
Citation: Gomes, T.; Sousa, P.;

Silva, M.; Ekpanyapong, M.; Pinto, S.

FAC-V: An FPGA-Based AES

Coprocessor for RISC-V. J. Low Power

Electron. Appl. 2022, 12, 50. https://

doi.org/10.3390/jlpea12040050

Academic Editors: Teresa Cervero,

Kevin Martin, Mario Kovač and

Maurizio Martina

Received: 6 September 2022

Accepted: 23 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

FAC-V: An FPGA-Based AES Coprocessor for RISC-V
Tiago Gomes 1,* , Pedro Sousa 1, Miguel Silva 1 , Mongkol Ekpanyapong 2 and Sandro Pinto 1

1 ALGORITMI Research Centre/LASI, University of Minho, 4800-058 Guimarães, Portugal
2 School of Engineering and Technology, Asian Institute of Technology, Pathum Thani 12120, Thailand
* Correspondence: mr.gomes@dei.uminho.pt

Abstract: In the new Internet of Things (IoT) era, embedded Field-Programmable Gate Array (FPGA)
technology is enabling the deployment of custom-tailored embedded IoT solutions for handling
different application requirements and workloads. Combined with the open RISC-V Instruction Set
Architecture (ISA), the FPGA technology provides endless opportunities to create reconfigurable IoT
devices with different accelerators and coprocessors tightly and loosely coupled with the processor.
When connecting IoT devices to the Internet, secure communications and data exchange are major
concerns. However, adding security features requires extra capabilities from the already resource-
constrained IoT devices. This article presents the FAC-V coprocessor, which is an FPGA-based
solution for an RISC-V processor that can be deployed following two different coupling styles. FAC-V
implements in hardware the Advanced Encryption Standard (AES), one of the most widely used
cryptographic algorithms in IoT low-end devices, at the cost of few FPGA resources. The conducted
experiments demonstrate that FAC-V can achieve performance improvements of several orders of
magnitude when compared to the software-only AES implementation; e.g., encrypting a message of
16 bytes with AES-256 can reach a performance gain of around 8000× with an energy consumption
of 0.1 µJ.

Keywords: RISC-V; Internet of Things (IoT); Field-Programmable Gate Array (FPGA); Advanced
Encryption Standard (AES); RISC-V coprocessor

1. Introduction

The Internet of Things (IoT) is enabling the shift of computing workloads from tradi-
tional cloud facilities to the edge [1]. Nonetheless, most of the devices collaborating in this
massive network infrastructure are often resource-constrained, which makes the handling
of workloads intended for high-end devices quite challenging [2]. Moreover, fulfilling
the different requirements for deploying IoT devices, e.g., real-time data gathering and
processing, low-power festures, and connectivity aspects, often requires each final solution
to be individually tailored to fit the different hardware and software constraints dictated
by distinct target applications [3,4]. To cope with such diversity, and due to the lack of
one-size-fits-all solutions, the software and hardware development processes face several
trade-offs regarding power consumption, form factor, performance, etc.

Until recent years, Field-Programmable Gate Array (FPGA) technology was not suit-
able to be adopted in most IoT applications, which was mainly due to the high power
consumption, large form factor, and difficulty of integration with processors. However,
with the emergence of embedded FPGA solutions (low-power FPGA), these barriers have
been minimized, and the applicability of this technology in low-end IoT devices is con-
siderably increasing [5]. The industry is starting to adopt reconfigurable platforms to
achieve desired metrics in custom-tailored embedded IoT solutions [1], outgrowing the
capabilities of traditional Microcontroller Units (MCUs) by enabling the development of
accelerators in hardware, which is often connected to the MCU as standard peripherals [6].
Nevertheless, deploying and optimizing accelerators on FPGA still faces several challenges

J. Low Power Electron. Appl. 2022, 12, 50. https://doi.org/10.3390/jlpea12040050 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea12040050
https://doi.org/10.3390/jlpea12040050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0002-4071-9015
https://orcid.org/0000-0003-4414-3612
https://orcid.org/0000-0002-0192-6249
https://orcid.org/0000-0003-4580-7484
https://doi.org/10.3390/jlpea12040050
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea12040050?type=check_update&version=1

J. Low Power Electron. Appl. 2022, 12, 50 2 of 19

usually imposed by closed computer architectures, which started to be mitigated with the
emergence of the Reduced Instruction Set Computer (RISC)-V [7,8].

RISC-V is a novel open Instruction Set Architecture (ISA) that follows a RISC design.
It was created to support a broad range of devices, spanning from high-performance
application processors to low-power embedded microcontrollers, with applicability in
a wide number of applications and scenarios. RISC-V enables a new level of software
and hardware freedom by allowing the easy integration of dedicated and custom-tailored
hardware devices with the application software [9–14]. Some RISC-V implementations,
such as the Rocket core [15], already extend the ISA by defining a subset of instructions for
user-defined coprocessors following a tightly coupled implementation while also providing
a memory-mapped interface to manage coprocessors in a loosely coupled approach.

When deploying an IoT device, in addition to the hardware platform and computer
architecture, programmers often resort to embedded IoT Operating Systems (OSes), such
as Contiki-NG [16] and RIOT [17], among others [18,19]. These solutions provide a ready-
to-use network stack compliant with several communication standards and facilitate the
development and deployment of the final application. However, with the connectivity
requirements arise several end-to-end security concerns, even at the network edge. Nowa-
days, every IoT device must perform secure data exchange and storage, supporting both
application- and link-layer security for data integrity and encryption. Such features are
also embedded in the network stack provided by the OS, which includes software-based
security algorithms, such as the Advanced Encryption Standard (AES), the Triple Data
Encryption Standard (3DES), the Rivest–Shamir–Adleman (RSA), and Datagram Transport
Layer Security (DTLS), among others [20–23]. Nonetheless, the addition of more (and
complex) processing overloads to low-end devices, such as the security layers, increases
the need for accelerated solutions to mitigate performance and real-time concerns.

With all this in mind, this article presents FAC-V, an FPGA-based AES coprocessor for
reconfigurable IoT devices. FAC-V is specially designed to provide hardware acceleration
to connected low-end IoT solutions that require secure communications and secure data
transfers based on the AES standard at different layers of the network stack. The FAC-V
accelerator is implemented on a softcore RISC-V processor, and by taking advantage of
the RISC-V ISA extensions, it is possible to be deployed following both the tightly- and
loosely coupled approaches without requiring complex software abstraction layers. The
main contributions of this paper are:

1. An AES coprocessor for low-end reconfigurable IoT devices that can be deployed
following two different coupling approaches;

2. A user-friendly Application Programming Interface (API) that provides a complete
abstraction from the accelerator and can be easily integrated with different IoT OSes
or baremetal applications;

3. A complete evaluation and benchmarking of the FAC-V accelerator in terms of FPGA
resources, latency, performance, and power consumption;

4. The integration and performance evaluation of FAC-V with RIOT, which is a well-
known OS tailored for low-end IoT devices.

2. Background and Related Work

Regarding the development and deployment of the proposed cryptographic coproces-
sor, it is important to understand the different coupling interfaces provided by a RISC-V
core, and the related work on hardware-based implementations of the AES algorithm.

2.1. Loosely and Tightly-Coupling Approaches in RISC-V

For the development of the FAC-V accelerator, it was used the Rocket core, which is a
RISC-V processor that implements different variants of the RISC-V ISA, e.g., the RV64G
and the RV32-IMAC, provides one integer Arithmetic Logic Unit (ALU) and an optional
Floating-Point Unit (FPU), and includes a coprocessor interface, which is called Rocket Chip
Coprocessor (RoCC) [15]. The customization and generation of a Rocket core processor,

J. Low Power Electron. Appl. 2022, 12, 50 3 of 19

before being deployed in the target hardware platform, is completed with the Rocket chip
generator tool and Chisel [24], which is a high-level Hardware Description Language (HDL)
used to describe digital electronics and circuits at the Register-Transfer Level (RTL). This
development process also enables the implementation of coprocessors following tightly
and loosely coupled approaches, as depicted in Figure 1.

(a) (b)
Figure 1. Coupling styles on an RISC-V Rocket core: (a) Tightly coupled. (b) Loosely coupled.

In the tightly coupled implementation, as shown in Figure 1a, the RISC-V Rocket
core uses the RoCC interface, which allows for creating custom processor instructions
following the RISC-V R-type instruction format (as shown in Figure 2) to communicate
with accelerators. The RoCC interface is composed of two sub-modules, the RoCC Core
and the RoCC memory, which provide a command/response interface to communicate
with the RISC-V Core. The RISC-V Core sends the instructions to the coprocessor via the
Core_cmd interface (including registers) and receives the response in the Core_resp interface.
The RoCC memory allows for the accelerator to perform memory-related accesses using
the same command/response strategy. These interfaces also include other control signals,
such as busy bits, IRQs, etc.

Figure 2. ROCC instruction format (R-type).

In a loosely coupled way, as shown in Figure 1b, the RISC-V Rocket core supports the
Tilelink Interface [25]. Tilelink follows a traditional shared-memory approach that maps
memory accesses to a physical memory space. With a reserved address map description
and following Memory-mapped IO (MMIO) requests, the TileLink can be a suitable solution
based on a memory interface for communicating with accelerators, coprocessors, and Direct
Memory Access (DMA) engines.

2.2. AES Accelerators

The AES standard is one of the most widely used cryptosystems in IoT low-end de-
vices, which is mainly due to its easy implementation both in software and hardware,
even in resource-constrained systems. The AES is a symmetric key encryption algorithm,
which means that the same key is used in the data encryption and decryption operations.
This algorithm features an initial key expansion step, which is followed by a data block
encryption/decryption phase. The latter is executed in several rounds, using the gener-
ated keys and performing substitutions, transpositions, and linear combinations of bytes
forming the data blocks. However, despite being lightweight and easy to deploy, security
algorithms have more memory and processing power requirements due to the high number
of operations that need to be executed, which may lead to some performance penalties [26].
To tackle these issues, some IoT devices already provide hardware-based loosely coupled

J. Low Power Electron. Appl. 2022, 12, 50 4 of 19

implementations of some security algorithms [27–29]. Nonetheless, the performance gains
come at the cost of extra hardware added to the device.

As the RISC-V has grown in popularity, several domain-specific coprocessor units
have been implemented, and the first steps toward making an AES coprocessor, both in
Application-Specific Integrated Circuit (ASIC) [30–35] or FPGA technologies [36–38], have
already been taken. Table 1 shows a comparison among different state-of-the-art AES im-
plementations according to the year, the technology, the type of architecture, the frequency,
the number of clock cycles required per encryption, and the throughput. In comparison,
this work intends to explore two different implementation strategies (rolling and unrolling),
initially aiming for a high operating frequency and gradually moving toward a small circuit
area and reduced power consumption. However, in these solutions, there is scarce research
on evaluating the best methods of coupling accelerators to the core. Now, especially with
the RISC-V Rocket Core that facilitates new methods of tightly coupling accelerators, it has
become very important to evaluate the hardware costs, performance advantages, and which
method is most suitable for resource-constrained systems. From the available works, most
of them resort to a loosely coupled approach with a dedicated memory interface or are
deployed in an ASIC solution.

Table 1. State-of-the-art AES implementations (2017–2020).

Work Year Technology AES
Architecture *

Frequency
(MHz)

Cycles/
Encryption ** Throughput **

Agwa et al. [34] 2017 ASIC
(Loosely)

Rolling 666 - 2.601 Gbps

Bui et al. [35] 2017 ASIC
(Loosely)

Rolling 10 44 28 Mbps

Lu et al. [30] 2018 ASIC
(-)

Rolling 50 213 30.05 Mbps

Banerjee et al. [31] 2019 ASIC
(Loosely)

Rolling 16 11 -

Al-
Gailani et al. [38] 2019 FPGA

(-)
Unrolling 158 1 20.3 Gbps

Shahbazi et al. [36] 2020 FPGA
(-)

Unrolling 622.4 1 79.7 Gbps

Marshall et al. [32] 2020 ASIC
(Tightly)

Rolling and
Unrolling

- 18–30 -

Pan et al. [33] 2021 FPGA and ASIC
(Tightly)

Rolling 100 11–19 471–695 Mbps

* Unrolling structure (AES rounds are executed in parallel) and Rolling structure (AES rounds are executed
recursively). ** Data excluding the cycle cost of communicating with peripherals.

3. FAC-V Design and Implementation

The overall system architecture, as depicted in Figure 3, follows a hardware–software
co-design approach, enabling the fast deployment and evaluation of FAC-V and further
comparison with state-of-the-art AES cryptography solutions. The architecture is composed
of two main blocks: (i) the FAC-V coprocessor and (ii) the Abstraction Layer. Designed
with flexibility in mind, the FAC-V can be deployed following both the tightly and loosely
coupling styles.

J. Low Power Electron. Appl. 2022, 12, 50 5 of 19

Figure 3. FAC-V architecture overview.

In the tightly coupled approach, the coprocessor is connected to the core through the
RoCC interface, while in the loosely coupled approach, the accelerator is memory-mapped
and connected with the Central Processing Unit (CPU) through the TileLink interface.
The Abstraction Layer provides the FAC-V API that enables the interface between software
cryptographic tasks and the hardware coprocessor while also supporting in software
the same services provided by the hardware version of the accelerator. This eases the
integration of the coprocessor with OSes that already support in their network stack the
security layers, whose functionalities can now be remapped to respective hardware blocks.

3.1. FAC-V Coprocessor Architecture

The FAC-V coprocessor was designed following a modular methodology, and it was
developed with the Scala-based hardware design language Chisel. Figure 4 depicts the
FAC-V coprocessor architecture and its internal modules. The accelerator is divided into
three main blocks: (i) the interface module, responsible for the communication and data
exchange between the control unit, the CPU, and the system memory; (ii) the control unit,
which manages the other modules according to the received inputs and outputs; and, (iii)
the AES block cipher, which performs the key expansion, and the message encryption and
decryption tasks. The design of the interface module and the control unit varies according
to the coupling style and communication interface that was chosen prior to the coprocessor
deployment. FAC-V supports both the encryption and decryption operations, but since
the decryption performs the same steps as the encryption (executed in a reverse way), this
work only discusses and evaluates the encryption process.

Figure 4. FAC-V Coprocessor Architecture.

AES Block Cipher

The AES block cipher core was designed to execute AES encryption with all the key
sizes supported by the AES standard (128, 192, and 256 bits) [39]. The AES block cipher
receives a block of plaintext data and outputs an encrypted data block of the same size.

J. Low Power Electron. Appl. 2022, 12, 50 6 of 19

Figure 5 illustrates the AES block cipher, which performs two main steps: (i) the key
expansion, where the received key is expanded (exp_key) and sent to the rounds encryption
module; and, (ii) the rounds encryption, which receives the expanded key from the key
expansion, and the entire 128-bit input_message. The cipher_sel signal is used to select the
encryption or decryption task, and the start bit is used to start the encryption/decryption
process. Then, the rounds encryption module outputs the entire 128-bit out_message and the
ready bit to signalize the completion of the selected process.

Figure 5. Schematic view of the block cipher.

To further evaluate the impact of the design choices, in terms of clock cycles per
encryption, throughput and FPGA resources utilization, this main block was designed
following three AES architecture approaches: (i) the fully unrolled architecture, as shown
in Figure 6a, where all encryption rounds are performed in parallel; (ii) the partly unrolled
architecture, as shown in Figure 6b, which is designed to perform two rounds in parallel,
representing the lightest unrolled architecture; and (iii) the rolled architecture, as shown in
Figure 6c, which results in a lighter approach than the previous ones. The architecture of the
AES block cipher is a configurable parameter in the FAC-V, allowing the implementation of
any of the three possible approaches.

(a)

(b) (c)
Figure 6. Block cipher structure for AES-128: (a) Fully unrolled. (b) Partly unrolled. (c) Rolled.

3.2. Tightly Coupled FAC-V

For the tightly coupled coprocessor, a set of RoCC instructions (RISC-V R-type) were
created to interact with all hardware components, leveraging the funct7 field to have
unique arbitrary values that correspond to the functions detailed in Table 2, specifying the
input and output of each function after translating the rs1, rs2, and rd fields of the RoCC

J. Low Power Electron. Appl. 2022, 12, 50 7 of 19

instruction, as depicted in Listing 1. Therefore, by using the dedicated functions presented
in Table 2, we implemented the following API functions to mimic the OS cryptographic
libraries: the FACV_init() which initializes the AES accelerator by providing the key; the
FACV_encrypt(); and FACV_decrypt(). To perform the encryption, a set of steps must be
sequentially executed. If the message is delivered to the core through instructions, the
FACV_encrypt() needs to send the message data and the message size, send a command
to trigger the encryption, and read the result from the encryption operation. On the other
hand, if the message is already allocated in memory, the FACV_encrypt() only needs to send
the message size and the memory address of the message to encrypt.

Table 2. Software RoCC interface description.

Function (funct7) Input1 (rs1) Input2 (rs2) Output (rd) Description

Send Key Key Key Null Sends 2×32-bit of the AES key

Send Size Size Null Null Sends the message size

Send Message Message Message Null Sends 2×32-bit of the message

Send Addresses EN Message address Result address Null Sends the addresses, and sets load and encryption

Send Addresses DE Message address Result address Null Sends the addresses, and sets load and decryption

Start Encryption 1 Null Null Sets the start encryption flag on

Start Decryption Null 1 Null Sets the start decryption flag on

Read Result Null Null Result Reads one word of the result

Listing 1. API RoCC instruction format.

1 #define CUSTOM_0 0b0001011
2 #define ROCC_INSTRUCTION(rd , rs1 , rs2 , func7) \
3 __asm__ volatile (" . insn r " STR(CUSTOM_0) ", " STR(0x7) ", " STR(func7) ", %0, %1, %2" \
4 : "=r"(rd) \
5 : "r"(rs1) , "r"(rs2))

3.3. Loosely Coupled FAC-V

For the loosely coupled version of the FAC-V coprocessor, instead of dedicated in-
structions, the API defines the default register’s addresses, as depicted in Table 3, and it
provides the set of functions, as detailed in Table 4, that directly interact with the memory
registers using the MMIO interface. For the encryption task, the FACV_encrypt() function
firstly reads the Status register to check when the coprocessor is free to be used; when free,
the message is written (in blocks of 32 bits); then, the function writes to the cipher_sel register
to select the desired encryption or decryption process, which simultaneously signals the
start of the operation. Finally, the Status register is read again until the encryption is ready
and the result can be retrieved from memory.

Table 3. API MMIO registers default addresses.

Registers Default Address

Status 0×2000
Key 0×2004

Message 0×2024
Cipher_sel 0×2034

J. Low Power Electron. Appl. 2022, 12, 50 8 of 19

Table 4. Software MMIO interface description.

Function Input1 Input2 Ouput Description

Read Status Status Address Null Null Reads the Status register for checking the ready signal

Write Key Key Address Key Null
Writes 32 bits of the key in the specified
memory address

Write Message Message Address Message Null
Writes 32 bits of the message in the specified
memory address

Read Message Message Address Null Message
Reads 32 bits message from the specified
memory address

Write Cipher_sel Cipher_sel Address Cipher_sel Null
Writes to the Cipher_sel register, true for
encryption and false for decryption.

4. FAC-V Evaluation

Regarding the experimental setup, the FAC-V was deployed and evaluated on an
Arty A7-35T hardware platform, which features a Xilinx XC7A100TCSG324-1 FPGA core.
The accelerator is connected to a SiFive E31 RISC-V processor (RV32-IMAC specification)
operating at a clock speed of 65 MHz (it can go up to 72 MHz), which corresponds to the
default clock frequency provided by the Rocket Core. Although higher clock speeds for the
RISC-V core and the accelerator could be achieved, the required number of clock cycles to
perform the encryption/decryption tasks is low. Therefore, to keep the hardware logic as
simple as possible, the FAC-V uses the same clock frequency as the RISC-V core and the
communication buses. Both the RISC-V core and the coprocessor were implemented using
the SiFive Freedom E300 Arty FPGA Dev Kit and synthesized with Xilinx Vivado 2020.2.
For the performance evaluation of an IoT OS, we used the RIOT OS version 2021.04 [17],
and all binaries were generated with the RISC-V GNU Compiler Toolchain (version 8.3.0).

The evaluation of the FAC-V coprocessor comprises three main experiments: (1) the
FPGA resources required to deploy the coprocessor in FPGA; (2) the latency evaluation
of the cryptographic API functions; and (3) the impact caused by the FAC-V coprocessor
in the OS performance, which is measured with the Thread-Metric RTOS Test Suite. Each
experiment was performed in different configurations: (i) the native software implemen-
tation (provided by the OS) referred to as SW; (ii) the tightly coupled version of FAC-V
without memory allocation, referred to as RoCC; (iii) the tightly coupled configuration with
memory allocation, referred to as RoCC Mem; and (iv) the loosely coupled configuration,
referred to as MMIO.

4.1. Hardware Resources

The FPGA resource utilization was retrieved with the Vivado post-implementation
report, which is presented in Table 5 in terms of Look-up Tables (LUTs), Muxes, and Flip-
Flops. For comparison purposes, the baseline configuration has only the Rocket core
deployed in the FPGA, which requires 17903 LUTs, 714 Muxes, and 10161 Flip-Flops.
For the Rolling architecture of the AES algorithm, this evaluation includes the three different
versions of the FAC-V regarding the key size of the AES in use, i.e., 128, 192, or 256 bits.
Additionally, it shows the resources increase when an Unrolled AES architecture is used.
For the Rolled FACV-128, adding the RoCC configuration results in a resource utilization
increase of 22.7% for LUTs, 24.1% for Muxes, and 18.3% for Flip-Flops. The RoCC Mem
achieved a resource increase of 22.8% for LUTs, 23.5% for Muxes, and 21.3% for Flip-
Flops. Concerning the MMIO, the resources increase is 23.3% for LUTs, 18.1% for Muxes,
and 17.9% for Flip-Flops. While the RoCC and the MMIO configurations have similar
resources utilization, the RoCC Mem configuration requires more hardware to be deployed.
This is caused by the extra registers and control required to manage the memory sub-
interface. For the Rolled FACV-192 and FACV-256, the increase in the key size resulted

J. Low Power Electron. Appl. 2022, 12, 50 9 of 19

also in higher hardware resources. This is due to the extra calculations required in the key
expansion task.

Table 5. Estimated hardware resources utilization.

FACV-128 FACV-192 FACV-256 Unrolled FACV-128

Rocket
Core RoCC RoCC

Mem MMIO RoCC RoCC
Mem MMIO RoCC RoCC

Mem MMIO RoCC
2-Rounds

RoCC
9-Rounds

LUTs 17,903 +4056 +4086 +4174 +4328 +4464 +4432 +4824 +4923 +4913 +8845 +18,452
+22.7% +22.8% +23.3% +24.2% +24.9% +24.8% +26.9% +27.5% +27.4% +49.4% +103.1%

Muxes 714 +172 +168 +129 +301 +297 +258 +351 +332 +340 +1339 +6297
+24.1% +23.5% +18.1% +35.6% +35.1% +32.9% +49.2% +46.5% +47.6% +187.5% +881.9%

Flip-Flops 10,161 +1864 +2169 +1822 +2187 +2496 +2146 +2507 +2818 +2465 +3718 +4638
+18.3% +21.3% +17.9% +21.5% +24.6% +21.1% +24.7% +27.7% +24.3% +36.6% +45.6%

Logic Gates 181,955 +29,894 +32,621 +32,621 +33,269 +35,835 +28,867 +36,526 +39,710 +32,392 +197,924 +322,450
+16.43% +17.93% +17.93% +18.28% +19.69% +15.86% +20.07% +21.82% +17.80% +108.77% +177.21%

For the unrolled architecture, we have generated the hardware for the FACV-128. In
a two-round architecture, the required hardware resulted in a resource increase of 49.4%
for LUTs, 187.5% for Muxes, and 36.6% for Flip-Flops. For the nine-round architecture,
the required resources increased by 103.1% for LUTs, 881.9% for Muxes, and 45.6% for Flip-
Flops. Since the unrolled version of the FAC-V coprocessor required more resources than
the ones available in the Arty platform, it was only possible to deploy the different versions
of the FAC-V (FACV-128, FAC-V-192, and FACV-256) following the Rolled architecture.

Despite FAC-V targeting reconfigurable platforms, we also estimate the logic gates
(calculated from the different FPGA resources utilization) required to potentially deploy
our accelerator in an ASIC. However, in a real implementation, these values would vary
according to the selected ASIC technology and hardware layout. From the results available
in Table 5, deploying the Rocket Core without the FAC-V accelerator would require around
181,966 logic gates. Adding the accelerator increases the logic gate count by 16.43%,
17.93%, and 17.93% for the FACV-128 in the RoCC, RoCC Mem, and MMIO architectures,
respectively. Using the FACV-192 configuration, the logic gate count is increased by 18.28%
for the RoCC architecture, 19.69% for the RoCC Mem, and 15.86% for the MMIO. Finally,
when the accelerator uses the FACV-256 configuration, the logic gate count increases in
20.07%, 21.82%, and 17.80% in the RoCC, RoCC Mem, and MMIO architectures, respectively.
As expected, the required logic gate number increases as the AES key size also increases.
Nonetheless, the architecture that presents better results in the FACV-128 configurations is
the RoCC interface, being the MMIO the interface that gives less gate count increase in the
FACV-192 and FACV-256. For the unrolled FACV-128, these numbers further increase to
108.77% for the RoCC (two rounds) and 177.21% for the RoCC (nine rounds).

4.2. API Latency

The API latency is obtained through micro-benchmarks that count the clock cycles
required by each cryptographic service performed by each developed implementation,
both in the software and hardware configurations. This test covers all the secret key sizes
for different message payloads, starting from a minimum of 16 bytes (one 128-bit message
block) up to 80 bytes (five 128-bit message blocks).

4.2.1. AES Initialization

The AES initialization function initializes the AES Cipher with the secret key, and its
latency results are depicted in Table 6. For the FACV-128 implementation, the software-
based initialization (used as the baseline) requires 163 cycles to perform, while the RoCC
Mem and RoCC configurations, which share the same initialization implementation, require
a total of 34 clock cycles, representing a performance increase of 4.8× relative to the baseline.
Regarding the MMIO configuration, it needs 83 clock cycles to execute, representing a
performance increase of 1.9×. For the FACV-192 and FACV-256 implementations, due to

J. Low Power Electron. Appl. 2022, 12, 50 10 of 19

the instructions sending bigger key sizes, the number of clock cycles required to compute
the initialization is 183 and 244, respectively. These values are slightly higher than the
software-only version (as expected), but when performed in hardware, better performance
gains can be achieved, i.e., 29 clock cycles (4.7×) and 45 clock cycles (5.4×) for the FACV-192
and FACV-256, respectively, in both the RoCC Mem and RoCC configurations. Regarding the
MMIO configuration, the FACV-192 required 113 clock cycles (1.6×) to execute, while the
FACV-256 executed in 142 (1.7×) clock cycles. In all experiments, the standard deviation
(SD) value is zero. This is explained by the small number of clock cycles required to perform
the initialization task.

Table 6. aes_init(): AES initialization latency results.

FACV-128 FACV-192 FACV-256

Clock
Cycles

Software 163 183 244
RoCC Mem 34 39 45

RoCC 34 39 45
MMIO 83 113 142

Standard
Deviation

Software 0 0 0
RoCC Mem 0 0 0

RoCC 0 0 0
MMIO 0 0 0

Performance
Increase

RoCC Mem 4.8× 4.7× 5.4×
RoCC 4.8× 4.7× 5.4×

MMIO 1.9× 1.6× 1.7×

4.2.2. AES Encryption

Software Version: Table 7 shows the results of the AES encryption task for the different
secret key sizes and message payloads of 16, 32, 48, 64, and 80 bytes (one to five 128-bit
message blocks). These results are supported by Figure 7, which displays the latency results
for the software version, and Figure 8, which corresponds to the hardware implementations.
Regarding the software-only implementation, the FACV-128 required around 119,229 clock
cycles (SD of 620 clock cycles) to handle a 16-byte message and 596,208 clock cycles (SD
of 1355) for a message size of 80 bytes. These values increase when the key size also
increases, e.g., for the FACV-192, the number of clock cycles required to encrypt a 16 and
80 bytes message is, respectively, 131,602 (SD of 701) and 659,334 (SD of 1090), while for the
FACV-256, the number of clock cycles is 160,833 (SD of 659) for a message size of 16 bytes
and 804,283 (SD of 1420) for an 80-byte message.

Table 7. aes_encrypt(): AES encryption latency results.

FACV-128 FACV-192 FACV-256

Size of Message 16 Bytes 32 Bytes 48 Bytes 64Bytes 80 Bytes 16 Bytes 32 Bytes 48 Bytes 64 Bytes 80 Bytes 16 Bytes 32 Bytes 48 Bytes 64 Bytes 80 Bytes

Clock
Cyles

Software 119,229 238,444 357,718 476,841 596,208 131,602 263,497 394,708 526,963 659,334 160,833 321,743 482,443 643,405 804,283
RoCC
Mem 20 38 77 121 165 20 38 81 126 166 20 38 77 125 168

RoCC 66 126 188 251 314 68 130 194 259 324 68 134 200 267 334
MMIO 189 367 554 741 922 189 373 557 749 921 191 385 554 745 1013

Standard
Deviation

Software 620 886 757 1024 1355 701 763 1104 1090 1606 659 1032 1121 1123 1420
RoCC
Mem 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RoCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MMIO 0 0 0 1 1 0 0 0 0 1 0 7 1 0 3

Performance
Increase

RoCC
Mem 5961× 6275× 4646× 3941× 3613× 6580× 6934× 4873× 4182× 3972× 8042× 8467× 6265× 5147× 4787×

RoCC 1807× 1892× 1903× 1900× 1899× 1935× 2027× 2035× 2035× 2035× 2365× 2401× 2412× 2410× 2408×
MMIO 631× 650× 646× 644× 647× 696× 706× 709× 704× 716× 842× 836× 871× 864× 794×

J. Low Power Electron. Appl. 2022, 12, 50 11 of 19

Figure 7. Software version AES encryption latency results.

Figure 8. FAC-V AES encryption latency results.

RoCC Mem: When performing the encryption task with the FAC-V coprocessor, the number
of clock cycles required to encrypt different message sizes (for the three values of the secret
key) greatly decreases. These values are present in Table 7 and supported by Figure 8.
Regarding the RoCC Mem implementation, the FACV-128 requires 20 clock cycles to execute
the encryption of a message size of 16 bytes and 165 clock cycles when the message size is
80 bytes. When compared with the software-only version, it corresponds to a performance
increase of 5961× and 3613×, respectively. In the FACV-192 and FACV-256, these remain
the same when the message size is 16 bytes, i.e., 20 clock cycles, but they slightly increase
to 166 and 168 clock cycles when the message size increases to 80 bytes. Despite presenting
similar values when varying the message size, the performance gains in comparison to the
software implementation are considerably higher, i.e., 6580× and 3972× for the FACV-192
and 8042× and 4787× for the FACV-256.

RoCC: The number of clock cycles required by the FACV-128 to encrypt a 16-byte and an
80-byte message is, respectively, 66 and 314, which corresponds to a performance increase
of 1807× and 1899×. The FACV-192 requires 68 and 324 clock cycles to encrypt a message
of 16 and 80 bytes, respectively, which corresponds to a performance increase of 6580×
and 3972×. Regarding the FACV-256, these values are nearly the same as the FACV-192,
corresponding to a performance gain of 1935× and 2035× for a message size of 16 and
80 bytes in the FACV-192 configuration and a performance increase of 2401× and 2408×
for a respective message size of 16 and 80 bytes in the FACV-256 implementation. Overall,
the performance gains for both the FACV-192 and the FACV-256 for the different message
sizes increase when compared with the corresponding software version.

MMIO: Regarding the MMIO configuration, the FAC-128 requires 189 clock cycles to
encrypt a 16-byte message and 922 clock cycles to encrypt a message with a payload of
80 bytes, corresponding to a performance gain of 631× and 647×, respectively. When
using a key size of 192 bits, FACV-192, encrypting a message of 16 and 80 bytes requires
189 and 921 clock cycles, respectively, representing a performance gain of 696× and 716×.
For the FACV-256, the number of clock cycles to encrypt a message of 16 and 80 bytes is,
respectively, 385 and 1013, representing a performance increase of 842× and 794×. Again,
comparative to the respective software version, the performance gains increase when the
key size also increases.

J. Low Power Electron. Appl. 2022, 12, 50 12 of 19

Discussion: Regarding the software implementation, the latency increase results are di-
rectly related to the message and key sizes, which require more clock cycles to execute
when a higher number of encryption rounds need to be performed. The different hardware
approaches, from a macro perspective, provide nearly the same performance results for the
different message sizes in the different sizes of the encryption key. However, the perfor-
mance gains provided by MMIO and RoCC configurations follow a different behavior than
the RoCC Mem implementation. While for the MMIO and RoCC, the performance gains keep
increasing when the message size also increases, this is not always true for the RoCC Mem
configuration. The main reason for this behavior is related to the required memory accesses
used by this configuration, which is affected when the message size increases from 32 to
48 bytes. This may be caused by two different situations: (i) since the implemented RoCC
memory sub-interface needs to wait for the “ready to use” memory validation signal, some
unexpected delays can occur, which are mainly caused by concurrent system bus masters,
which can increase the overall latency of the encryption task; and (ii) since there are more
data blocks to process, the additional function calls may also cause extra bus contention
during the prologue and epilogue execution. Considering the standard deviation in the
hardware configurations, this value is zero or nearly zero, showing that the encryption
task in the different versions of the FAC-V is fully deterministic. In the software setup,
the standard deviation values are mainly related to the extensive multiple mathematical
and arithmetic operations that need to be performed, resulting in more memory accesses
and processing time, which is susceptible to change due to other software tasks being
executed by the CPU in the OS thread scheduling, interrupts, etc. Lastly, it is possible to
conclude that the tightly coupled versions of the FAC-V, i.e., RoCC and RoCC Mem, perform
better than the loosely coupled approach deployed through the MMIO configuration.

4.3. OS Performance

To evaluate the impact of the accelerator on the OS performance, we used the Thread-
Metric RTOS Test Suite with the RIOT OS [40]. This synthetic suite implements several
benchmarks that stress a singular Real-Time OS (RTOS) service. After the RIOT initialization
and the main thread is reached, each test creates the necessary OS threads and system
configurations. The output of each test is the number of times each loop has been executed,
wherein a higher loop count indicates better performance. The performance evaluation of
RIOT included the following tests:

1. Basic Processing: A single thread performs mathematical operations in a loop.
2. Cooperative Scheduling: Five threads with the same priority execute concurrently,

yielding in a loop.
3. Preemptive Scheduling: Five threads with increasing priorities, each resuming the

next thread with a higher priority and suspending themselves in a loop.
4. Interrupt Processing: A single thread is interrupted each time it executes, being

resumed afterwards.
5. Interrupt Preemption Processing: Two threads with different priorities, where one

of them triggers an interrupt responsible for resuming the other suspended thread.
6. Message Processing: A thread sends a message to itself through a queue in a loop.
7. Synchronization Processing: A single thread gives and takes a semaphore in a loop.
8. Memory Allocation: A thread allocates and de-allocates memory blocks in a loop.

Regarding this evaluation, we have created the network topology depicted in Figure 9,
which is composed of three nodes, two edge devices, and a gateway, recreating a real-world
situation of two IoT devices communicating with each other and/or the Internet. In this
setup, we have created a simple User Datagram Protocol (UDP) connection between a ready-
to-use RIOT node based on a STM32f767ZI board (with an Arm Cortex-M7 32-bit RISC
core operating at 216 MHz connected to a CC2520 device, an IEEE 802.15.4-compliant radio
transceiver) and the Arty platform (containing the RISC-V core, the FAC-V coprocessor,
and also a CC2520 radio). On both nodes, the RIOT OS uses the full network stack with the
following configurations: IEEE 802.15.4 PHY and MAC layers; 6LoWPAN for the adaptation

J. Low Power Electron. Appl. 2022, 12, 50 13 of 19

layer; UDP for the transport layer; IPv6, and a simple application that exchanges messages
of 80 bytes (five blocks of 128 bits) each, encrypted with the AES-256, through a UDP socket.
The client node keeps sending around 15 encrypted UDP messages per second. The server
node receives the encrypted messages, recovers the original plaintext, validates and changes
the content of the message, encrypts the message again, and sends it back to the UDP client.
The Thread-Metric runs side by side with the UDP server, and it intends to evaluate the
impact of the encryption and decryption tasks on the OS performance by resorting to the
software version of the AES and all versions of the FAC-V coprocessor.

Figure 9. Network topology used in the Thread-Metric evaluation.

Table 8 summarizes the Thread-Metric results obtained in the following scenarios: (i)
the Baseline, which corresponds to all tests running with no communication between the
UDP server and the client; (ii) the Echo, where the Server receives and echoes the packets
from the UDP client without data encryption. This test evaluates the impact of simply
adding a communication link to the OS; and the Echo with all possible AES configurations,
i.e., (iii) Echo + AES Software, (iv) Echo + RoCC Mem, (v) Echo + RoCC, and (vi) Echo + MMIO.
The relative performance change for each Thread-Metric test according to each test scenario
is summarized in Table 9.

Table 8. Thread-Metric benchmark results.

Version Basic
Processing

Cooperative
Scheduling

Preemptive
Scheduling

Interrupt
Processing

Interrupt
Preemptive

Message
Processing

Synchronization
Processing

Memory
Allocation

(i) Baseline (no network) 73,012 4,049,986 1,552,968 5,746,523 3,051,415 5,480,340 5,676,620 2,810,406
(ii) Echo 38,994 2,145,623 869,367 3,212,352 1,707,203 3,013,826 3,180,201 1,489,664
(iii) Echo + SW 24,678 1,288,700 461,632 1,490,272 1,015,795 2,227,820 2,275,369 1,109,816
(iv) Echo + RoCC Mem 37,560 2,100,921 830,111 3,035,100 1,594,133 2,779,515 2,895,005 1,411,679
(v) Echo + RoCC 35,546 2,053,071 817,707 2,955,054 1,586,991 2,778,290 2,901,002 1,412,516
(vi) Echo + MMIO 37,060 2,137,461 806,495 3,066,915 1,566,676 2,849,630 2,849,586 1,437,321

Table 9. Relative performance decrease.

Version Basic
Processing

Cooperative
Scheduling

Preemptive
Scheduling

Interrupt
Processing

Interrupt
Preemptive

Message
Processing

Synchronization
Processing

Memory
Allocation

(i) Baseline (no network) −46.6% −47.0% −44.0% −44.1% −44.1% −45.0% −44.0% −47.0%
(ii) Echo 0% 0% 0% 0% 0% 0% 0% 0%
(iii) Echo + SW 36.7% 39.9% 46.9% 53.6% 40.5% 26.1% 28.5% 25.5%
(iv) Echo + RoCC Mem 3.7% 2.1% 4.5% 5.5% 6.6% 7.8% 9.0% 5.2%
(v) Echo + RoCC 8.8% 4.3% 5.9% 8.0% 7.0% 7.8% 8.8% 5.2%
(vi) Echo + MMIO 5.0% 0.4% 7.2% 4.5% 8.2% 5.4% 10.4% 3.5%

When the network is being used, i.e., packets are being exchanged between the UDP
server and client, the OS performance decreases between 44% and 47%, corresponding to
the Preemptive Scheduling and the Memory Allocation tests, respectively, showing that the
network utilization has a huge impact on the overall performance of the device. The perfor-
mance further decreases when the encryption is enabled and used in the communication.
To evaluate the impact of enabling the security features over the network data exchange, the
(ii) Echo experiment is now assumed as the baseline (we assume that AES is mainly needed
when communications are required). When the data exchange uses the AES services in

J. Low Power Electron. Appl. 2022, 12, 50 14 of 19

software (native RIOT drivers and API), the performance decreases between 26.1% and
53.6%, corresponding to the Message and the Interrupt Processing tests, respectively.

Basic Processing: In this test, the OS performance decreased by 36.7% when using the
software libraries of the AES algorithm. However, when resorting to the FAC-V coprocessor,
this value can be reduced to 3.7% when using the RoCC Mem configuration.

Cooperative and Preemptive Scheduling: Regarding the Cooperative Scheduling and the
Preemptive Scheduling tests, the Cooperative achieved lower performance degradation
than the Preemptive, which is mainly explained by the microkernel architecture used by
RIOT. While in the Cooperative Scheduling test, the executing task yields itself, in the
Preemptive Scheduling test, the executing task resumes to a different one, which involves
more system calls and more processing from the scheduler due to the tasks having different
priorities. When using the pure software version of the AES algorithm, the performance
decrease is around 39.9% for the Cooperative Scheduling and 46.9% for the Preemptive
Scheduling. However, resorting to the FAC-V coprocessor, the performance decrease can
be reduced to 0.4% for the Cooperative test using the MMIO interface and 4.5% for the
Preemptive test in the RoCC Mem configuration.

Interrupt Processing and Preemptive: When resorting to the AES in software, the Interrupt
Processing test shows a performance decrease of 53.6%, while the Interrupt Preemptive
achieved a performance decrease of 40.5%. This is mainly explained by the fact that
the Interrupt Processing test, since it involves more hardware interrupts, requires more
system calls and more processing time from the scheduler. When resorting to the FAC-
V, the performance decrease of the Interrupt Processing is around 4.5% in the MMIO
configuration and 6.6% in the Interrupt Preemptive when the RoCC Mem configuration
is used.

Message Processing, Synchronization Processing, and Memory Allocation: For these tests,
the results show the lowest performance decrease. The Message Processing has a 26.1%
performance decrease, while the Synchronization Processing and the Memory Allocation
show performance decreases of 28.5% and 25.5%, respectively. This shows that the memory
management system implemented in RIOT has less impact on the overall system’s perfor-
mance in contrast to the tests that require preemption and interrupts. For the hardware
configurations, the lowest performance decreases were 5.4%for Message Processing, 8.8%
for Synchronization Processing, and 3.5% for Memory Allocation.

4.4. FAC-V Power Estimation

To estimate the power consumption of the RISC-V core along with the FAC-V accelera-
tor with different AES key size configurations, we used the Power Analysis tools included
in the Vivado Design Suite. The tool was run in vectorless mode with the default settings
and power optimizations disabled and with the platform constraints for the Arty A7-100
board. The report includes the dynamic power consumption, which is determined by
the switching activity of clocks and datapaths, and the static power consumption, which
represents the minimum power consumption required to operate the hardware blocks.
Table 10 summarizes the gathered results for the following configurations: (1) the RISC-V
core only (Rocket Core without RoCC/ MMIO interfaces; and (2) the RISC-V core with the
FAC-V accelerator in different AES configurations (FACV-128, FACV-192, and FACV-256)
for the three different coprocessor interfaces (RoCC, RoCC and memory, and MMIO).

J. Low Power Electron. Appl. 2022, 12, 50 15 of 19

Table 10. FAC-V Power Estimation.

FACV-128 FACV-192 FACV-256

Rocket
Core +RoCC +RoCC

Mem +MMIO +RoCC +RoCC
Mem +MMIO +RoCC +RoCC

Mem +MMIO

Static
Power (W)

0.099 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
+1.0% +1.0% +1.0% +1.0% +1.0% +1.0% +1.0% +1.0% +1.0%

Dynamic
Power (W)

0.196 0.218 0.220 0.221 0.218 0.217 0.215 0.232 0.231 0.217
+11.2% +12.3% +12.7% +11.2% +10.7% +9.7% +18.4% +17.9% +10.7%

Total
Power (W)

0.295 0.318 0.320 0.321 0.318 0.317 0.315 0.332 0.331 0.317
+7.8% +8.5% +8.8% +7.8% +7.5% +6.8% +12.5% +12.2% +7.5%

Deploying the RISC-V Core in the hardware platform without the RoCC and MMIO
interface corresponds to a total power dissipation of 0.295 W. Adding the FACV with the
RoCC interface increases the power consumption to 0.318 W when using the FACV-128 and
FACV-192 configurations, and 0.332 W when the FACV-256 is deployed. When combining
the RoCC interface with memory, the power dissipation is around 0.320 W for the FACV-128,
0.317 W for the FACV-192, and 0.331 W for the FACV-256. Deploying the coprocessor with
the MMIO interface corresponds to a power consumption of 0.321 W for the FACV-128,
0.315 W for the FACV-192, and 0.317 W for the FACV-256.

In the FACV-128, the power consumption increases when changing the interface from
the RoCC to RoCC Mem as well as when changing it from RoCC Mem to MMIO. This
power consumption increase behaves in the opposite direction for the FACV-192 and FACV-
256; i.e., MMIO is the most power consuming interface, and the RoCC is the interface that
achieves less power dissipation. We believe this is mainly caused by different hardware
resources required to deploy the different FAC-V configurations, which can be optimized
during the Implementation phase in the Vivado tool. However, as expected, it is observed
that increasing the key size in the AES configuration, e.g., from the FACV-128 to FACV-256,
provides high power consumption results. Comparing with the RISC-V core, adding these
AES configurations only causes a power consumption increase between 6.8% and 12.5%.
Thus, the impact of each solution on the overall energy consumption is mainly dictated by
the time each configuration takes to process the encryption of different message sizes.

Table 11 depicts the energy estimated to process a message size of 16 and 80 bytes for
the different configurations of the AES when using different coprocessor interfaces. As ex-
pected, and following the trend previously found (and discussed) in Table 7, performing
the encryption task in hardware causes less energy dissipation. This is directly related to
the required processing time to encrypt a message in the different coprocessor interfaces
for the different AES key sizes. Hence, and according to the message size, the RoCC Mem
interface is the one that requires less energy consumption, being the MMIO the interface
that dissipates more energy during the AES encryption task.

Table 11. AES encryption energy estimation.

FACV-128 FACV-192 FACV-256

Size of Message 16 Bytes 80 Bytes 16 Bytes 80 Bytes 16 Bytes 80 Bytes

Energy/
Message (µJ)

Software 541.12 2705.87 597.27 2992.36 729.93 3650.21
RoCC
Mem 0.10 0.81 0.10 0.81 0.10 0.86

RoCC 0.32 1.55 0.33 1.58 0.35 1.70
MMIO 0.93 4.55 0.93 4.46 0.93 4.94

4.5. Discussion

The extensive evaluation performed on the FAC-V processor has shown the huge
benefits of deploying an AES accelerator in hardware, following both the loosely and the
tightly coupled approaches, of which the latter coupling style provided better performance
and power consumption results. However, both versions provide similar hardware costs
for the implementation of the Unrolled AES architecture. The results show that in the

J. Low Power Electron. Appl. 2022, 12, 50 16 of 19

RoCC and MMIO configurations, exchanging data with the CPU imposes large overhead
latencies, which were mainly due to contention problems in memory and system buses.
This triggered the exploration of the memory-based tightly coupled version of FAC-V,
the RoCC Mem configuration, which resulted in the best approach when compared to
the other two. Extending the loosely coupled version in the same way would require the
implementation of a DMA device whose implementation is currently under investigation.

When comparing FAC-V with other state-of-the-art solutions, as shown in Table 12,
several trade-offs must be taken into good consideration before choosing and deploying
the approach that best suits the final application. Regarding the AES architecture, the best
performance is achieved when a fully or partially unrolled architecture is deployed. This
strategy is mainly adopted by solutions that are deployed in ASIC or that support more
powerful FPGA platforms [32,36,38]. However, this feature comes at a great cost in terms of
hardware resources; for the FAC-V deployment and target platform, the required resources
were above those available on the Arty board. We tested the Fully Unrolled architecture
in simulation, showing that we could also achieve 1 clock cycle per encryption, while the
Rolled architecture requires 10 clock cycles in the encryption process. Despite being 10x
slower, the performance gains compared with the software are already about hundreds of
magnitude better, as previously shown in Table 9. Thus, at this level, and since this work
targets reconfigurable resource-constrained IoT devices, using the Unrolled architecture
would not bring much more benefits in terms of performance but would carry extremely
high hardware costs.

Table 12. Comparison with FAC-V AES Implementation.

Work Year Technology AES
Architecture

Frequency
(MHz)

Cycles/
Encryption * Throughput *

Agwa et al. [34] 2017 ASIC
(Loosely)

Rolling 666 - 2.601 Gbps

Bui et al. [35] 2017 ASIC
(Loosely)

Rolling 10 44 28 Mbps

Lu et al. [30] 2018 ASIC
(-)

Rolling 50 213 30.05 Mbps

Banerjee et al. [31] 2019 ASIC
(Loosely)

Rolling 16 11 -

Al-Gailani et al. [38] 2019 FPGA
(-)

Unrolling 158 1 20.3 Gbps

Shahbazi et al. [36] 2020 FPGA
(-)

Unrolling 622.4 1 79.7 Gbps

Marshall et al. [32] 2020 ASIC
(Tightly)

Rolling and
Unrolling

- 18–30 -

Pan et al. [33] 2021 FPGA & ASIC
(Tightly)

Rolling 100 11–19 471–695 Mbps

FAC-V 2022 FPGA
(Loosely and Tightly)

Fully Unrolled
and Partly Unrolled

and Rolled
65

1
5
10

8.32 Gbps
1.66 Gbps
832 Mbps

* Excluding the cost of communicating with peripherals.

Concerning the technology used to deploy the accelerator, FAC-V is the only solution
that targets FPGA-based low-end IoT devices deployed both in the tightly and loosely
coupled approaches. In addition to the deployment of the Rocket Core without any
coprocessor, the Unrolled architecture of the FACV-256 version needs up to 47.6% more
of the available hardware resources, while the Unrolled FACV-128 with two rounds and
using the RoCC interface would add up to 187% more. However, despite operating at a
lower clock frequency (65 MHz), the FAC-V achieves a higher throughput than other rolled
architectures. In terms of hardware resources used, it was not possible to make an accurate
comparison since the state-of-the-art implementations present the values in ASIC Gate
Count, which cannot be directly mapped to FPGA cells (LUTs, Flip-Flops, and Muxes) in
Xilinx FPGAs.

5. Conclusions

This article presents FAC-V, a hardware coprocessor connected to an RISC-V core that
implements the AES algorithm in FPGA. The FAC-V hardware supports AES key sizes of

J. Low Power Electron. Appl. 2022, 12, 50 17 of 19

128, 192, and 256 bits, and by taking advantage of the RISC-V ISA, the coprocessor can
be deployed following a tightly and a loosely coupled approach, using, respectively, the
RoCC and the TileLink communication interfaces. Both coupling styles provided good
performance results when compared with the pure software version of the AES algorithm
present in the RIOT OS. For instance, the FACV-256 can achieve a performance improvement
around 8000× when processing the encryption of 16-byte messages with the RoCC Mem
interface, at the energy cost of around 0.10 µJ. The benefits of the coprocessor are further
noticed in the overall OS performance, which can suffer a degradation of up to 53.6% in the
interruption services when the network is continuously operating and the AES algorithm
is being used to secure data exchanged with other IoT devices. With the FAC-V, the OS
performance only decreases, for the same OS services, up to 8.2%. Hereafter, the FAC-V
can be further improved to support DMA devices with the MMIO-based TileLink interface,
which would mitigate the bus contention problems found in the current implementation.

Author Contributions: Conceptualization, T.G. and S.P.; methodology, T.G. and M.S.; software, P.S.;
validation, P.S. and T.G.; formal analysis, P.S., M.S. and T.G.; investigation, P.S. and T.G.; resources,
T.G., S.P. and M.E.; data curation, P.S. and T.G.; writing—original draft preparation, P.S. and T.G.;
writing—review and editing, T.G., M.E. and S.P.; visualization, P.S. and T.G.; supervision, M.E., S.P.
and T.G.; project administration, T.G. and S.P.; funding acquisition, S.P. and T.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This work has been supported by FCT—Fundação para a Ciência e Tecnologia within the R&D
Units Project Scope UIDB/00319/2020 and Grant SFRH/BD/146678/2019.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Oliveira, D.; Costa, M.; Pinto, S.; Gomes, T. The Future of Low-End Motes in the Internet of Things: A Prospective Paper.

Electronics 2020, 9, 111. https://doi.org/10.3390/electronics9010111.
2. Sundmaeker, H.; Guillemin, P.; Friess, P.; Woelfflé, S. Vision and Challenges for Realizing the Internet of Things. Clust. Eur. Res.

Proj. Internet Things EU Commision 2010, 3, 34–36. https://doi.org/10.2759/26127.
3. Perera, C.; Liu, C.H.; Chen, M. A Survey on Internet of Things From Industrial Market Perspective. IEEE Access 2014, 2, 1660–1679.

https://doi.org/10.1109/ACCESS.2015.2389854.
4. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE

Access 2018, 6, 6900–6919. https://doi.org/10.1109/ACCESS.2017.2778504.
5. Elnawawy, M.; Farhan, A.; Nabulsi, A.; Al-Ali, A.; Sagahyroon, A. Role of FPGA in Internet of Things Applications. In

Proceedings of the IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Ajman, United
Arab Emirates, 10–12 December 2019. https://doi.org/10.1109/ISSPIT47144.2019.9001747.

6. Valdés, M.; Rodriguez-Andina, J.; Manic, M. The Internet of Things: The Role of Reconfigurable Platforms. IEEE Ind. Electron.
Mag. 2017, 11, 6–19. https://doi.org/10.1109/MIE.2017.2724579.

7. Waterman, A.S. Design of the RISC-V Instruction Set Architecture; University of California: Berkeley, CA, USA, 2016.
8. Waterman, A.; Lee, Y.; Patterson, D.A.; Asanovi, K. The RISC-V Instruction Set Manual. Volume 1: User-Level ISA, version 2.0;

Technical Report; California Univ Berkeley Dept of Electrical Engineering and Computer Sciences: Berkeley, CA, USA, 2014.
9. Asanović, K.; Patterson, D.A. Instruction Sets Should Be Free: The Case for RISC-V; Tech. Rep. UCB/EECS-2014-146; EECS

Department, University of California: Berkeley, CA, USA, 2014.
10. Azad, Z.; Yang, G.; Agrawal, R.; Petrisko, D.; Taylor, M.; Joshi, A. RACE: RISC-V SoC for En/Decryption Acceleration

on the Edge for Homomorphic Computation. In Proceedings of the ACM/IEEE International Symposium on Low Power
Electronics and Design, Boston, MA, USA, 1–3 August 2022; Association for Computing Machinery: New York, NY, USA, 2022.
https://doi.org/10.1145/3531437.3539725.

11. Costa, M.; Costa, D.; Gomes, T.; Pinto, S. Shifting Capsule Networks from the Cloud to the Deep Edge. arXiv 2022,
arXiv:2110.02911. https://doi.org/10.1145/3544562.

12. Wu, N.; Jiang, T.; Zhang, L.; Zhou, F.; Ge, F. A Reconfigurable Convolutional Neural Network-Accelerated Coprocessor Based on
RISC-V Instruction Set. Electronics 2020, 9, 1005. https://doi.org/10.3390/electronics9061005.

13. De, A.; Basu, A.; Ghosh, S.; Jaeger, T. Hardware Assisted Buffer Protection Mechanisms for Embedded RISC-V. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 4453–4465. https://doi.org/10.1109/TCAD.2020.2984407.

J. Low Power Electron. Appl. 2022, 12, 50 18 of 19

14. Silva, M.; Gomes, T.; Pinto, S. Agnostic Hardware-Accelerated Operating System for Low-End IoT. In Proceedings of the 2022
IEEE 28th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), Taipei, Taiwan,
23–25 August 2022; pp. 21–30. https://doi.org/10.1109/RTCSA55878.2022.00009.

15. Asanović, K.; Avizienis, R.; Bachrach, J.; Beamer, S.; Biancolin, D.; Celio, C.; Cook, H.; Dabbelt, P.; Hauser, J.; Izraelevitz, A.M.;
et al. The Rocket Chip Generator; EECS Department, University of California: Berkeley, CA, USA, 2016; UCB/EECS-2016-17.
Available online: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html (accessed on 4 September 2022).

16. Oikonomou, G.; Duquennoy, S.; Elsts, A.; Eriksson, J.; Tanaka, Y.; Tsiftes, N. The Contiki-NG open source operating system for
next generation IoT devices. SoftwareX 2022, 18, 101089. https://doi.org/10.1016/j.softx.2022.101089.

17. Baccelli, E.; Hahm, O.; Günes, M.; Wählisch, M.; Schmidt, T.C. RIOT OS: Towards an OS for the Internet of Things. In Proceedings
of the 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Turin, Italy, 14–19 April 2013;
pp. 79–80. https://doi.org/10.1109/INFCOMW.2013.6970748.

18. Hahm, O.; Baccelli, E.; Petersen, H.; Tsiftes, N. Operating Systems for Low-End Devices in the Internet of Things: A Survey. IEEE
Internet Things J. 2016, 3, 720–734. https://doi.org/10.1109/JIOT.2015.2505901.

19. Silva, M.; Cerdeira, D.; Pinto, S.; Gomes, T. Operating Systems for Internet of Things Low-End Devices: Analysis and Benchmark-
ing. IEEE Internet Things J. 2019, 6, 10375–10383. https://doi.org/10.1109/JIOT.2019.2939008.

20. Fritzmann, T.; Sigl, G.; Sepúlveda, J. RISQ-V: Tightly Coupled RISC-V Accelerators for Post-Quantum Cryptography. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2020, 2020, 239–280. https://doi.org/10.13154/tches.v2020.i4.239-280.

21. Surendran, S.; Nassef, A.; Beheshti, B.D. A survey of cryptographic algorithms for IoT devices. In Proceedings of the 2018
IEEE Long Island Systems, Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 4 May 2018; pp. 1–8.
https://doi.org/10.1109/LISAT.2018.8378034.

22. Henriques, M.S.; Vernekar, N.K. Using symmetric and asymmetric cryptography to secure communication between devices in
IoT. In Proceedings of the 2017 International Conference on IoT and Application (ICIOT), Nagapattinam, India, 19–20 May 2017;
pp. 1–4. https://doi.org/10.1109/ICIOTA.2017.8073643.

23. Goyal, T.K.; Sahula, V. Lightweight security algorithm for low power IoT devices. In Proceedings of the 2016 International
Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, 21–24 September 2016;
pp. 1725–1729. https://doi.org/10.1109/ICACCI.2016.7732296.

24. Bachrach, J.; Vo, H.; Richards, B.; Lee, Y.; Waterman, A.; Avižienis, R.; Wawrzynek, J.; Asanović, K. Chisel: Constructing hardware
in a Scala embedded language. In Proceedings of the DAC Design Automation Conference 2012, San Francisco, CA, USA, 3–7
June 2012; pp. 1212–1221. https://doi.org/10.1145/2228360.2228584.

25. Cook, H.; Terpstra, W.; Lee, Y. Diplomatic design patterns: A TileLink case study. In Proceedings of the 1st Workshop on
Computer Architecture Research with RISC-V, Boston, MA, USA, 14 October 2017.

26. Canright, D.; Osvik, D.A. A More Compact AES. In Proceedings of the Selected Areas in Cryptography; Jacobson, M.J., Rijmen, V.,
Safavi-Naini, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 157–169.

27. Singh, A.; Prasad, A.; Talwar, Y. Compact and Secure S-Box Implementations of AES—A Review; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 857–871. https://doi.org/10.1007/978-981-13-8406-6_80.

28. Dhede, O.S.; Shah, S.K. A review: Hardware Implementation of AES using minimal resources on FPGA. In Proceed-
ings of the 2015 International Conference on Pervasive Computing (ICPC), Pune, India, 8–10 January 2015; pp. 1–3.
https://doi.org/10.1109/PERVASIVE.2015.7087187.

29. Mohurle, M.; Panchbhai, V.V. Review on realization of AES encryption and decryption with power and area optimization.
In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems
(ICPEICES), Delhi, India, 4–6 July 2016; pp. 1–3. https://doi.org/10.1109/ICPEICES.2016.7853276.

30. Lu, M.; Fan, A.; Xu, J.; Shan, W. A Compact, Lightweight and Low-Cost 8-Bit Datapath AES Circuit for IoT Applications in
28nm CMOS. In Proceedings of the 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and
Communications/12th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), New York,
NY, USA, 1–3 August 2018; pp. 1464–1469. https://doi.org/10.1109/TrustCom/BigDataSE.2018.00204.

31. Banerjee, U.; Wright, A.; Juvekar, C.; Waller, M.; Arvind.; Chandrakasan, A.P. An Energy-Efficient Reconfigurable DTLS
Cryptographic Engine for Securing Internet-of-Things Applications. IEEE J. Solid-State Circuits 2019, 54, 2339–2352.
https://doi.org/10.1109/JSSC.2019.2915203.

32. Marshall, B.; Newell, G.R.; Page, D.; Saarinen, M.J.O.; Wolf, C. The design of scalar AES Instruction Set Extensions for RISC-V.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 2021, 109–136.

33. Pan, L.; Tu, G.; Liu, S.; Cai, Z.; Xiong, X. A Lightweight AES Coprocessor Based on RISC-V Custom Instructions. Secur. Commun.
Netw. 2021, 2021, 9355123. https://doi.org/10.1155/2021/9355123.

34. Agwa, S.; Yahya, E.; Ismail, Y. Power efficient AES core for IoT constrained devices implemented in 130nm CMOS. In Proceedings
of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4.
https://doi.org/10.1109/ISCAS.2017.8050361.

35. Bui, D.H.; Puschini, D.; Bacles-Min, S.; Beigné, E.; Tran, X.T. AES Datapath Optimization Strategies for Low-Power Low-Energy
Multisecurity-Level Internet-of-Things Applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 3281–3290.
https://doi.org/10.1109/TVLSI.2017.2716386.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

J. Low Power Electron. Appl. 2022, 12, 50 19 of 19

36. Shahbazi, K.; Ko, S.B. High throughput and area-efficient FPGA implementation of AES for high-traffic applications. IET Comput.
Digit. Tech. 2020, 14, 344–352. https://doi.org/10.1049/iet-cdt.2019.0179.

37. Zgheib, A.; Potin, O.; Rigaud, J.B.; Dutertre, J.M. Extending a RISC-V core with an AES hardware accelerator to meet IOT
constraints. In Proceedings of the SMACD/PRIME 2021; International Conference on SMACD and 16th Conference on PRIME,
Online, 19–22 July 2021; pp. 1–4.

38. Al-Gailani, M.F.; Al-Khafaji, A.Q. Loop Unrolling Implementation of an AES Algorithm Using Xilinx System Generator. Iraqi J.
Inf. Commun. Technol. 2019, 2, 38–45. https://doi.org/10.31987/ijict.2.3.85.

39. Dworkin, M. Recommendation for Block Cipher Modes of Operation: Methods and Techniques; National Inst of Standards and
Technology (NIST), Computer Security Div.: Gaithersburg, MD, USA, 2001. https://doi.org/10.6028/NIST.SP.800-38A.

40. Microsoft Corporation. Azure RTOS ThreadX. 2022. Available online: https://github.com/azure-rtos/threadx (accessed on
4 September 2022).

https://github.com/azure-rtos/threadx

	Introduction
	Background and Related Work
	Loosely and Tightly-Coupling Approaches in RISC-V
	AES Accelerators

	FAC-V Design and Implementation
	FAC-V Coprocessor Architecture
	Tightly Coupled FAC-V
	Loosely Coupled FAC-V

	FAC-V Evaluation
	Hardware Resources
	API Latency
	AES Initialization
	AES Encryption

	OS Performance
	FAC-V Power Estimation
	Discussion

	Conclusions
	References

