
����������
�������

Citation: Barchi, F.; Parisi, E.;

Bartolini, A.; Acquaviva A. Deep

Learning Approaches to Source Code

Analysis for Optimization of

Heterogeneous Systems: Recent

Results, Challenges and

Opportunities. J. Low Power Electron.

Appl. 2022, 12, 37. https://doi.org/

10.3390/jlpea12030037

Academic Editors: Andreas Peter

Burg and Minsu Choi

Received: 4 September 2021

Accepted: 26 May 2022

Published: 5 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Review

Deep Learning Approaches to Source Code Analysis for
Optimization of Heterogeneous Systems: Recent Results,
Challenges and Opportunities

Francesco Barchi * , Emanuele Parisi , Andrea Bartolini and Andrea Acquaviva

Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi” (DEI),
Università di Bologna, Via Zamboni 33, 40126 Bologna, Italy; emanuele.parisi@unibo.it (E.P.);
a.bartolini@unibo.it (A.B.); andrea.acquaviva@unibo.it (A.A.)
* Correspondence: francesco.barchi@unibo.it

Abstract: To cope with the increasing complexity of digital systems programming, deep learning
techniques have recently been proposed to enhance software deployment by analysing source code for
different purposes, ranging from performance and energy improvement to debugging and security
assessment. As embedded platforms for cyber-physical systems are characterised by increasing
heterogeneity and parallelism, one of the most challenging and specific problems is efficiently
allocating computational kernels to available hardware resources. In this field, deep learning applied
to source code can be a key enabler to face this complexity. However, due to the rapid development
of such techniques, it is not easy to understand which of those are suitable and most promising for
this class of systems. For this purpose, we discuss recent developments in deep learning for source
code analysis, and focus on techniques for kernel mapping on heterogeneous platforms, highlighting
recent results, challenges and opportunities for their applications to cyber-physical systems.

Keywords: cyber-physical systems; heterogeneous device mapping; source code analysis; system
optimisation; literature review

1. Introduction

Cyber-physical system development is restrained by its inherent heterogeneity. There-
fore, system-level designers focus on formal methodologies and tools to compose hetero-
geneous computing resources while achieving system-level goals (performance, energy,
cost) [1]. It is then the role of application developers to map the application code to the
heterogeneous hardware resources. However, not all the application kernels can run effec-
tively in all the computing architectures [2]. Specialised computing architectures are the
most applicable tool left to obtain performance and energy-efficiency growth since Moore’s
Law is losing steam and the Dennard’s scaling has ended [3]. Graphical processor units
(GPUs) leverage a large number of simpler cores that share their control units, smaller-sized
caches, and lower frequency than CPUs to attain higher efficiency and peak performance in
throughput-critical applications. On the contrary, CPUs are more suited to latency-critical
applications due to their out-of-order, multi-instruction issue and higher frequency cores.
Programming heterogeneous computing systems effectively requires a deep understanding
of the static and dynamic characteristics of application kernels. Indeed, application kernels
where data transfers dominate execution time or branch divergence do not allow for the
uninterrupted execution on all GPU cores, achieving higher performance on CPUs than
GPUs [2]. In the domain of CPS, it is thus important to provide the application expert with
tools for extracting source code information and easing the challenges of heterogeneous
system programming.

For years the development of source code for CPS and its analysis have been activities
relegated to domain experts. The difficulty in creating an automated system of analysis
and understanding code lies primarily in the structural properties of source code, making

J. Low Power Electron. Appl. 2022, 12, 37. https://doi.org/10.3390/jlpea12030037 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea12030037
https://doi.org/10.3390/jlpea12030037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0001-5155-6883
https://orcid.org/0000-0001-6607-7367
https://orcid.org/0000-0002-1148-2450
https://orcid.org/0000-0002-7323-759X
https://doi.org/10.3390/jlpea12030037
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea12030037?type=check_update&version=1

J. Low Power Electron. Appl. 2022, 12, 37 2 of 26

it difficult to process and interpret through simple algorithms. The same difficulties, but at
the same time structurally different, were found in other fields such as Computer Vision,
Natural Language Processing, and Speech Recognition [4].

In recent years, it has been possible to successfully address and solve several problems
(such as identification, reconstruction and generation of data) in these areas thanks to a
family of statistical methods capable of learning and extracting information from large
amounts of data. We are talking about methods that use Machine Learning (ML) algorithms
or, in some applications, Deep Learning (DL). Deep Learning techniques belong to the set
of Machine Learning practices [5]. Still, they are characterised by specific properties such
as a highly-stratified structure.

The research activity on these learning techniques is still ongoing. Every year, new
critiques and improvements to the models are proposed. Within this lively research, the
scientific community sees the possibility to exploit these learning techniques to address
and solve problems involving source code [6].

It is beyond the scope of this paper to propose a comprehensive survey on the topic of
machine learning for code. Surveys on this field, which we explore in Section 2, provide
a good way to formalise the problem of source code analysis in a plethora of different
application categories [6–8]. The works mentioned above provide a taxonomy to frame the
applications and techniques present in the literature, but they do not delve into technical
detail and do not provide direct comparisons between the articles they cite. This type of
comparison is not feasible in an exploratory context as broad as in the reference surveys.
However, they do not target specifically heterogeneous device mapping nor cyber-physical
systems. In this paper, we describe the State-of-the-Art (SoA) tools for heterogeneous
device mapping (Section 2), and we additionally provide critical reviews and comparisons
(Section 4) of available tools to assess their impact on CPS programming. This paper stems
from the research questions that drove our works on this topic [9,10]. As a consequence,
we pose to the reader the following research questions (RQs) to guide the narrative path of
the article:

RQ1 How, historically, have learning techniques been applied to source code?

RQ2 How have machine learning techniques been applied to cyber-physical systems and,
in particular, to heterogeneous device mapping?

RQ3 How do the machine learning methods analyse source code in heterogeneous device
mapping, and what results have been obtained?

The methodology we applied to answer these questions is composed of three steps,
following the paper organisation: Section 2 presents a list of selected papers on source code
analysis techniques. In this section, we explore works dealing with ML and DL techniques
applied to source code to address the RQ1 and provide a comprehensive overview of the
problem for the reader. We report a collection of the most pioneering scientific papers
on the topic, and we analyse them along with different directions: (i) Techniques used
to analyse the code, (ii) Levels of abstraction at which the analysis is performed and (iii)
Problems addressed. Section 3 addresses the RQ2, focusing on a specific problem in the
CPS field, heterogeneous device mapping, and allowing the reader to quickly identify
the articles that first introduced techniques or first addressed a specific problem in this
field. Section 4 addresses the RQ3, describes the problem of heterogeneous device mapping
and exposes state-of-the-art works along with a critical review and a comparison of the
presented methodologies.

We focus on a restricted set of papers facing the heterogeneous code mapping problem,
which is essential to ease the developer burden in CPS. Heterogeneous code mapping is
about selecting code fragments (kernels) and deciding the most appropriate execution
target. By the term “most appropriate” we mean the execution target that maximises or
minimises a metric of interest to the developer, such as execution time or energy consumed
by the code fragment. Sections 5 and 6 report current challenges in the field and future

J. Low Power Electron. Appl. 2022, 12, 37 3 of 26

directions to improve available techniques or develop new ones. We report a critical view
of current challenges and future directions.

Overall, this work aims to help researchers in this field boost the design and imple-
mentation of intelligent software development tools capable of making complex decisions
for CPS architectures.

2. Research Timeline

The topics we deal with in this work belong to a relatively young research branch
involving machine learning and source code. The field of source code analysis has embraced
deep learning techniques, and we want to present a historical and rapid review of research
works in this field with, firstly, the aim of answering the RQ1: “How, historically, have
learning techniques been applied to source code?”. Furthermore, we want to give the
reader an overview and historical perception of the improvements made in this research
area to better understand the aspects presented in the next section.

2.1. Selection Criteria

In this research timeline, we only considered articles published after the work of
Hindle et al. “On the naturalness of software” [11] which we consider to be the seminal
work for the whole research field. The main source from which we selected the articles
of interest is a corpus of about 390 papers called ml4code [12] collected and selected by
the community for the initiative of Allamanis M. [6] and a corpus of 180 other papers
obtained using a direct keywords search on Scopus, we will refer to this corpus by the
name Corpus 0.

The first phase of the selection process was the following: we defined a set of keywords
belonging to machine learning and deep learning techniques. The keywords are listed in
the third column of Table 1, and the complete list is reported in Figure 1. For each keyword,
we selected only the papers that use it in their title or abstract. In this first phase, we
reduced the corpus to 94 documents. We will refer to this corpus by the name of Corpus 1.

Then, we identified pioneering articles as those proposing a new machine-learning
technique or tackling a new problem. To achieve this, we selected papers from Corpus 1
using qualitative and quantitative metrics. Regarding the qualitative metrics, the selection
criteria was the relevance of techniques used and the problems addressed. After this
review, among the resulting papers, we selected the ones referred to as seminal works by
more recent papers on the same subject (in our case, the source code analysis using deep
learning). These are valid candidates to be labelled as pioneering works as they introduced
the application of a new approach or solved a problem for the first time.

Figure 1. The paper selection pipeline. A Corpus is a list of papers. Corpus 0 is filtered using
keywords to obtain Corpus 1. Corpus 1 was selected using both qualitative and quantitative metrics.
Results are shown in Table 1. From the line of research started in [13], we selected papers focused on
heterogeneous device mapping. We listed them in Table 3.

J. Low Power Electron. Appl. 2022, 12, 37 4 of 26

Table 1. List of selected papers for an in-depth discussion on source code analysis methods. The first
part of the table contains the main surveys on the topic. The second part of the table contains the
most representative works on source code manipulation and representation.

Reference Year Keywords

Key papers and Surveys

Hindle A. et al. [11] 2012 * N-gram, Code properties, Code completion
Allamanis M. et al. [6] 2018 Survey, Code properties
Ashouri AH. et al. [7] 2018 Survey, Compiler autotuning
Wang Z. et al. [8] 2018 Survey, Compiler optimization

Innovative Models, Applications and Techniques

Grewe D. et al. [13] 2013 DT, Device mapping
Raychev V. et al. [14] 2014 RNN, N-gram, Code completion
Zaremba W. et al. [15] 2014 Seq2Seq, LSTM, Curriculum Learning
Iyer S. et al. [16] 2016 LSTM, Summarizing, Attention
Bhatia S. et al. [17] 2016 RNN, LSTM, Seq2Seq, Code fixing
Mou L. et al. [18] 2016 Tree CNN, AST, Code classification
Gu X. et al. [19] 2016 Seq2Seq, RNN Encoder-Decoder, NLP to code API
Allamanis M. et al. [20] 2017 GGNN, GRU, Code analysis, Graph2Seq
Gu X. et al. [21] 2018 RNN, Code Search, Cosine Similarity, NLP to Code Example
Santos ED. et al. [22] 2018 LSTM, N-gram, Code Correction
Bavishi R. et al. [23] 2018 LSTM Autoencoder, Code Analysis
Bui NDQ. et al. [24] 2018 Tree CNN, AST, Code classification
Alon U. et al. [25] 2019 AST Paths, Code Classification, Attention
Alon U. et al. [26] 2019 AST Paths, Code Classification, LSTM Encoder-Decoder
Mendis C. et al. [27] 2019 Hierarchical LSTM, Code Performance Regression, Assembly
Pradel M. et al. [28] 2020 AST features, RNNs, Type prediction
Hoang T. et al. [29] 2020 HAN, Bidirectional GRU, attentions, Code changes
Karampatsis RM. et al. [30] 2020 Code embedding, BPE, LSTM
Haj-Ali A. et al. [31] 2020 RL, Code vectorization
Brauckmann A. et al. [32] 2021 RL, Polyhedral optimisation
Allamanis M. et al. [33] 2021 GNN, Bug detection, GAN
* Published for Journal in 2016.

We also cross-checked the selection results using quantitative metrics. These quantita-
tive metrics are publication year and citation count. Seminal papers should be earlier in
terms of publication year and must be consistently cited by the following papers. It must
be noted that the selection procedure makes use of our prior knowledge in this area of
research, and it is not a mere application of thresholds on selected metrics. The selected
papers, that compose the Corpus 2, will be discussed in Section 2.3. The papers are listed in
Tables 1 and 3.

This research timeline is divided into two parts: Relevant related surveys and historical
overview of ML and DL techniques for source code. In the first part, Section 2.2, we present
an article that we consider the seminal work for the whole research field on source code
analysis [11] and three most cited surveys on the subject [6–8]. We will therefore use this
first part to outline the contours of the topic and summarise the fundamental concepts
proposed by the authors in their works.

In the second part, Section 2.3, we describe in detail the most important techniques
and intuitions behind models mentioned by previous surveys. We chose to follow a
historical timeline useful to emphasise the research improvements over the years and
highlight the insights behind the enhanced performance of recent code analysis methods.
We describe the selected works and their categorisation alongside topic keywords. The
description is a summary of the work with the aim to highlight three research aspects:
(i) The abstraction level for source code analysis (e.g., high-level source code, intermediate
representation, assembly); (ii) The code representation technique (e.g., token-based stream,
abstract syntax tree, control flow graph); (iii) The problem against which the proposed
method has been tested.

J. Low Power Electron. Appl. 2022, 12, 37 5 of 26

2.2. Relevant Related Surveys

The following surveys are useful to depict and explain the research field of machine
learning on code. They help to identify how scientific research has evolved over the years
and the field’s key challenges. The most cited paper in the field that we consider a seminal
work is “On the Naturalness of Software” [11], which, to the best of our knowledge, is
one of the first approaches to investigate the source code properties in terms of statistical
analysis. The authors view the source code as an act of communication and try to answer
the following questions:

Is it [source code, author’s note] driven by the “language instinct”? Do we program as
we speak? Is our code largely simple, repetitive, and predictable? Is code natural? . . .
Programming languages, in theory, are complex, flexible and powerful, but, “natural”
programs, the ones that real people actually write, are mostly simple and rather repetitive;
thus they have usefully predictable statistical properties that can be captured in statistical
language models and leveraged for software engineering tasks [11].

Authors suggest that source code presents repetitiveness at multiple levels (lexical,
syntactic, semantic). This property can be exploited to improve a wide range of applications
they list in their article. Along with the paper, the authors prove this claim and report
several examples of application problems. They start by introducing the n-gram model, a
statistic-based language model. The goal of the model is to estimate the probability of a
token (the smaller part of a string with a lexical meaning) to be present after a sequence
of n other tokens using conditional probability. Cross-entropy can be used to measure the
goodness of a language model. The main problem of this approach is the high number of
coefficients to learn, which grows exponentially.

More formally, the n-gram model can be summarised using the Equation (1): we have
a model M that gives the N-gram probability p̃M,N(s) to a document s. The document
consists of a sequence of n tokens ai and has an entropy HM(s). Each token ai has the
N-gram probability p̂M,N(ai)

p̂M,N(ai) = p(ai |ai−N · · · ai−1) =
|ai−N · · · ai−1 ai |
|ai−N · · · ai−1 |

p̃M,N(s) =
n

∏
i=1

p̂M,N(ai)

HM(s) = − 1
N

n

∑
i=1

log
(

p̂M,N(ai)
)

(1)

Using cross-entropy, the authors compared the naturalness of code with “English
texts”. Very important in this field is the choice of a dataset. In the following sections,
we will see how important and difficult it is to create a good dataset. In [11], the authors
used the Brown and the Gutenberg corpus for the English part. For the source code part,
they used a collection of 10 Java projects and a collection of C programs from Ubuntu
categorised into 10 applications families.

The first test was the computation of the self cross-entropy, for English and Java
datasets, of n-gram models using a different n-gram depth: N from 1 to 10. The cross-
entropy for the English dataset is about 10 bit for the n-gram model with N = 1 and
rapidly shrinks to 8 bit when N ≥ 4. The cross-entropy for the Java dataset is about 7 bit
for the n-gram model with N = 1 and rapidly shrinks to 3 bit when N ≥ 4. This gives
two important results: (i) Increasing N decreases cross-entropy (ii) Java has a much lower
self cross-entropy than English. The first results suggest that both datasets have some
regularities better highlighted using more complex models (increasing N). The second
results suggest that source code is more regular than English. Using this evidence, they
develop a code-typing suggestion engine in Eclipse using a 3-gram model able to beat the
Eclipse standard code typing suggestion engine.

J. Low Power Electron. Appl. 2022, 12, 37 6 of 26

Barr ET. and Devanbu P. authors of “On the Naturalness of Software” [11] with Alla-
manis M. and Sutton C. in 2018 published “A Survey of Machine Learning for Big Code and
Naturalness” an extensive literature review on the probabilistic model for programming
languages [6]. The aim of [6] is to provide a guide for navigating the literature and to cate-
gorise the design principles of models and applications. Their hypothesis, expressed in their
introduction, can be summarised in the following statements: Formal and logic-deductive
approaches dominate research in programming languages. The advent of open-source,
and the availability of a large corpus of source code and metadata (“big code”), opens
to new approaches to develop software tools based on statistical distribution properties.
Using Amdahl’s law, they justify the approach to extract knowledge from “thousands of
well-written software projects” on which statistical code analysis techniques are applied.
By mediating the information extracted from many codes, it is possible to obtain knowl-
edge that then helps to improve the average case. In this work, the authors define the
Naturalness Hypothesis:

Software is a form of human communication; software corpora have similar statistical
properties to natural language corpora; and these properties can be exploited to build
better software engineering tools [6].

They view software as the connection between two worlds: The human mind and
computers. This bimodal property of the code defines the similarity and the differences
between natural languages and programming languages. The main differences are the
following properties of code:

Executability A small change in the code produces a big change in the code meaning.
Thus, a probabilistic model requires formal constraints to reduce the noise introduced.
Moreover, the executability property determines the presence of two forms of code analysis,
static and dynamic.

Formality Unlike natural languages, programming languages are not written in stone
and do not evolve over centuries. They are built as mathematical models that can change
drastically over time. Moreover, the formality property does not avoid the semantic
ambiguity of some languages due to some design choices (such as polymorphism and weak
typing).

Cross-Channel Interaction The source code has two channels: algorithmic and explana-
tory. These channels are sometimes fused (e.g., explanatory identifiers). A model can
exploit this property to build more robust knowledge.

The authors, then, provide a taxonomy of probabilistic models of code. They define
three groups: Code-generating models, Representational models, Pattern mining models.
The models of the first group aim to learn a probability distribution of code components and
use this knowledge to generate new code. While the goal of the first group is to generate
something (code, documentation, etc.), the second group aims to create a representation of
the code to provide some information or prediction to the user. Instead, the pattern mining
models try to infer the latent structure of the code to expose patterns and other information
in an unsupervised fashion.

In the first category, code-generating models, the authors view the models as a prob-
ability distribution that describe a stochastic process for generating code. Equation (2)
formalises this concept, where PD is a conditional probability distribution given a dataset
D, c is a code representation and C(c) is a code context.

PD(c|C(c)) (2)

They distinguish the models based on how the source code is represented and the type
of context information provided. The source code can be represented using the following
abstraction level: Sequences (Token-level Models), Trees (Syntactic Models), and Graphs
(Semantic Models). A large portion of identified works use Token-level Models (character
or token). Some works use Syntactic Models or a hybrid composition of Syntactic and

J. Low Power Electron. Appl. 2022, 12, 37 7 of 26

Token-level Models. Furthermore, considering a graph as a natural representation of code,
they did not find works using Semantic Models for this category.

The context information can be mathematically described using a context function. The
context function identifies three model categories: (i) The model is a pure “language model”
when C(c) = ∅ (no external information is provided) (ii) The model is a “transducer model”
when C(c) is itself code (iii) The model is a “code-generative multimodal model” if the
context is provided but it is not code.

In the second category, representational models, authors collected methods capable
of transforming a code into a representation that describes their properties. Equation (3)
formalises this concept, where PD is a conditional probability distribution, π is a feature
vector and f (c) is a function that maps the code c to a representation.

PD(π| f (c)) (3)

They define two independent categories for the identified models: (i) Models able to
obtain distributed representations of the code and (ii) models able to obtain a structured
code prediction. A single model may belong to both categories. The first category aims
at representing source code in algebraic structures as vectors or matrices. In this way, the
information is projected in a multidimensional metric space. In these methods, the function
f (c) is defined as f : C → Rd where d is the number of dimensions of the representation
vector and C is the set of source code. This category consists mainly of deep learning
models. In fact, most deep learning models work on algebraic representations of data, on
which operators can be easily applied, and the gradients can be conveniently calculated.
The structured prediction models instead generalise the classification task. A model that
belongs to this category can classify portions of the input, taking into account the inherent
structural relations (and structural constraints) of the input data and the desired output,
such as during grammatical analysis of the text.

On the other hand, the third category (pattern-mining) includes models that can
discover patterns in the code in an unsupervised manner. Equation (4) formalises this
concept, where PD is a conditional probability distribution, f (c) is a function that maps the
code c to a representation, g(c) is a function that extracts partial information from the code
and X is the latent representation set that the model wants to learn.

PD(f (c)) = ∑
x∈X

PD(g(c)|x)P(x) (4)

The authors highlight the difficulty in building models belonging to this category,
given the unsupervised nature of the task and the requirements of models (belonging
eventually to other categories), helping to provide a definition of f () and g().

In conclusion, the authors provided a good classification of statistical models for
source code analysis and manipulation. Their taxonomies can be helpful to clarify the
advantages and disadvantages of each model and when it can be used, or how it can be
adapted for a specific problem or application.

In contrast to the Allamanis et al. survey, the work of Ashouri AH. Killian W. Cavazos
J. and Palermo G. entitled “A Survey on Compiler Autotuning using Machine Learning” [7]
is more focused on machine learning techniques applied to compiler problems such as
auto-tuning. Their aim is not to categorise a broad spectrum of models but to focus on the
works facing optimisation-selection and phase-ordering problems of compilers.

Authors introduce the concept of the compiler optimisation phase as a subsequent
ordered application of a certain number of optimisation steps at different levels of compiler
layers (front-end, intermediate-representation (IR), and backend) to transform the code into
an enhanced version of itself. The “enhanced version of code” is such if some performance
metric is optimised, for example: Execution time, code size, or power consumption. They
highlight key problems in this field; the optimisation steps can be language or architectural
specific, an optimisation step can degrade the performance of the code if it is applied with

J. Low Power Electron. Appl. 2022, 12, 37 8 of 26

wrong parameters or in the wrong order. For these motivations, they identify two major
problem sets: Optimisation selecting (which optimisation step to use and which parameters
to use) and Phase-ordering (in which order to apply the selected optimisation steps). The
first problem has an exploration space |ΩSelection| = {0, 1, . . . , m}n where m is the number
of parameters of an optimisation step and n is the number of optimisation steps. The
second problem has an exploration space |ΩPhases| = ∑L

i=0 ni where n is the number of
optimisation steps and L the maximum sequence length desired, with repetitions allowed.

The authors then introduce the concept of an auto-tuning framework. From a corpus
of code divided into training-set and test-set, the training-set is compiled using a sequence
of optimisations (chosen by an “optimisation design” component) and executed to evaluate
the “objective metrics”. These metrics are then used to train a machine-learning algorithm,
which is fed by the source code features extracted by a feature-extraction procedure. The
machine learning algorithm is then tested using the test set. The first step, as already
discussed in [6] is to extract a feature vector for the source code. The authors divide the
techniques into three categories: Static, Dynamic, Hybrid. The static analysis includes
features based on source code information extracted directly from the text or provided from
compilers and features based on graph structure of the code (Data Dependency Graph,
Control Flow Graph), again extracted using compiler tools. Instead, dynamic features
can depend on the execution flow in specific hardware (architecture-dependent) or can be
extracted using specific code instrumentation to obtain architecture-independent features.

Then, the authors of [7] categorise some models based on the learning paradigm. In
the unsupervised category, they identify two subcategories: Clustering and Evolutionary
Algorithms. Of particular interest to the community is the second category, to which
Neuro Evolution of Augmenting Topologies (NEAT) and other genetic algorithms (GA)
belong [34]. In the supervised category, we can find well-known machine learning models
such as Bayesian Networks, Linear Models and SVMs, Decision Trees and Random Forests,
and Graph Kernels. Therefore, this work makes it possible to define better the context of
code analysis research for compiler optimisations and collects works by target architecture
(Embedded, Desktop, HPC) and compiler (GCC, LLVM, ICC, etc.). More details, in this
specific field, can be found in [7].

Contemporary to [7], Wang Z. and O’Boyle M. in “Machine learning in compiler
optimisation” [8] also provided a survey on the specific area of compiler optimisation. In
the introduction of [8], the authors pointed out that the translation carried out by a compiler
is a complex task. There are several ways to translate (compile) a code. The objective is to
find the optimal translation that maximises evaluation metrics. Here, they emphasise that
the term optimal is a misnomer. Indeed, when we refer to an optimal solution, we mean a
sub-optimal solution obtained through heuristics. Their primary aims are to demystify the
machine learning approach for compilers and demonstrate how this can lead to new and
interesting research areas.

The authors summarise in three steps the integration of a machine learning pipeline
in a compiler: Feature Engineering, Learning a Model, Deployment. Along with the
discussion, they explain that there is not yet the ability to determine which ML model is
the most suitable for a specific task. Some models such as Support Vector Machine (SVM)
or Artificial Neural Network (ANN) can work with high-dimensional feature space but
require a big dataset to work, and deep learning methods require even more data. Instead,
more simple models such as Decision Tree (DT) or Gaussian Processes Classifier (GPC) can
work with smaller datasets but manage fewer features. This work answers the question:
How can machine learning be applied to compilers? What are the main applications? They
identified two main categories: Optimising sequential programs and optimising parallel
programs. Examples of applications in the first category are optimal loop unroll factor
and function inlining, whereas examples in the second category are heterogeneous device
mapping, scheduling and thread mapping.

In particular, we are interested in the heterogeneous device mapping problem owing to
the relatively extended research paper corpus. Because of the effort required to create, build

J. Low Power Electron. Appl. 2022, 12, 37 9 of 26

and profile different versions of the same algorithm for the corresponding heterogeneous
targets, a single dataset is used by almost all of these works, presented for the first time
in [35]. On the other hand, the use of a common dataset helps to facilitate comparisons
between techniques.

A third category incorporates several works not categorised, such as comment genera-
tion and mining API as we have seen in [6]. Please refer to chapter VI of the survey [8] for a
complete list of works identified by the authors. In conclusion, in [8] the authors hope that
research in this area will lead, in the future, to a better definition of code representation, i.e.,
one capable of identifying a metric of the distance between programs. The same should be
carried out to obtain a representation of the computing capacities of the hardware. In this
way, it would be possible to identify relationships between these representations: enabling
more effective decisions at the compilation stage.

2.3. Machine Learning and Deep Learning Techniques for Source Code Analysis

This section describes works in Corpus 2 (Table 1) that apply new ML and DL tech-
niques to source code analysis. We briefly describe each work emphasising the technique
introduced, the problem addressed and the results obtained. The papers will be presented
in chronological order by year of publication.

2.3.1. The Beginning, from NLP to Code Analysis (2013–2015)

In the period 2013–2015, ML techniques were explored on high-level code, starting
from a manual definition of features to the first deep-learning applications capable of
autonomously extracting features from code. The techniques used are strongly inspired by
the background of natural language processing (NLP), including n-grams, decision trees
(DT) and recursive neural networks (RNN). RNNs, in particular, have been extensively
tested to assess their effectiveness [14,15]. The analysis is carried out on engineered
features [13] or directly on the source code: function names [14] or directly on the raw
code level, processing the characters that compose it [15]. The problems addressed are, for
example, heterogeneous device mapping (the main topic of this paper), code completion
and code execution results prediction.

In 2013, Grewe D. et al. in [13] developed a workflow to translate an OpenMP program
in OpenCL and then decide the most suitable compute unit between CPU and GPU for each
generated OpenCL kernel. There, the authors extract features from the code manually. They
used the number of operations of three categories: compute, accesses to local and global
memory and data transfer. They also defined some combinations of these raw counters
to feed the classifier the communication–computation ratio, the computation–memory
ratio and the local–global memory ratio. The classifier (predictor) is a decision tree trained
with the C4.5 algorithm [36]. They used the NASA Advanced Supercomputing Parallel
Benchmarks dataset (NPB) [37]. The classes are CPU or GPU, depending on what is the best
target in terms of performance. In the case of the CPU class, the code uses OpenMP, whereas,
in the GPU class, the code exploits OpenCL primitives. Authors obtained encouraging
results with an accuracy of 75% when the target is an NVIDIA GPU and 62% when the
target is an AMD GPU.

Raychev V. et al. [14] in 2014, proposed a code completion strategy that compares the
n-gram model and recurrent neural networks (RNN). They implement their technique in
a tool called SLANG with a top-3 accuracy of 90%. The authors first extract sequences of
API calls from the dataset and then apply n-gram to these sequences. The RNN instead
takes the last word in the sequence (wi) as input using one-hot-encoding (vi), and uses it
to predict, similar to a classifier, probabilities for the next word (yi

wi+1
). Specifically, they

use a variant of RNN called RNNME. The authors of [14] report that the n-gram technique
can discover regularities between the last n− 1 elements of function-calls sequences. RNN
instead can discover relations at longer distances. This work can be seen as an extension
of [11] and one of the first works to employ RNN in this field.

J. Low Power Electron. Appl. 2022, 12, 37 10 of 26

Zaremba W. et al. [15], in their paper, try to test the limits of LSTM-based networks
with a task considered difficult: given a code fragment, inferring the result as though you
were running the code. They defined a simple class of programs (with some constraints
such as single left-to-right pass using constant memory) and used an LSTM cell in a
sequence-to-sequence model to obtain the result of the code execution. They reached 99%
accuracy in this task. The LSTM receives direct input of the characters, thus it was not
necessary to develop a complex embedding layer. This work highlights a good example of
the capabilities of recurrent neural networks.

2.3.2. Broad Investigations: New Models, New Representations and New Applications
(2016–2018)

In 2016–2018, ML techniques for code started to be explored more in-depth by the sci-
entific community. Alongside the RNNs and their variants (LSTM and GRU cells), complex
models based on a sequence-to-sequence (seq2seq) structure emerge [16,17,19] alongside
an innovative adaptation of CNN on tree structures [18,24] and the introduction of a new
neural network structure: the Graph Neural Network (GNN) [20,38]. The techniques were
applied on Sequences of Tokens (extracted from the source code), Abstract Syntax Tree [18]
and API call sequences. The problems addressed span from code description and code
comprehension to syntax error recognition [22] and code fixing.

Iyer S. et al. in [16] developed CodeNN, a tool able to describe in English code written
in C# and SQL. They used the LSTM model with attention mechanism trained using a
dataset gathered from Stack-Overflow comprising more than 900 k post for C# and the
same number for SQL. CodeNN is also able to retrieve source code if a code description is
provided. CodeNN outperforms the state-of-the-art performance in both tasks, both on
code description and code retrieval.

Bhatia S. et al. in [17] instead compared RNN and LSTM performance in correcting
small programs written in Python. The authors propose the SYNFIX Algorithm, which
operates as follows: it parses a Python program, identifies a syntax error, and tries to
generate the sequence of tokens using a seq2seq model to correct the error. The model
manages the code as a sequence of tokens, and the authors use a dataset of python code
produced by students. The model’s performance is modest; in many cases (32% of code
corpus), it was possible to correct some errors, but in the presence of multiple errors,
the percentage of code that presents syntax or runtime errors remains predominant. No
substantial differences were found between the RNN and LSTM models.

Mou L. et al. in [18] try to overcome the limitations imposed by analysing the source
code as a linear sequence of tokens. They propose a Tree-Based Convolutional Neural Net-
work (TBCNN), a deep learning model that works with source code’s Abstract Syntax Tree
(AST). The authors adapted the Convolutional Neural Network (CNN) to work with tree
structure generalising the convolution operator to work with sub-trees of an AST. The AST
node embedding was performed using a custom method to map similar symbols to similar
feature vectors. They used this model to solve two problems, functionality classification
of a program and code fragment identification that matches some programming pattern.
Using a dataset composed of programs submitted by students, their method outperforms
other models such as SVM and DNN (based on Bag of Word (BoW) and Bag of Tree (BoT)
feature extraction), reaching 94.0% accuracy against the 89.7% reached by the best competi-
tor (DNN+BoT). In the second problem, code fragment identification, the improvements
against state of the art is more pronounced: 89.1% against 77.1% (SVM+BoT).

Gu X. et al. in [19] propose DeepAPI, a deep learning method able to generate
instructions for the user about the API sequence of functions and calls to accomplish
a task. Their approach leverages an RNN-based encoder–decoder. This approach can
fit in the “code-generative multimodal model” category of [6]. The encoder transforms
the input sequence (the user query or context) into a fixed-size vector of features (latent
representation). The decoder takes the latent representation as input and generates a
sequence of API calls. The dataset used is composed of 442 k Java projects, from GitHub,

J. Low Power Electron. Appl. 2022, 12, 37 11 of 26

with code descriptions. The API sequences used to train the model are extracted, parsing
the AST of code. The goodness of results is evaluated using the BLEU score (Bilingual
Evaluation Understudy) [39].

Allamanis M. et al. in [20] propose a radical new method for analysing code: using
neural network models with graph structures. They use Gated Graph Neural Networks
(GGNN) and an enriched AST code representation. The enriched AST captures the control
flow and data dependency properties of the code and the programming language’s gram-
mar. The GGNN use a recurrent neural network, more specifically a Gated Recursive Unit
(GRU) [40], in each graph node and process the data that flow along the edges. The output
of one node (GRU cell) flows along the edges of the graph and is given as input of another
graph node (another GRU cell). The first node representation is achieved by combining
information from textual node representation and its type. The node type is inferred with a
smart code inference scheme described in [20] to section four. The proposed model was
tested on two applications: Variable Naming (VarNaming) and Variable Misuse (VarMis-
use). The model trained for the first problem (VarNamig) uses a dataset of 29 C# projects.
The extended AST is modified, replacing for a variable v a special token < SLOT > whose
representation, at the end of the GGNN propagation phase, is fed to another GRU that
generates a sequence of symbols to reconstruct the variable name. The second application
is more complex as it modifies the extended AST to represent a speculative presence of
a variable in the code. In the end, the presence of a misuse variable is detected using the
final representation of GGNN nodes and an additional linear layer. This work enables the
researchers to create a better code analysis and graph representation of source code.

To solve the code search problem, Gu X. et al. in [21] propose Code-Description
Embedding Neural Network (CODEnn, not to be confused with CodeNN [16]) a neural
network model, developed by them, able to map both code and English description in the
same high-dimensional vector space. The coexistence, within the same space, of the code
representation and its description allows easy identification, through a distance metric, of
a code given its description. Two distinct models are used to represent the code and its
description in the same feature space, CoNN for the code and DeNN for the description.
Both models output a feature vector; the cosine similarity is then used to compute the
error, minimise, and obtain similar representations. The code is represented in three
forms, sequence of method names, API invocations, and tokens. Each representation is
individually analysed and results combined in a single result. The method is trained from
a corpus of Java Projects, with documentation and comments taken from GitHub. The
authors, in the results section, show the good performance of their model. This interesting
approach shows how these techniques allow reasoning with a high degree of freedom over
the information in two different languages, Java and English.

Bavishi R. et al. in [23] propose Context2Name, an LSTM Autoencoder to create a
language representation and to infer meaningful names for variables. This problem was
inspired by the minimisation that JavaScript code undergoes before being embedded in a
hypertext. The minified JavaScript loses the original variable names, replaced by simple,
short names to optimise the transfer of the program. Reversing this process is a challenge
addressed by autoencoders based on LSTM recurrent networks fed with a token-based
code representation. The model is enriched with a semantic-preserving name recovery
functionality to maintain the same variable name along with the whole code fragment.
The results section highlighted that Context2Name reached state-of-art (SoA) performance
results compared to other tools but dramatically improved the execution time, with a
median of 52ms compared to 73ms of JSNice and 20s of JSNaughty (two other SoA tools).
Despite the simple code representation method used in this tool, the results are promising.
With more sophisticated techniques, it may be possible to improve performance enough to
improve the SoA.

J. Low Power Electron. Appl. 2022, 12, 37 12 of 26

2.3.3. Consolidation, Graph Models and Multilevel Code Analysis (2019–2021)

In recent years, the topic has become more mature and more works have tried to exploit
the Encoder–Decoder structure [26], the GNN models [33,41] or other models based on
hierarchical structures such as DAG-RNN [27]. The techniques were applied on AST, CFG,
and other ad hoc compositions of them such as CDFG [41]. The analysis of intermediate
representation (such as LLVM-IR) or assembly code becomes a new way to work with
code [9,41,42]. The problems addressed are, for example: function name and type inferring
(classification) [25,28], performance prediction [27] and loop-optimisation [31,41].

Alon U. et al. in [25] and then in [26] propose to represent source code as paths
along with the AST and use this representation to infer function name, a task also called
Code Classification. These techniques are not limited to Code Classification. Still, authors
show how it is possible to perform reasoning on the learned embedding and solve other
tasks as semantic similarities, combinations and analogies. In the first work, code2vec, the
authors solve a classification task using a “path attention network”. The network used is
composed of a fully connected layer and an attention layer. In the second work, code2seq,
the authors propose a more complex model, a network able to process the AST paths in
an Encoder–Decoder fashion. Each path component is encoded using an LSTM node and
enriched with the sub-tokens that constitute the AST nodes. Then, the encoding of all AST
paths is given to a decoder, with an attention model to obtain the desired output sequence
(e.g., the function name or the description in English). Using a vast Java dataset, the authors
show the superiority in performance (F1 score) of code2seq against code2vec and other
SoA related works [43–45].

Mendis C. et al. in [27] describe Ithemal, a tool for predicting the throughput of code
during its execution. Ithemal considers the source code of a basic block in assembly format
and predicts the throughput on a specific computing architecture for which it has been
trained. The first step is the canonisation of code statement tokens and their transformation
in a vector representation. Then, the subsequent two LSTM layers process the code. The first
LSTM layer processes all tokens of a statement and produces a statement vector representa-
tion. The second LSTM layer processes the sequence of statements vector representation to
obtain a block vector representation. Then, from the block vector representation, a further
linear layer produces the Throughput Prediction. They generate a dataset maximising the
x86-64 instructions coverage and targeting three Intel architectures: Ivy Bridge, Haswell
and Skylake. Moreover, they perform a model exploration and propose another model,
DAG-RNN, where the hierarchical-LSTM (the original model) is changed with a graph
structure of LSTM cells to satisfy data dependencies along with the basic block statements.
The best performance has been obtained using the Hierarchical method, highlighting that,
in a basic block, the order of the instructions is more critical than dependency chains, at
least for the processors under consideration. Ithemal is faster and more precise of SoA tools
such as llvm-mca [46] and IACA [47]. It is also one of the first applications of LSTM directly
to assembly language.

Pradel M. et al. in [28] propose Typewriter, a tool based on Deep Learning and natural
language properties of code, able to infer the types of arguments and return value of a
function. Using a dataset consisting of Python code achieves 0.64 F1 score in return type
predictions and 0.57 F1 score in arguments types prediction. The Typewriter comprises
three steps: Static analysis, Neural type prediction, and Consistent types search. In the
first step, the tool extract data from the AST: tokens, identifiers and comments. In the
second step, the previously extracted sequences are processed by different RNNs. A fully
connected layer then processes the output of each RNN to obtain the type vector. Then,
the third step iteratively tries to obtain a consistent type for each function argument and
return value. Typewriter is developed in Facebook and internally used by programmers in
the code review domain. This represents a good example of the practical usage of Deep
Learning technology applied to source code.

Hoang, T. et al. in [29] proposed CC2Vec, an innovative deep-learning model to learn
code representations from software modification and commit descriptions in a versioning

J. Low Power Electron. Appl. 2022, 12, 37 13 of 26

system exploiting attention at multiple levels of abstraction: word, line, hunk. In versioning
software jargon, a “hunk” is the area where two files differ. In this context, the hunk
is the area of interest where the software was modified. The authors demonstrate the
goodness of learned features in CC2Vec, solving three different problems. The network
model is called Hierarchical Attention Network (HAN), and is composed of an encoder
and an attention layer for each level of abstraction (word, line, hunk). The encoder is a
bidirectional RNN implemented with GRU cells. In this phase, the added code and the
removed code are analysed independently. Then, a comparison layer computes the vector
that summarises the differences between added and removed code features. Then, a word
prediction layer associates the vector of differences with a set of words extracted from the
log message. The authors highlight in the result section how CC2Vec can improve, with
its code representation, and other tools for solving complex problems: (i) Log message
generation (ii) Bug fixing patch identification (iii) Defect prediction.

Karampatsis RM. et al. in [30] address the problem of vocabulary representation
when building a code embedding. Specifically, they point out that many methods suffer
from two main problems: dictionaries that grow excessively large or the need to accept
out-of-vocabulary elements. Their approach involves the usage of Byte-Pair Encoding
(BPE) [48]. The dictionary starts with only letters and digits but using a fusion operator, the
most represented sub-words and words can be formed. In this way, the use of out-of-word
tokens can be avoided, and the growth of the dictionary remains controllable (a parameter
defines the maximum fusions allowed). Then, the authors used a GRU model trained
with the BPE encoding. They tested their model with Java, Python and C datasets. The
proposed model is simple, effective, and easily embeddable to other projects that need an
embedding technique.

Haj-Ali A. et al. in [31] propose NeuroVectorizer to address the problem of loop
optimisations for SIMD capabilities of modern applications. In this field, the loops can
be modified to expose vectorisation and operations interleaving opportunities. Another
problem is choosing two factors: Vectorisation Factor (VF) and Interleaving Factor (IF). VF
defines how many instructions are useful to pack together. IF defines at which distance
operations must be placed to relax architecture component pressure. The authors proposed
a solution to these problems using deep reinforcement learning (RL). Their tool can inject
compiler pragmas in the source code to manage VF and IR values. To perform code
embedding authors applied code2vec [25]. An interesting discovery is that for nested loops,
where pragmas are applied only to the innermost loop, the performance of NeuroVectorizer
increases if the whole cycle is analysed and not only the innermost. Moreover, the authors
show how this technique can be embedded in Polly [49], a reference implementation of
polyhedral compilers.

Finally, Brauckmann A. et al. in [41] directly address the problem of polyhedral
optimisations through the use of RL. The polyhedral model is a way to identify code
transformations that can improve performance, exploit computing architecture components,
and preserve the semantic of code. The authors propose PolyGym, a Markov Decision
Process (MDP), to model the space of loop polytopes boundaries and explore relative legal
transformations. PolyGym is composed of two components (both MDP): The schedule-
space constructor and the schedule-space explorer. The schedule-space constructor inputs
the SCoP identified by Polly and generates schedule-space generators, and then schedule-
space explorer generates a schedule for Polly. The choices made by these two components
can be tuned with reinforcement learning defining a reward system. In the results section,
the authors show the speedup obtainable with this tool in terms of speedup against standard
compiler optimisations.

2.4. Final Remarks

The topic touched on by the works presented in this section approaches code analysis
with machine learning and deep learning. Specifically, we addressed the RQ1 providing a

J. Low Power Electron. Appl. 2022, 12, 37 14 of 26

list of key works on machine learning and deep learning techniques to solve source code
related problems. We summarise the problem categories in Table 2.

Table 2. Application examples per category.

Code Modelling Code Manipulation Code Optimisation

API exploration Code Completion Heuristic for compilers
Code Conventions Code Synthesis Auto-parallelisation
Code Semantic Code Fixing Bug localisation
Code Summarising Comment generation

Although we have narrowed the scope of this research timeline to only those pa-
pers dealing with code analysis by machine learning techniques and take papers within
a selected group of papers [12], the spectrum of problems addressed in these areas is
still too broad to make a quantitative comparison of the techniques used. However, the
presented works highlight the necessity to apply novel ML techniques to approach code
related problems; through ML, the works report and achieve superior performance over
previous techniques.

In the next section, we introduce the problem of heterogeneous device mapping. It
will be discussed extensively in Section 4.

3. Approaches for Heterogeneous Device Mapping in CPS

This section focuses on specific works dealing with applications purely oriented
towards heterogeneous platforms as main digital components of cyber-physical systems
(CPS), specifically addressing the heterogeneous device mapping problem. In this section,
we thus address RQ2: “How have machine learning techniques been applied to cyber-
physical systems and, in particular, to heterogeneous device mapping?”. We consider
the papers belonging to Corpus 2 and listed in Table 3. All these works deal with the
heterogeneous device mapping problem (see Figure 1). This topic (Code Optimisation→
Heuristic for compilers) addressed in [13] has paved the way for the scientific community
to extend this research. This is motivated by the possibility of alleviating the difficult task
of programming the heterogeneous architectures that comprise modern CPSs. Source code
analysis can help in finding the most suitable hardware unit on which to execute a given
computational kernel. Moreover, developing a profiling approach based on source code
analysis, without the need for the final target hardware or an accurate virtual (simulation
or emulation) platform, can speed up the embedded systems development process.

Table 3. List of selected papers for source code analysis methods with results of interest in the
CPS field.

Reference Year Keywords

Heterogeneous Device Mapping

Cummins C. et al. [35] 2017 LSTM, OpenCL
Ben-Nun T. et al. [42] 2018 LSTM, LLVM graph embedding
Barchi F. et al. [9] 2019 LSTM, LLVM tokenisation
Venkata Keerthy S. et al. [50] 2020 LLVM embedding, Gradient Boosting
Brauckmann A. et al. [41] 2020 MPNN (GNN), LLVM graph embedding, CDFG, AST
Cummins C. et al. [51] 2020 MPNN (GNN), LLVM graph embedding, CFG
Parisi E. et al. [52] 2021 OpenMP, Random Forest, Energy consumption
Barchi F. et al. [53] 2021 LLVM tokenisation, CNN, LSTM

Recently, a research line exploiting the maturity of deep learning methods has started
since the work of Cummins et al. [35], where the decision tree classifier was replaced with
a deep learning model based on a RNN. Thanks to deep learning, it is no longer needed

J. Low Power Electron. Appl. 2022, 12, 37 15 of 26

to extract the features manually since they are inferred automatically during the training
phase, and the classification accuracy improves compared to [13].

The methodologies proposed in [13,35] were developed and customised for kernels im-
plemented in OpenCL, thus constraining the methodology to work with a given source pro-
gramming language. To overcome this limitation, Ben-Nun et al. [42] and Barchi et al. [9]
introduced the adoption of code analysis at the intermediate representation (IR) level of
the LLVM compiler. In [9], the code stream is filtered and then introduced directly into the
network, relying on the Embedding Layer for the learning of the best token projection. On
the other side, in [42], the authors propose Inst2Vec, a system to pre-train the embedding
layer analysing the Contextual Flow Graph (XFG). LLVM is increasingly adopted in the
embedded system world because it is capable of decoupling the front-end compiler from
the target architecture; in this way, many optimisation steps can be performed at the IR
level before generating the binary machine code. At this intermediate level, source code
features can be exploited to perform complex compilation decisions, including allocating
code fragments to architecture devices.

In Kheerthy et al. [54], the authors propose IR2Vec, a procedure that projects an IR in
a continuous metric space directly. In Cummins et al. [51], the authors propose ProGraML,
an extension of [42] where a complete GNN-based classifier is proposed. Independently,
in Brauckmann et al. [41] another end-to-end graph-based classifier was proposed able
to learn vertex embeddings by itself. Moreover, in [41] the graph-based classifier is used
to analyse both an LLVM-IR Control and Data Flow Graph (GNN-CDFG) and a Clang
Abstract Syntax Tree (GNN-AST).

Concerning the deep neural network model, all mentioned works use RNNs, that have
been introduced to process temporal sequences [5,55]. An RNN maintains an internal state,
acting as a memory, that summarises the information extracted from the input sequence.
As seen in Section 2.3, very successful implementation of RNN is the Long Short-Term
Memory (LSTM), a network able to learn when to memorise or forget information of the
input sequence and correlate together elements at different times. For this reason, LSTM is
the model adopted in state-of-art papers [9,35,42,54].

However, given the widespread use of CNN in the context of image recognition [56]
but also in NLP [57] as well as fast learning time and the maturity of network design and
configuration tools, it is worth exploring their application to source code classification.
In [53], authors introduced CNNs in a code classifier. This network model takes a tokenised
and filtered code stream as input. Behind the success of this type of network, there is the
assumption of information locality in the input data. All data inside a region called “kernel”
are considered correlated, and this correlation is weighed by a filter, identical for any region
considered in the input. The kernel shape has two dimensions in the image classification
field, but this technique can also be used in temporal signals using one-dimensional kernels.

Final Remarks

With reference to RQ2, this section showed how machine learning techniques have
been used to solve the heterogeneous device mapping and thread coarsening problem.
The techniques used are similar to the techniques exploited by the works presented in
Section 2.3. The deep learning models based on CNN, LSTM and GNN have been used to
classify code fragments using execution time information obtained in real code deployed
on different architectures with CPU or GPU capabilities provided by different vendors. The
works focused on different approaches to code modelling, from a simple serialisation of
code in tokens to complex graph representations. Furthermore, different ways to process
contextual information (working data size and computing elements configurations) were
considered and introduced in the model.

The majority of the methods discussed [9,35,41,51,53] are trained and evaluated on a
common dataset introduced in [35]. The dataset consists of 256 OpenCL kernels sourced
from seven benchmark suites on two CPU/GPU pairs combinations. The 256 unique kernels
belong to 7 suites and 71 benchmarks as reported in Table 4. Each pair is labelled CPU/GPU

J. Low Power Electron. Appl. 2022, 12, 37 16 of 26

according to the processing element in which it executes faster. Each dataset consists of 680
labelled pairs derived from the 256 unique kernels by varying dynamic inputs. The same
pair has been executed in two different heterogeneous system configurations: The AMD
set uses an Intel Core i7-3820 CPU and AMD Tahiti 7970 GPU; the NVIDIA set uses an
Intel Core i7-3820 CPU and an NVIDIA GTX 970 GPU. Each pair is characterised by three
values: The source code and two auxiliary inputs, namely the payload size and OpenCL
Work Group size. In the next section, we delve into the details about the works described
here.

Table 4. Dataset composition [35]. The first two columns are the number of benchmarks in suite
and the number of unique kernels in suite. In the dataset, composed by the tuple code and meta-
information, each suite has a different number of pairs.

Suite Version Benchmarks Kernels Samples

amd-sdk 3.0 12 16 16
npb 3.3 7 114 527
nvidia-sdk 4.2 6 12 12
parboil 0.2 6 8 19
polybench 1.0 14 27 27
rodinia 3.1 14 31 31
shoc 1.1.5 12 48 48

Total 71 256 680

4. Deep Learning Methods for Heterogeneous Device Mapping

In this section, we delve deeper into the heterogeneous device mapping problem and
discuss state-of-the-art methodologies approaching it. In particular, we want to reply to the
RQ3: “How do the machine learning methods analyse source code in heterogeneous device
mapping, and what results have been obtained?” This section reports a meta-analysis of
different techniques applied to the same dataset. As seen in the previous section (Section 3),
we discuss in more detail the works in Table 3 that approach the heterogeneous device
mapping problem and use a common dataset: More specifically, the dataset identified
in [13,35]. The experimental results of identified works are therefore comparable. In
this section, we present a critical discussion of the proposed techniques to identify their
strengths and weaknesses.

The problem of heterogeneous device mapping is stated as follows. Given a cyber-
physical system featuring a set S of computing devices d0, . . . , dN−1, the source code of
a function’s kernel and related contextual information, then select the best device di ∈ S
to execute the kernel such that some system metric is optimised. Typical interesting
metrics for a cyber-physical system are runtime performance, energy consumption or peak
power consumption.

Examples of helpful contextual information to predict the best possible computing
devices are the amount of data the device di handles or the estimate of the amount of
parallelism available in the offloading accelerator.

With the end of Dennard’s scaling and the slowing down of Moore’s law, heteroge-
neous architectures have become increasingly popular [3]. Currently, it is common to have
parallel multi-core systems that take advantage of hardware accelerators such as GPU,
FPGA or DSP and choosing where to move computation is not clear and requires effort
and resources [51]. As a result, the activity of exploiting static source code features to
predict the best executing device in a system-on-chip platform has gained interest in the
research community.

All tools that approach the heterogeneous device mapping problem share a similar
structure. First, they summarise the source code to be analysed by associating an embed-
ding vector to it. Such an operation is called language modelling, and it maps the input
kernel to an N-dimensional Euclidean space. Then, program embedding feeds a classifier
according to the nature of the problem to be solved. The methodologies that approach

J. Low Power Electron. Appl. 2022, 12, 37 17 of 26

heterogeneous device mapping commonly employ a binary classifier to choose the most
promising execution device among CPU and GPU. However, such a scheme easily scales
to multi-class classification problems and can serve both supervised and unsupervised
learning scenarios.

In Sections 4.1–4.3 we detail how state-of-the-art tools perform language modelling.
Section 4.4 provides details about machine learning models to translate kernel embedding
vectors into the classification prediction. Furthermore, it gives an insight of how effective
the different approaches proposed thus far in the literature are in terms of classification
accuracy over both Nvidia and AMD hardware. Figure 2 provides a logical representation
of the heterogeneous device mapping tools described in this section. Each methodology is
associated with a coloured line that describes the tool’s analysis flow, following the legend
at the bottom of the figure.

Figure 2. Map of heterogeneous device mapping methodologies described in Section 3. Dashed lines
represent the methodology used in [42,50] that exploit unlabelled C source codes to build LLVM
statement and entity embedding dictionaries. Whenever continuous and dashed lines join, it means a
tool requires a previously built embedding dictionary to continue its analysis.

4.1. Token-Based Language Modelling

Token-based language modelling methodologies analyse source code as a sequence of
tokens, as described in Section 2. Relevant literature works that apply such a policy and
discuss possible improvements are [9,35,53].

In [35], Cummins et al. propose DeepTune (purple line in Figure 2), to build language
models from OpenCL sources. After the input source is loaded and filtered from comments
and irrelevant metadata, the list of OpenCL tokens is extracted without further processing.

J. Low Power Electron. Appl. 2022, 12, 37 18 of 26

The tokenisation procedure considers the source code a text and scans it from beginning to
end. Each word in the text that is either a C keyword or an OpenCL directive is a token.
Any word that does not match the previous definition is decomposed into its characters, all
of which is a token. The first step of language modelling turns each element of the token list
into a numeric array using an embedding layer whose weights are learned during training.
The sequence of token embedding is then processed by two recurrent LSTM layers, which
output a digested representation of the kernel being analysed. The rationale behind the
usage of recurrent cells resides in their ability to learn a relationship over a long sequence of
tokens, which is the case of source code analysis, where data and control dependencies may
span the whole program. While producing promising results, the presented approach has
few inconveniences. The language model is built from OpenCL tokens, limiting its validity
to source written in C and exploiting the OpenCL programming model. Furthermore, the
token list is not actively filtered to remove tokens with poor meaning, such as punctuation
marks or other symbols. Both drawbacks are addressed in [9].

The authors of [9] keep the same language modelling network of [35] while testing
the impact of translating OpenCL source code to its LLVM intermediate representation
before analysing it. As a result, the source code analysed is decoupled from the high-level
programming language used. In fact, differently from [35], a language model trained on
LLVM intermediate representation has the potential to represent source codes written in
any high-level language with an LLVM back-end. Moreover, the authors of [9] suggests
filtering the list of LLVM tokens removing those with poor informative content. After
the whole source code corpus is tokenised, each token-source code pair (t, s) is associated
with a Tf-Idf score, a well-known metric to evaluate the importance of words in document
corpora. If the score of the pair is below a given threshold, then token t is removed from
the source code s. The authors conclude that the additional effort required to translate
the source code to intermediate representation and remove redundant tokens make the
classifier more robust, which is corroborated by a gain in classification accuracy.

The authors of [53] further improve the state-of-the-art, proposing a pipeline called
DeepLLVM (blue line in Figure 2) which substitutes LSTM cells with convolution and
pooling layers for language modelling. The sequence of token embedding feeds a set of
1D convolution layers which then exploits global max pooling to extract relevant features
from the convolution output. The authors show how such an approach achieves 4–7x
shorter training time with respect to LSTM since CNN exposes a high degree of parallelism,
making GPU training more agile.

All three methodologies described in this section deserve credit for the evolution of
source code modelling state-of-the-art with deep learning-based approaches. However,
token-based source code modelling is problematic since code is not a sequence. Major
program features, such as reaching definition or branching, imply long-distance relation-
ships between program entities and may be challenging to learn if sources are modelled as
sequences of tokens, even using recurrent networks. Furthermore, all previously described
works modify token sequences with padding or truncating operations. Indeed, language
modelling networks work on fixed-length sequences without taking into account a possibly
large difference in size between two functions.

4.2. Graph-Based Methodologies

Graph-based language modelling recently appeared in the literature to overcome the
limitations of token-based approaches described in Section 4.1. Relevant works, in this
context, for graph-based modelling are [41,51].

Cummins et al. [51] propose a tool called ProGraML (yellow line in Figure 2) that
compiles input source code into LLVM intermediate representation and builds a graph,
referenced as Enhanced-CFG in Figure 2, by the following three steps. First, add a node
in the graph for each opcode in the intermediate representation and connect them using
edges to represent control flow information. Then, encode data-flow including nodes for
variables and constants in the graph along with additional edges that link them to the

J. Low Power Electron. Appl. 2022, 12, 37 19 of 26

opcodes that produce or use them. As the last step, call edges may be included to represents
whole programs since control-flow edges do not span functions. The authors of [51] exploit
GRU-based message-passing neural networks (MPNN) [58] to build a proper language
model from the graph-based source code representation. ProGraML uses a modified version
of [42] to assign each graph node its hidden state array, which is required to feed the
message passing procedure. Once message passing is run for the desired number of time
steps, each vertex is assigned to its final hidden array, and is processed by an attention
layer that aims at extracting the most relevant features from each node state. At last, the
sum of all hidden states provides the embedding vector for the program analysed, which
models the analysed kernel.

At the same time, the authors of [41] propose two strategies to represent source
code based on (i) Abstract-syntax tree (AST) and (ii) Control data-flow graph (CDFG)
summarised by red and orange lines in Figure 2. The first representation exploits the
compiler front-end to extract the AST directly from the OpenCL source code. Furthermore,
the AST is enhanced with data-flow edges to avoid losing information regarding which
identifier is bounded to which data. The second representation proposed is called CDFG
and models LLVM intermediate representation functions with a smaller amount of nodes
with respect to what is proposed in [51]. It consists of a graph whose nodes are LLVM
opcodes while its edges belong to three different classes (i) Control-flow edges, (ii) Data-flow
edges and (iii) Call edges to model functions return data. As in [51], both representations
feed a GRU-based MPNN. Differently from what is described in [51], external tools are
not required to assign to each graph node a hidden state array initialisation value. In
fact, each vertex identifier is associated with a one-hot encoded vector whose embedding
is computed through a node embedding layer whose weights are learnt as the training
proceeds. Once each node is assigned its starting hidden array, message-passing is run for
a predefined number of times. The back-end of the [41] language model is similar to that
proposed in [51]. After each graph vertex is assigned its final hidden state, an attention
mechanism selects the most meaningful features from each node state. Then, the overall
program embedding can be computed by summing the contribution of each node.

Both [41,51] employ MPNNs while they differ in kernel modelling approaches. On one
hand, ProGraML [51] authors prove that their source code representation is so rich that even
typical compiler tasks such as finding out live variables or checking statement reachability
could be accomplished. On the other hand, ref. [41] still pushes the state-of-the-art proving
that (i) AST can be successfully used to model code without compiling it to intermediate
representation and (ii) solving the heterogeneous device mapping problem is possible with
CDFGs which trade representation richness with graph size when compared with [51].

4.3. Alternative Methodologies

Alternative modelling strategies exist that either do not entirely fall into the token-
based or graph-based taxonomy proposed so far [42,50], or exploit Siamese topology, a
recently proposed technique [10] which promises to further increase classification accuracy
and is applicable to any model previously described.

In [42], Ben Nun et al. describe inst2vec (cyan in Figure 2) to compute LLVM intermedi-
ate representation statements embedding. It exploits the skip-gram model [59] adopted to
compute word embedding by redefining the notion of instruction context. Word embedding
relies on the notion of word context, supposing that words with similar context have similar
semantics and states that a word’s context is the set of terms within a given radius around
it. Unfortunately, such a definition is not valid considering intermediate representation
instructions. Pair of statements far in the source may have control or data relationships,
making it impossible to extend the notion of context from words to statements as it is. Using
a directed multi-graph called conteXtual Flow Graph, inst2vec models LLVM instructions,
where graph nodes represent local or global identifiers, while graph edges represent data
or execution dependencies. The conteXtual Flow Graph dual graph is a graph whose nodes
represent LLVM statements, and its outgoing edges define its context. Given the notion

J. Low Power Electron. Appl. 2022, 12, 37 20 of 26

of statement context, the authors exploit the skip-gram model, as originally proposed in
word embedding [59], to build statement embedding. Once the kernel to be analysed is
reduced to a sequence of embedding, language model is produced feeding the vector list to
two recurrent layers similarly to what described in Section 4.1 and detailed in [9,35,53].

While the authors of [42] propose interesting considerations about source code nat-
uralness and profitably adapt the concept of word context to LLVM statements, inst2vec
is prone to the Out-of-Vocabulary issue. Since the variety of different LLVM statements is
extremely large, it is possible to design an LLVM kernel with statements not available in
the inst2vec dictionary as they are not present in the corpus of C sources that [42] use to
train statement embedding. Such an effect is characterised in [50] when comparing inst2vec
with another source code embedding strategy called IR2vec.

Venkata Keerthy et al. [50] propose IR2vec (green in Figure 2) as an approach to
compute LLVM source code elements embedding hierarchically. First, it learns the embed-
ding of LLVM-IR entities: (i) Data types, (ii) Local variables, and (iii) Opcodes. Then, the
tool combines entity embedding vectors linearly to generate the representation of LLVM
statements, basic blocks, functions and, eventually, the whole program. IR2vec models each
statement as a set of relationships between entities. It identifies three kinds of relationships:
(i) NextInstr to model the sequence of opcodes, (ii) TypeOf to model the type of data an
opcode works with and produces, and (iii) Arg to keep track of which arguments an in-
struction requires (local variable, pointer, constants, function name, or label). A Knowledge
Graph is built to represent the corpus of the target dataset of source codes, where nodes
represent entities while edges represent all the relationships each entity is subject to.

Knowledge Graphs are widely studied structures for representing entity relationships,
and a plethora of machine learning models are widely used in the literature to compute
entity embedding from the knowledge graph. The authors of [50] chose TransE [60] to
associate embedding vector to each discovered entity. The embedding for an LLVM state-
ment is a weighted linear combination of its entity embedding vectors and the previously
computed embedding of LLVM instructions that have reaching-definition to the current
statement considered.

The summation of the embedding vector of live statements produces the represen-
tation of a basic block, and similarly, the summation of basic block vectors gives the
representation of a function. IR2vec has three properties that make it particularly interesting
and unique when compared with other language modelling tools. First, it is not prone to
Out-Of-Vocabulary issues since the amount of LLVM entities program embedding that it is
built from is bounded. The authors prove it in the experimental section of their paper [50]
when comparing with inst2vec. Furthermore, it models LLVM intermediate representation
without relying on opaque models learnt through deep recurrent layers or graph-based
networks. It works deterministically and employs well-known data-flow analysis such as
Reaching-Definitions and Use-Def relationships widely used in compiler optimisations.
Finally, being hierarchical it has the potential to further explore currently known method-
ologies. For example, it could be used to initialise ProGraML node hidden state in place of
inst2vec to avoid Out-Of-Vocabulary issues or to apply the message-passing methodologies
detailed in [41,51] to the control-flow graph of a kernel using basic-block embedding to
initialise the graph nodes.

The authors of [10] proposed to arrange the token-based CNN model described in [53]
in a Siamese topology to classify the most convenient device to execute a computational
kernel. A Siamese network requires two ingredients. (i) A machine learning model able
to project input data into a N-dimensional Euclidean space and (ii) A loss function able
to associate a loss value to a pair of N-dimensional point projections. Furthermore, the
dataset needs to be arranged such that pairs of samples are fed into the model at training
time. Whenever the training procedure fetches a pair of samples (D1, D2) from the dataset,
the CNN at the core of the model projects both into the N-dimensional points (S1, S2), with
N = 2 in [10]. The loss function evaluates the distance d(S1, S2) between the two sample
projections and behaves such that samples belonging to different classes are moved away.

J. Low Power Electron. Appl. 2022, 12, 37 21 of 26

On the contrary, samples with equal labels are penalised proportionally to the distance of
their projections.

4.4. Classification Models and Comparative Results

After the language modelling neural network has represented the input source code
using an appropriate embedding vector, it can feed a classifier to choose the device where
the target kernel should be executed. Because of the properties of the only heterogeneous
device mapping dataset publicly available, described in Section 2, all described works
employ a binary classifier to predict the best execution platform.

The tools described in [9,35,41,42,51,53] process the embedding produced by the
language modelling using a multi-layer perceptron. At first, the auxiliary information
is concatenated to kernel embedding and normalised using a batch normalisation layer.
Such a choice is inherited from [35] whose authors claim that batch normalisation is
necessary given the arbitrarily large values auxiliary inputs have, with respect to source
code embedding produced by language models. The output of batch normalisation feeds
the two-class multi-layer perceptron, which outputs the best device where the kernel can
be executed.

Using a different approach, the authors of [50] concatenate auxiliary information to
the kernel embedding produced by IR2vec and use the resulting vector to feed a gradient
boosting classifier.

Concerning the approach based on Siamese network [10], the way they work does
not require a final binary classifier to infer the best kernel offloading device. In fact, once
training is over, the network performs inference on every samples in the training set and
for each class, the centroid of the projections of samples belonging to that class is computed.
At test time, the CNN at the core of the Siamese network is used to compute test samples
projections and predict labels depending on the centroid closer to each projected point.

Following RQ3, in this section we compared the techniques used in heterogeneous
device mapping, exposing the obtained results and providing the internal components
and analysis steps summarised in Figure 2. Table 5 reports comparative results available
in the literature for the state-of-the-art methodologies for heterogeneous device mapping.
On the one hand, the difference in accuracy between different machine learning models
falls below 10%, highlighting how none of the models outperform alternatives, especially
considering the size of dataset tests. Moreover, not all work presented in Table 5 performs
hyper-parameter tuning to optimise model performance. On the other hand, Siamese [10]
and IR2vec [50] performance suggests that: (i) Siamese network configuration may be a
valuable addition to be further investigated for all available state-of-the-art methodologies
and source code modelling techniques that take advantage of compiler analysis, such as
reaching definitions and (ii) Use-defs may constitute a lightweight alternative to deep learning
models requiring a large amount of data to be appropriately trained.

Table 5. Comparison with state-of-the-art methodologies. Accuracy of methodologies from the top
part of the table comes from [10], while the accuracy of ir2vec is reported from [50].

State-of-the-Art Methodologies
AMD NVIDIA Mean

DeepTune [35] 0.814 0.805 0.810
NCC/inst2vec [42] 0.802 0.810 0.806
CDFG [41] 0.864 0.814 0.839
ProGraML [51] 0.866 0.800 0.833
DeepLLVM [53] 0.853 0.823 0.838
Siamese [10] 0.917 0.888 0.903

ir2vec [50] 0.924 0.870 0.897

J. Low Power Electron. Appl. 2022, 12, 37 22 of 26

5. Deep Learning for CPS Programming: What Is Missing?

This section reports some considerations about the current challenges to unlock deep
learning for source code analysis in heterogeneous embedded platforms such as those used
in a cyber-physical system (CPS).

Considering the characteristics of existing CPS, i.e., the presence of multiple accelera-
tors and shared and contested resources, the solo performance of an isolated task can not
be the only metric to evaluate techniques based on neural networks or machine learning
in general. Moreover, real-world programs involving CPS may include a wide variety of
applications with different levels of complexity and dependence on the hardware for which
they are developed. Together with the requirements of supervised learning to work with
a large and varied set of labelled data, these considerations make it difficult to assess the
level of generalisation guaranteed by the main works we have analysed. We observed from
the results of the previous works that among all the considerations listed above, the major
limitation is the usage of a limited dataset. From the state-of-the-art analysis conducted in
previous sections (RQ1) on Corpus 2, we can conclude that early approaches are inspired
by natural language processing: A sequence of tokens are extracted from the source code
being analysed and combined to obtain a representation of the whole kernel.

Some tools analyse OpenCL code directly [35], or LLVM intermediate representation
with token filtering, which proved to deliver more robust classification results [9]. Both
recurrent and convolution layers were compared in their ability to extract features from a
sequence of tokens [53] and results show how CNN-based analysis equalises or increases
the accuracy of recurrent networks with a cheaper training procedure. Graph-based
techniques appeared recently to embed advanced control and data-flow relationships
in the language model. In [41,51], various flavours of this representation proved to be
effective. Even if model accuracy is similar to the one obtained with token-based techniques,
these program representations are so effective that even typical compiler analyses are
solved successfully [51]. Among hybrid language-modelling tools, inst2vec [42] adapts the
definition of statement context to source code and training statement embedding using the
skip-gram [59] model. In contrast, IR2vec [50] proposes a technique to hierarchically build
instruction, basic block, function and program embedding starting from few LLVM entities.

At the end of this analysis, it is evident that the first challenge to adopting deep-
learning-based source code analysis techniques for heterogeneous device mapping is not
related to the complexity of the deep learning model. Still, it is related to the large amount of
labelled data (i.e., source code sequences) required to train models, considering the lack of
publicly available labelled (in performance metrics in heterogeneous architectures) datasets.
All methodologies described in Section 4 compared with each other using the same dataset
detailed in Section 3 that is relatively small and consider only CPU and GPU out of the
many kinds of accelerators cyber-physical system may have. Moreover, the relatively small
size of the dataset, and the critical issues expressed in [10] concerning its structure and
challenging analysis, does not make it possible to fully evaluate the potential of more
complex code analysis methods based on graph representations (AST, CFG, and variants)
and graph neural networks (GNNs). Additionally, that dataset is labelled considering
runtime performance which is not the only metric of interest for cyber-physical system and
in some scenarios may not be the most important. Furthermore, current methodologies do
not consider that a cyber-physical system may feature multiple accelerators to choose from,
which may, in principle, make the problem significantly more challenging. In fact, different
devices are likely to have different parallelism models, which may not be easy to learn and
discriminate for language modelling networks [52].

Tools discussed in Section 4 focus on kernel mapping. Still, none of them approaches a
multi-tasking scenario where multiple active tasks need to synchronise or compete to gain
access to the same subset of accelerators. This scenario would require a mapping tool to
be aware of execution dependencies and eventually to handle variations in the execution
environment to face situations where a task changes priority or is required to be scheduled
more frequently.

J. Low Power Electron. Appl. 2022, 12, 37 23 of 26

Additionally, real-time tasks typical in cyber-physical system render the mapping
problem more complex. Handling a set of real-time kernels, out of a pool of tasks, to be
executed would require extract information about the time required for a kernel to process
a given amount of data to ensure offloading a kernel to a device does not preempt other
tasks from being executed with the requested timing.

Future directions can be summarised in the following points: (i) Creation or gener-
ation of new large datasets; (ii) Using techniques for dealing with scarcity of data; (iii)
Improving the embedding techniques and language modelling; (iv) Look at more complex
network topologies; (v) Optimising for different metrics at the same time (e.g., performance,
timeliness, memory, energy, temperature); (vi) Focus on specific application structure (e.g.,
stencil computation, communication stack).

6. Conclusions

In recent years, heterogeneous systems have become increasingly relevant since inte-
grating specialised hardware accelerators together with general-purpose CPU to offload
computationally intensive tasks proved to be an effective strategy to overcome the short-
coming of the end of Dennard’s scaling. From a software perspective, the increase in system
performance comes at the cost of handling a more complex execution environment since
choosing the best computation device to offload a task is not straightforward and may
require advanced system-level knowledge and experience. The problem of heterogeneous
device mapping has gained interest in recent years. It was approached by exploiting deep
learning architectures to extract code features to predict the best device for a portion of a
program.

In this work, we wanted to explore how deep learning methodologies have been ap-
plied to the source code (RQ1) through a historical review of specific and innovative works
(Corpus 2—Table 1) that proved to introduce new algorithms or address new problems
(Section 2). Section 3 analysed a specific set of works (Corpus 2—Table 3) that focused on a
problem relevant to cyber-physical systems: the heterogeneous device mapping (RQ2). In
Section 4, the works of Table 3 were described in detail, specifically the methods and tech-
niques used. Finally, the results obtained on the same problem and dataset were collected
(Table 5) and, in Section 4.4, compared (RQ3).

Despite the promising results shown by state-of-the-art methodologies in Section 2
and, more specifically, in Section 4, there is still a long way to go before considering these
tools mature and ready for real-world applications.

All described works in Sections 3 and 4 address the only publicly available dataset
with a heterogeneous device mapping problem. The dataset, described in Section 4, is
not only small concerning what is usually employed in deep learning, but it considers
only CPU and GPU on runtime performance. At the same time, as expressed in Section 5,
heterogeneous platforms may feature multiple accelerators and seek energy or peak-power
optimisations. An entire optimisation pipeline for the cyber-physical system application is
still missing. Production-ready systems consist of multiple tasks where kernel offloading
should be orchestrated with data collection and may be subjected to real-time constraints.

Author Contributions: All authors have equally contributed to the work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Dipartimenti di Eccellenza funding programme of the
Italian Ministry of University and Research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data supporting this work can be found by following the references
of the cited works.

Conflicts of Interest: The authors declare no conflict of interest.

J. Low Power Electron. Appl. 2022, 12, 37 24 of 26

Abbreviations
The following abbreviations are used in this manuscript:

AST Abstract syntax tree
BLEU Bilingual Evaluation Understudy
BoT Bag of Tree
BoW Bag of Word
BPE Byte-Pair Encoding
CDFG Control Data Flow Graph
CFG Control Flow Graph
CNN Convolutional Neural Network
CPS Cyber-Physical Systems
CV Computer Vision
DL Deep Learning
DNN Deep Neural Network
DT Decision Tree
GGNN Gated Graph Neural Networks
GRU Gated Recurrent Unit (RNN)
GNN Graph Neural Network
HAN Hierarchical Attention Network
LSTM Long short-term memory (RNN)
MDP Markov Decision Process
ML Machine Learning
MPNN Message Passing Neural Network (GNN)
NLP Natural Language Processing
RL Reinforcement Learning
RNN Recurrent Neural Network
Seq2Seq Sequence to sequence
SIMD Single instruction multiple data

References
1. Sztipanovits, J.; Koutsoukos, X.; Karsai, G.; Kottenstette, N.; Antsaklis, P.; Gupta, V.; Goodwine, B.; Baras, J.; Wang, S. Toward a

Science of Cyber–Physical System Integration. Proc. IEEE 2012, 100, 29–44. https://doi.org/10.1109/JPROC.2011.2161529.
2. Mittal, S.; Vetter, J.S. A Survey of CPU-GPU Heterogeneous Computing Techniques. ACM Comput. Surv. 2015, 47, 1–35.

https://doi.org/10.1145/2788396.
3. Fuchs, A.; Wentzlaff, D. The Accelerator Wall: Limits of Chip Specialization. In Proceedings of the 2019 IEEE International

Symposium on High Performance Computer Architecture (HPCA), Washington, DC, USA, 16–20 February 2019; pp. 1–14.
https://doi.org/10.1109/HPCA.2019.00023.

4. Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.L.; Chen, S.C.; Iyengar, S.S. A survey on deep learning:
Algorithms, techniques, and applications. ACM Comput. Surv. (CSUR) 2018, 51, 1–36.

5. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
6. Allamanis, M.; Barr, E.T.; Devanbu, P.; Sutton, C. A survey of machine learning for big code and naturalness. ACM Comput. Surv.

(CSUR) 2018, 51, 1–37.
7. Ashouri, A.H.; Killian, W.; Cavazos, J.; Palermo, G.; Silvano, C. A survey on compiler autotuning using machine learning. ACM

Comput. Surv. (CSUR) 2018, 51, 1–42.
8. Wang, Z.; O’Boyle, M. Machine learning in compiler optimization. Proc. IEEE 2018, 106, 1879–1901.
9. Barchi, F.; Urgese, G.; Macii, E.; Acquaviva, A. Code mapping in heterogeneous platforms using deep learning and llvm-ir. In

Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6 June 2019; pp. 1–6.
10. Parisi, E.; Barchi, F.; Bartolini, A.; Acquaviva, A. Making the Most of Scarce Input Data in Deep Learning-based Source Code

Classification for Heterogeneous Device Mapping. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 41, 1636–1648.
https://doi.org/10.1109/TCAD.2021.3114617.

11. Hindle, A.; Barr, E.T.; Gabel, M.; Su, Z.; Devanbu, P. On the naturalness of software. Commun. ACM 2016, 59, 122–131.
12. Allamanis, M.; Barr, E.T.; Devanbu, P.; Sutton, C. Machine Learning on Source Code. Available online: https://ml4code.github.io

(accessed on 12 December 2021).
13. Grewe, D.; Wang, Z.; O’Boyle, M.F. Portable mapping of data parallel programs to OpenCL for heterogeneous systems. In

Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), Shenzhen, China,
23–27 February 2013; pp. 1–10.

https://doi.org/10.1109/JPROC.2011.2161529
https://doi.org/10.1145/2788396
https://doi.org/10.1109/HPCA.2019.00023
https://doi.org/10.1109/TCAD.2021.3114617
https://ml4code.github.io

J. Low Power Electron. Appl. 2022, 12, 37 25 of 26

14. Raychev, V.; Vechev, M.; Yahav, E. Code completion with statistical language models. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Edinburgh, UK, 9–11 June 2014; pp. 419–428.

15. Zaremba, W.; Sutskever, I. Learning to execute. arXiv 2014, arXiv:1410.4615.
16. Iyer, S.; Konstas, I.; Cheung, A.; Zettlemoyer, L. Summarizing source code using a neural attention model. In Proceedings of the

54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, 7–12 August
2016; pp. 2073–2083.

17. Bhatia, S.; Singh, R. Automated correction for syntax errors in programming assignments using recurrent neural networks. arXiv
2016, arXiv:1603.06129.

18. Mou, L.; Li, G.; Zhang, L.; Wang, T.; Jin, Z. Convolutional neural networks over tree structures for programming language
processing. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.

19. Gu, X.; Zhang, H.; Zhang, D.; Kim, S. Deep API learning. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, Seattle, WA, USA, 13–18 November 2016; pp. 631–642.

20. Allamanis, M.; Brockschmidt, M.; Khademi, M. Learning to represent programs with graphs. arXiv 2017, arXiv:1711.00740.
21. Gu, X.; Zhang, H.; Kim, S. Deep code search. In Proceedings of the 2018 IEEE/ACM 40th International Conference on Software

Engineering (ICSE), Gothenburg, Sweden, 27 May–3 June 2018; pp. 933–944.
22. Santos, E.A.; Campbell, J.C.; Patel, D.; Hindle, A.; Amaral, J.N. Syntax and sensibility: Using language models to detect and

correct syntax errors. In Proceedings of the 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), Campobasso, Italy, 20–23 March 2018; pp. 311–322.

23. Bavishi, R.; Pradel, M.; Sen, K. Context2Name: A deep learning-based approach to infer natural variable names from usage
contexts. arXiv 2018, arXiv:1809.05193.

24. Bui, N.D.; Jiang, L.; Yu, Y. Cross-language learning for program classification using bilateral tree-based convolutional neural
networks. In Proceedings of the Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA,
USA, 2–7 February 2018.

25. Alon, U.; Zilberstein, M.; Levy, O.; Yahav, E. code2vec: Learning distributed representations of code. Proc. ACM Program. Lang.
2019, 3, 1–29.

26. Alon, U.; Brody, S.; Levy, O.; Yahav, E. code2seq: Generating Sequences from Structured Representations of Code. arXiv 2019,
arXiv:1808.01400.

27. Mendis, C.; Renda, A.; Amarasinghe, S.; Carbin, M. Ithemal: Accurate, portable and fast basic block throughput estimation using
deep neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June
2019; pp. 4505–4515.

28. Pradel, M.; Gousios, G.; Liu, J.; Chandra, S. Typewriter: Neural type prediction with search-based validation. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Online, 8–13 November 2020; pp. 209–220.

29. Hoang, T.; Kang, H.J.; Lo, D.; Lawall, J. CC2vec: Distributed representations of code changes. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, Seoul, Korea, 6–11 July 2020; pp. 518–529.

30. Karampatsis, R.M.; Babii, H.; Robbes, R.; Sutton, C.; Janes, A. Big code != big vocabulary: Open-vocabulary models for source
code. In Proceedings of the 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE), Seoul, Korea, 6–11
July 2020; pp. 1073–1085.

31. Haj-Ali, A.; Ahmed, N.K.; Willke, T.; Shao, Y.S.; Asanovic, K.; Stoica, I. NeuroVectorizer: End-to-end vectorization with deep
reinforcement learning. In Proceedings of the 18th ACM/IEEE International Symposium on Code Generation and Optimization,
San Diego, CA, USA, 22–26 February 2020; pp. 242–255.

32. Brauckmann, A.; Goens, A.; Castrillon, J. A Reinforcement Learning Environment for Polyhedral Optimizations. arXiv 2021,
arXiv:2104.13732.

33. Allamanis, M.; Jackson-Flux, H.; Brockschmidt, M. Self-Supervised Bug Detection and Repair. arXiv 2021, arXiv:2105.12787.
34. Stanley, K.O.; Miikkulainen, R. Evolving neural networks through augmenting topologies. Evol. Comput. 2002, 10, 99–127.
35. Cummins, C.; Petoumenos, P.; Wang, Z.; Leather, H. End-to-end deep learning of optimization heuristics. In Proceedings of

the 2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT), Portland, OR, USA, 9–13
September 2017; pp. 219–232.

36. Quinlan, J.R. C4. 5: Programs for Machine Learning; Elsevier: Amsterdam, The Netherlands, 2014.
37. Bailey, D.; Barszcz, E.; Barton, J.; Browning, D.; Carter, R.; Dagum, L.; Fatoohi, R.; Frederickson, P.; Lasinski, T.; Schreiber, R.; et al.

The Nas Parallel Benchmarks. Int. J. High Perform. Comput. Appl. 1991, 5, 63–73. https://doi.org/10.1177/109434209100500306.
38. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw.

2008, 20, 61–80.
39. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: A method for automatic evaluation of machine translation. In Proceedings of

the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 7–12 July 2002; pp. 311–318.
40. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv 2014, arXiv:1409.1259.

https://doi.org/10.1177/109434209100500306

J. Low Power Electron. Appl. 2022, 12, 37 26 of 26

41. Brauckmann, A.; Goens, A.; Ertel, S.; Castrillon, J Compiler-Based Graph Representations for Deep Learning Models of Code.
In Proceedings of the 29th International Conference on Compiler Construction, San Diego, CA, USA, 22–23 February 2020;
Association for Computing Machinery: New York, NY, USA, 2020; pp. 201–211. https://doi.org/10.1145/3377555.3377894.

42. Ben-Nun, T.; Jakobovits, A.S.; Hoefler, T. Neural code comprehension: A learnable representation of code semantics. arXiv 2018,
arXiv:1806.07336.

43. Allamanis, M.; Peng, H.; Sutton, C. A convolutional attention network for extreme summarization of source code. In Proceedings
of the International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 2091–2100.

44. Tai, K.S.; Socher, R.; Manning, C.D. Improved semantic representations from tree-structured long short-term memory networks.
arXiv 2015, arXiv:1503.00075.

45. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you
need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

46. Di Biagio, A. llvm-mca: A static performance analysis tool, 2018. llvm.org. Available online: https://lists.llvm.org/pipermail/
llvm-dev/2018-March/121490.html (accessed on 20 June 2022).

47. Hirsh, I.; Stupp, G. Intel Architecture Code Analyzer, 2012. intel.com. Available online: https://www.intel.com/content/www/
us/en/developer/articles/tool/architecture-code-analyzer.html (accessed on 20 June 2022).

48. Gage, P. A new algorithm for data compression. C Users J. 1994, 12, 23–38.
49. Grosser, T.; Groesslinger, A.; Lengauer, C. Polly–performing polyhedral optimizations on a low-level intermediate representation.

Parallel Process. Lett. 2012, 22, 1250010.
50. VenkataKeerthy, S.; Aggarwal, R.; Jain, S.; Desarkar, M.S.; Upadrasta, R.; Srikant, Y. IR2Vec: LLVM IR Based Scalable Program

Embeddings. ACM Trans. Archit. Code Optim. (TACO) 2020, 17, 1–27.
51. Cummins, C.; Fisches, Z.V.; Ben-Nun, T.; Hoefler, T.; Leather, H. ProGraML—Graph-based Deep Learning for Program

Optimization and Analysis. arXiv 2020, arXiv:2003.10536.
52. Parisi, E.; Barchi, F.; Bartolini, A.; Tagliavini, G.; Acquaviva, A. Source Code Classification for Energy Efficiency in Parallel Ultra

Low-Power Microcontrollers. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Grenoble, France, 1–5 February 2021; pp. 878–883.

53. Barchi, F.; Parisi, E.; Urgese, G.; Ficarra, E.; Acquaviva, A. Exploration of Convolutional Neural Network models for source code
classification. Eng. Appl. Artif. Intell. 2021, 97, 104075.

54. Keerthy S, V.; Aggarwal, R.; Jain, S.; Desarkar, M.S.; Upadrista, R. IR2Vec: A Flow Analysis based Scalable Infrastructure for
Program Encodings. arXiv 2019, arXiv:1909.06228.

55. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.
56. LeCun, Y. Generalization and network design strategies. Connect. Perspect. 1989, 19, 143–155.
57. Yin, W.; Kann, K.; Yu, M.; Schütze, H. Comparative study of cnn and rnn for natural language processing. arXiv 2017,

arXiv:1702.01923.
58. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and

applications. AI Open 2020, 1, 57–81.
59. Mikolov, T.; Le, Q.V.; Sutskever, I. Exploiting similarities among languages for machine translation. arXiv 2013, arXiv:1309.4168.
60. Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data.

In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–8 December 2013; Volume 26.

https://doi.org/10.1145/3377555.3377894
https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/architecture-code-analyzer.html

	Introduction
	Research Timeline
	Selection Criteria
	Relevant Related Surveys
	Machine Learning and Deep Learning Techniques for Source Code Analysis
	The Beginning, from NLP to Code Analysis (2013–2015)
	Broad Investigations: New Models, New Representations and New Applications (2016–2018)
	Consolidation, Graph Models and Multilevel Code Analysis (2019–2021)

	Final Remarks

	Approaches for Heterogeneous Device Mapping in CPS
	Deep Learning Methods for Heterogeneous Device Mapping
	Token-Based Language Modelling
	Graph-Based Methodologies
	Alternative Methodologies
	Classification Models and Comparative Results

	Deep Learning for CPS Programming: What Is Missing?
	Conclusions
	References

