bit value, this addition
does not require an extra addition unit, but, instead, the value is pushed to the carry-in bit
of the already existing adder. In the case that rounding overflows, the exponent is increased
by 1 and the fraction is shifted right by one position.

At the end, the E less significant bits of the exponent, the M less significant bits of the
fraction and the sign bit that was produced by the MSB of the multi-operand addition are
packed and pushed to the output.

3. Evaluation

The C++ model of the proposed FP many-term dot product unit was thoroughly
tested through C++ simulation to ensure its correct functionality. Subsequently, the verified
designs were synthesized with Catapult HLS after setting the appropriate architectural
constraints. Our goal was to achieve a fully unrolled (parallel) architecture with the
minimal latency, which operates with initiation interval of one at a specified clock frequency
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target. Catapult HLS utilized the available resources, produced an optimally pipelined
architecture for the design and generated the corresponding Verilog RTL. To verify its
correct functionality, we tested the generated RTL through the SCVerify flow using the
Questa Advanced Simulator [27].

Since there is no HLS model that implements a fused many-term FP dot product, we
include two different set of comparisons: On the one hand, we compare the proposed
fused many-term FP dot product unit synthesized with Catapult HLS with state-of-the-art
architectures of non-fused FP vector dot products designed directly in RTL. Specifically, we
compare against designs generated by the FloPoCo RTL generator [22], which is publicly
available and considered a reference point in FP hardware designs. The RTL implemen-
tations of all designs under evaluation were mapped to the 45 nm Nangate standard-cell
library and placed-and-routed using the Cadence digital implementation flow that is shown
in Figure 8. Genus [28] was used for logic synthesis, while place-and-route was completed
in Innovus [29].

Figure 8. The digital implementation flow from RTL to GDSII.

On the other hand, for completeness, we summarize in a common table at the end of
the Evaluation section the characteristics of state-of-the-art fused architectures, with respect
to the proposed designs, using as is the data presented in the corresponding papers.

It should be noted that FPGA-based experimental evaluation is deemed beyond the
scope of this paper, since the proposed approach targets ASIC implementations exclusively.
In order to yield meaningful insights, experiments on an FPGA would require our C++
code to target FPGA-specific optimizations amenable to the underlying FPGA fabric, i.e.,
DSP blocks. Such transformations are left as future work.

3.1. Identifying State-of-the-Art Non-Fused FP Vector Dot Product Configurations

FloPoCo does not support fused vector dot product units. So, our goal is to use FloPoCo
and identify an optimal non-fused architecture by combining the available FP multipliers and
adders and the many possible pipeline configurations that FloPoCo allows for each operator
without support for de-normals. To better elucidate how we explored the available design
space, we will use as an example the design of a 4-term dot product unit. This unit requires
four multipliers to compute the four products in parallel, and three adders to construct the
4-to-1 reduction tree that will compute the final result of the dot product.
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With the goal being to minimize the latency in cycles, the dot product unit can be
designed using combinational multipliers and adders that are connected with intermediate
pipeline stages. The performance of this approach, shown in Figure 9a, is bounded by the
delay of the FP multipliers and adders. Alternatively, we could allow the multipliers and
adders to be internally pipelined. Two alternatives emerge when using this approach. The
one shown in Figure 9b pipelines the multiplier and the adders without using any extra
pipeline registers between them. On the contrary, the second approach, shown in Figure 9c,
allows for both internal and external pipelining, i.e., across the FP units. FloPoCo employs
efficient architectures for the design of each FP multiplier [30] and FP adder [31]. The
high-level organization of each unit is depicted at the bottom of Figure 9.

(a) Only external pipeline (b) Only internal pipeline (c) Internal and external

(d) Floating-point multiplier (e) Floating-point adder

Figure 9. Various pipelined organizations enabled by the FloPoco RTL generator for a 4-term dot
product unit built from efficient FP multipliers and adders.

We examined 196 designs that cover 4 and 8-term dot products for the standard float
and bloat16 formats targeting various clock frequencies. The results derived for the bloat16
format are summarized in Figure 10. The pareto curve inside each figure outlines the
architectures with the least area at each delay target.
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(a) 4-term products

(b) 8-term products

Figure 10. The design-space exploration of 4- and 8-term dot products for the bfloat16 FP format
generated with FloPoCo [22].

To uniquely identify each design choice in Figure 10, we follow a simple notation
that describes the pipeline structure followed by each architecture. For instance, the
design D0p0p0 that appears to be the best at 500 MHz in Figure 10a corresponds to the
organization of Figure 9a for a 4-term product. The three zeros denote that each level of the
dot product has zero inner pipeline stages and the letters ‘p’ between the zeros state that
external pipelining is used across stages. On the other hand, D1p3p3 – the best choice when
targeting a clock frequency of 1 GHz in Figure 10a—corresponds to a design of the category
shown in Figure 9c. More specifically, it is 4-term design with multipliers having 1 inner
pipeline stage, the adders of both levels have 3 inner pipeline stages, and extra pipeline
registers are placed between the multipliers and adders. When an external pipeline stage
is missing, letter ‘p’ is replaced with an ‘x’. The same structure is followed for the 8-term
designs shown in Figure 10b, including more symbols per design due to the increased
number of addition stages required.

3.2. Comparisons with the Proposed Fused Vector FP Dot Product Architecture

Having identified the best configurations of many design choices for 4- and 8-term dot
products, we compare them with the equivalent proposed designs synthesized in RTL from
Catapult HLS. The results obtained are summarized in Table 1. All designs are compared
with respect to their area, power, and latency, under the same clock frequency constraint.
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The reported power was measured by running examples that cause, on average, a 25%
toggle rate.

Table 1. Comparison of the proposed 4- and 8-term fused FP dot product units relative to state-of-
the-art non-fused designs.

4-Term Proposed State-of-the-Art Non-Fused

Area (um2) Power (mW) Lat. Area (um2) Power (mW) Lat.

FP32 21,124 8.50 3 22,778 5.90 5
500 MHz BF16 5057 1.83 3 5151 2.47 3

FP32 31,518 13.26 6 32,568 11.32 12
1 GHz BF16 6750 4.62 6 7803 4.42 10

8-Term Proposed State-of-the-Art Non-Fused

Area (um2) Power (mW) Lat. Area (um2) Power (mW) Lat.

FP32 50,847 14.17 3 51,304 13.66 7
500 MHz BF16 10,096 4.11 3 11,422 5.78 4

FP32 60,863 25.07 7 67,953 25.62 19
1 GHz BF16 14,405 9.39 6 17,614 9.44 14

For single-precision floats (FP32) and 4-term products, the proposed design achieves
significantly lower latency and requires slightly less area than the corresponding state-
of-the-art, at both clock frequency targets. For 8-term products, the proposed design
achieves even higher reductions in latency. In general, the penalty for the comprehensive
performance improvement achieved by the proposed design in FP32 is increased power
consumption.

Instead, for bfloat16 (BF16), the proposed architecture excels in all three salient metrics.
The improvement is greater at 1 GHz, where the latency is reduced by 40% and the area
by around 14% for an 4-term unit, and by 57% and 18%, respectively, for an 8-term unit.
Most importantly, these latency and area improvements at 1 GHz are achieved with similar
power consumption. For instance, the layout of the two units under comparison for the
case of a 4-term dot product of bfloats16 optimized for 1 GHz is shown in Figure 11.

(a) Proposed (b) State-of-the-art non fused

Figure 11. The final layout for (a) the proposed and (b) the state-of-the-art non-fused 4-term dot
product architectures, assuming a bfloat16 representation.
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At 500 MHz, the power consumption of the proposed design is lower by 26% and
29% for 4-term and 8-term products, respectively, as compared to the state-of-the-art. This
reduction in power consumption at 500 MHz is achieved with slightly less area and with
similar (or slightly lower) latency.

Part of the efficiency of fused dot-product architectures stems from the fact that
alignment, normalization, and rounding are performed only once and are not repeated in
each individual multiply and add operation. This characteristic also favorably affects the
numerical accuracy of the computation.

To evaluate the accuracy of the proposed fused vector dot-product unit, compared to a
non-fused architecture, we computed 1 million dot products for different implementations
and FP formats. For each test, the inputs were generated randomly, following a Gaussian
distribution. In each case, the computation error is compared relative to the “golden values”
computed using the double precision floating point datatype.

Figure 12 illustrates how the relative error scales with the increasing number of the
dot product terms for (a) IEEE-754 single precision data in, and (b) for bfloat16 data. When
looking at the error of the non-fused architecture, we can see that it scales with the number
of terms in the dot product calculation. This is due to the increasing amount of intermediate
rounding that is performed at the end of each individual adder or multiplier that comprise
the design. On the other hand, the relative error of the proposed units remains constant and
close to the minimum step between two consecutive floating point numbers. This behavior
is due to the increased internal data width datapath used in all cases. which increases
linearly with the number of terms of the dot product. A similar technique was used in
Intel’s Nervana NPP-T [14] fused architecture, where the width of the final accumulator
was selected so that it could compute every dot product in its supported applications,
without a loss in accuracy.

(a) 32-bit single precision input data (b) 16-bit Bfloat16 input data

Figure 12. The error introduced by the fused and non-fused architectures for two different FP formats
when computing dot products with increasing number of terms, relative to the same computation
implemented with double-precision (64-bit) FP arithmetic.

3.3. Performance Summary of Fused Dot Product Architectures

Even though fused vector dot product designs are not available as open-source, we
summarize—for completeness—in Table 2 the characteristics of efficient fused vector dot
product architectures and of the proposed design. The data for the competing approaches
is taken verbatim from the corresponding papers. Obviously, one of the key strengths of
the proposed approach is its templatized nature (unique in Table 2) that provides designers
with unprecedented flexibility. This flexibility, in conjunction with HLS, fine-tune the
resulting implementation for the specified design constraints and FP format. Consequently,
as evidenced in Table 2, the proposed approach leads to balanced design configurations
where the pipeline latency, clock frequency, and area are cohesively optimized.
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Table 2. Comparison between the different fused floating-point vector dot product architectures.

Design Templatized Open #Terms FP Format Technology Frequency Area (um2) Latency
Source (GHz) ×1000 (Cycles)

[10] No No 4 single 180 nm 0.08 ∼620 1
[11] No No 2 single 45 nm 0.37 16.10 1
[12] No No 2 single 45 nm 1.50 33.29 3
[13] No No 32 bfloat16 10 nm 1.11 ∼2.75 5
[14] No No 32 bfloat16 45 nm N/A N/A 10

Proposed Yes Yes * 4 single 45 nm 1.00 31.52 6
8 bfloat16 45 nm 1.00 14.41 6

*: https://github.com/ic-lab-duth/Fast-Float4HLS (accessed on 10 September 2022).

4. Conclusions

Implementing the many-term FP dot product units required in the majority of deep
learning applications with a fused architecture leads to highly efficient solutions, in terms
of latency, area, and power. To enhance the scope of fused architectures on high-level
synthesis design flows that support custom-precision FP arithmetic, we designed them as
templatized soft FP cores that allow the designers to use them with arbitrary FP types in
their C++ HLS models. The design is available under a permissive open-source license as
part of the header-only FastFloat4HLS library [21]. The experimental results that compare
the proposed approach to state-of-the-art non-fused many-term dot product architectures
show that it can achieve lower latency and area at the same clock frequency, while its power
consumption depends on the chosen FP format.
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