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Abstract: Large-scale field-programmable analog arrays (FPAA) have the potential to handle machine
inference and learning applications with significantly low energy requirements, potentially alleviating
the high cost of these processes today, even in cloud-based systems. FPAA devices enable embedded
machine learning, one form of physical mixed-signal computing, enabling machine learning and
inference on low-power embedded platforms, particularly edge platforms. This discussion reviews
the current capabilities of large-scale field-programmable analog arrays (FPAA), as well as considering
the future potential of these SoC FPAA devices, including questions that enable ubiquitous use of
FPAA devices similar to FPGA devices. Today’s FPAA devices include integrated analog and digital
fabric, as well as specialized processors and infrastructure, becoming a platform of mixed-signal
development and analog-enabled computing. We address and show that next-generation FPAAs
can handle the required load of 10,000–10,000,000,000 PMAC, required for present and future large
fielded applications, at orders of magnitude of lower energy levels than those expected by current
technology, motivating the need to develop these new generations of FPAA devices.

Keywords: machine learning; FPAA; analog computing

1. Motivating Ultra-Low-Power Embedded Machine Learning

Large-scale field-programmable analog arrays (FPAA) show significant potential for
mixed-signal computing [1], including embedded machine learning [2–4], machine learn-
ing, and inference on low-power embedded platforms. Although cloud-centric machine
learning will be used going forward, the energy constraints at the edge device requires
significantly more processing to be computed locally, rather than paying the high energy
costs of transmitting data off the device. The energy required for cloud computations is not
negligible, seen in the fact that the costs for the production of cloud-based machine learning
techniques are becoming a significant fraction of the USA’s energy budget (e.g., [5]).

Physical computing techniques enable local, edge-embedded computation, through
significantly improved energy efficiency. Mead originally proposed that analog computa-
tion would have 1000× computational energy efficiency over digital approaches [6], a factor
experimentally demonstrated in custom Si in 2004 [7], and repeatably demonstrated ever
since, including multiple FPAA demonstrations (e.g., [1,8]). As a physical neuromorphically
engineered Si Cortex could be possible in less than 100 W [9], physical computing devices
can eventually go beyond current cloud-based machine learning approaches [5].

FPAA devices enable embedded Machine inference and learning [2–4], that includes
neural networks (NN) and neurally inspired datapaths using analog elements and signals
integrated with potential logic and mixed-signal-enabled routing (Figure 1). Analog imple-
mentations of NN have roots from the earliest demonstrations (e.g., [10,11]). FPAAs include
analog elements and signals integrated with potential logic and mixed-signal-enabled
routing (Figure 1), enabling full end-to-end, sensor to decision—computation that includes
machine learning. FPAA devices, such as the SoC FPAAs, integrate analog and digital
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components, where FPAA devices that integrate analog and digital elements are a superset
of FPGAs by integrating digital elements.
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Figure 1. Current large-scale field-programmable analog arrays (FPAAs) extend the concepts of FPGA devices to
include analog elements and signals integrated with potential logic and mixed-signal-enabled routing. Current
SoC FPAA devices include integrated analog and digital fabric as well as specialized processors and infrastructure,
becoming a platform of mixed-signal development as well as analog-enabled computing. The fundamental question
is the following: What is the potential of future FPAA devices in machine learning applications? Future FPAA devices
seem to offer a promise of ubiquitous reconfigurable devices for ultra-low-power machine learning that can
directly solve the enormous energy requirements of current fielded machine learning applications, as well as
enable what is typically considered cloud-based machine learning in edge devices.

SoC FPAAs enable an analog-enabled mixed-signal computing platform that enables
wide user development of the emerging analog computing techniques (e.g., [12]). Many
of these techniques were first shown in FPAA devices, or in custom ICs that were on the
development path into FPAA devices [1]. Large-scale field-programmable analog arrays
were explicitly defined (e.g., [13]) as reconfigurable, mixed-signal devices to be used for
computation, rather than glue logic devices (e.g., digital CPLDs), typical of early analog
reconfigurable approaches (e.g., [14]), while staying consistent with development history.

End-to-end computation requires analog input and computation for physical imple-
mentations, and communication and data conversion is part of the system cost (Figure 2).
An FPGA can handle analog signal inputs and outputs with the addition of sufficient data
converters (Figure 2). FPGA devices are constructed to enable a wide range of digital appli-
cations, and have a number of specialized blocks to optimize particular applications [15–23].
Xlinix’s Zync FPGA [24], a recent FPGA, includes high-speed (up to 10 GSPS) 14-bit DAC
and (up to 4 GSPS) 14-bit ADCs on-chip with 6 ARM µP, as well as digital fabric and inter-
faces. These ICs show a need for integrated analog components in configurable structures
in reducing the overall system complexity and system throughput. The Zync FPGA family,
fabricated in 16–10 nm CMOS nodes, can support on-chip RF capability. The overall high
energy, area, and complexity costs for the digital computation (e.g., [8] vs. [25]), static FPGA
power, and data converters will overwhelm many applications.

FPGAs are not low power when looking at solutions requiring 10–100 mW of power.
Most FPGAs require 100 s of mW simply to power up the SRAM elements holding the
programming variables. Commercial flash-based FPGAs significantly decrease the starting
power requirements (e.g., 7–10 mW standby power [26,27]) while enabling 350–500 MHz
signals and 70 mW 5 G SERDES, although the power requirements are too high for lower
power systems of 10–20 mW and below. Analog computation (FPAAs) solves these issues
energy and area efficient analog computation, as well as requiring far fewer data converters.
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Analog co-processors for a digital computation with a bank of data converters create a huge
infrastructure that nearly eliminates the benefits of analog processing. Current FPGA-based
solutions (Figure 2a) are used because of the lack of commercially available FPAAs, as well
as the lack of available FPAA engineering experience.
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Figure 2. Both FPGA and FPAA are capable of end-to-end, analog input and analog output machine learning with
different tradeoffs. (a) An FPGA or multiple FPGAs can be used for a range of analog approaches assuming there
are sufficient ADCs and DACs for the resulting analog signals. In addition to the high energy and complexity
costs of these data converters, the FPGA has some latency for its digital computation and is constrained by its
static and dynamic power requirements. (b) An FPAA device can typically interface to the incoming analog
signals. Where necessary (e.g., RF), input signals can be adjusted to the IC’s power and supply voltage levels. The
FPAA device uses analog techniques where possible in a near-zero latency path utilizing digital control.

Programmable and configurable FPAA devices enable end-to-end embedded machine
learning applications (Figures 1 and 3). A machine learning algorithm that ignores other
application areas, such as translating sensor data as an input into the network, often shows
incremental or negligible system improvements. End-to-end embedded machine learning
eliminates requiring a bank of FPGAs and interface chips in front of a low-power classifier
chip so that the wins from the physical system still provide advantages for the overall
system concept. Configurability is essential to have a limited number of commercially
relevant ICs to handle a wide application space, particularly the wide range of front-end
computations for the end-to-end computation, as well as efficiently implementing local and
sparse weight matrices. Building end-to-end architectures typically reduces the amount of
raw computations required, further empowering these physical computing approaches.J. Low Power Electron. Appl. 2021, 1, 0 3 of 23
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Figure 3. SoC FPAAs (350nm CMOS) have demonstrated end-to-end machine learning (inference and learning)
applications, from microphones to classified result, even without the FPAA designed for machine learning. The
question becomes what are the additional capabilities of scaled FPAA devices for end-to-end classifiers for acoustic
applications as well as new enabled applications starting from vision and RF sensors.

digital fabric and interfaces. These ICs show a need for integrated analog components in
configurable structures in reducing the overall system complexity and system throughput.
The Zync FPGA family are fabricated in 16nm and smaller CMOS nodes, and at these
nodes one begins to get some RF capability in the device.

FPGAs are not low power when looking at solutions requiring 10-100mW of power.
Most FPGAs require 100s of mW simply to power up the SRAM elements holding the
programming variables. Commercial Flash-based significantly decrease the starting power
requirements (e.g 7-10mW standby power [17,18]) while enabling 350-500MHz signals
and 70mW 5G SERDES, although the power requirement are too high for lower power
systems 10-20mW and below. Analog computation (FPAAs) solves these issues with its
significantly lower energy and area efficiencies of analog computation, as well as requiring
far fewer data converters. Analog co-processors for a digital computation with a bank of
data converters creates a huge amount of infrastructure that nearly eliminates the benefits
of the analog processing. Today’s FPGA-based solutions (Fig. 2a) are used because of the
lack of commercially available FPAAs, as well as the lack of FPAA engineering experience.

Programmable and configurable FPAA devices enable end-to-end embedded machine
learning applications (Figs. 1, 3). A machine learning algorithm that ignores other ap-
plication areas, like translating sensor data as an input into the network, often result in
incremental or negligible system improvements. End-to-end embedded machine learning
eliminates requiring a bank of FPGAs and interface chips in-front of a low-power classifier
chip so that the wins from the physical system still provide advantages for the overall
system concept. Configurability is essential to have a limited number of commercially
relevant ICs to handle a wide application space, particularly the wide range of front-end
computations for the end-to-end computation, as well as efficiently implementing local and
sparse weight matrices. Building end-to-end architectures typically reduces the amount of
raw computations required, further empowering these physical computing approaches.

The question is whether these FPAA approaches can transform the required load of
10000 to 10,000,000,000 PMAC required for today’s and future large fielded applications
(e.g. [5]), and perform these computations at far lower energy levels? With a positive
response, one has more than sufficient motivation for the engineering efforts to develop

Figure 3. SoC FPAAs (350 nm CMOS) have demonstrated end-to-end machine learning (inference and learning)
applications, from microphones to classified result, even without the FPAA designed for machine learning. The
question becomes the following: What are the additional capabilities of scaled FPAA devices for end-to-end
classifiers for acoustic applications as well as new enabled applications that utilize vision and RF sensors.
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The questions are whether FPAA approaches can transform the required load of 10,000 to
10,000,000,000 PMAC required for future fielded applications (e.g., [5]), and do these FPAAs
computations perform at far lower energy levels? A positive response motivates the engineering
efforts to develop these new generations of FPAA devices. The projected scaling of FPAA
devices enables us to directly address these questions, and that, in turn, requires further
analysis into the capabilities and flexibilities of FPAA architectures.

This discussion works through the the opportunities and questions towards building
a ubiquitous supply of large-scale field-programmable analog arrays (FPAA), particularly
SoC FPAA-type devices [28] for machine learning applications with ultra-low energy re-
quirements. The discussion starts by providing an overview of the FPAA capabilities that
enables the wider application for end-to-end machine learning (Section 2). Understand-
ing the architectural and granularity tradeoffs in FPAA architectures (Section 3) enables
predicting the future capabilities of these devices (Section 4).

2. Configurable Technology, Architecture, and Capabilities

SoC FPAAs enable a mixed-signal end-to-end embedded machine platform as they
include analog elements and signals integrated with potential logic and mixed-signal-
enabled routing (Figure 4). End-to-end acoustic embedded learning and classification have
been demonstrated at 20–30 µW on command–word recognition, as well as on the full
Nzero database [2–4]. FPAA devices have experimentally demonstrated a wide range
of computations (Figure 4) that include computations to set up machine learning, as
well as the machine learning inference and learning, sometimes at small scale, given the
component constraints of a 350 nm CMOS SoC FPAA [28]. Floating gate (FG) techniques
enable programmability, having precise parameters (e.g., 14-bit accuracy [29]), in standard
CMOS, as well as configurability, through long-term retention of FG charge (0–100 µV
over 10 years [30]). SoC FPAAs enable a wide user development of the emerging analog
computing techniques (e.g., [12]).

FPAA tools empower a wide application ecosystem through systematic analog de-
sign [1,31,32] to enable an engineering team to rapidly develop new embedded machine
learning components. These tools give the user the ability to create, model, and simulate
analog and digital designs. This early tool enables the development of an FPAA toolset that
can start with high-level definitions and automatically generate targeted hardware where
the user has the ability to optimize the process at each level. These analog and mixed-signal
tools are expanding to analog synthesis using standard cells for custom ICs (e.g., [33]).

FPAA devices can be the solution for analog and mixed-signal security and component
obsolescence [34], just as FPGAs solve security and obsolescence issues. Multiple digital
techniques can verify an FPGA, allowing for secure and confident FPGA programming for a
particular application. An FPAA device can be a completely generic and known device that
can be completely verified in a safe location [34], where the secret sauce for the technology
can be programmed on the device also in a safe location (Figure 5). The resulting FPAA
device layout says nearly nothing about the programmed function, similar to FPGA devices.
FPAA devices can directly and discretely map secure functions, such as unique functions
and physically unclonable functions (PUF), directly into the FPAA fabric [34]. In general,
the more specific the resulting solution, and the fewer levels of software stacks, the fewer
security holes; the nonvolatile programming of an FPAA device minimizes the number of
mixed-signal security concerns. The use of nonvolative memory (e.g., FG) eliminates SRAM
loading vulnerabilities, where analog values are difficult to measure without significantly
distorting the measurements where digital computing can be analog encoded, and where
low-power circuits provide unique challenges for external measurements [34]. FPAAs
can replicate similar analog circuit elements or a combination of analog circuit elements
to achieve similar linear and nonlinear dynamics seen in older custom or configurable
devices, including some of the unintended dynamics, eliminating the obsolescence issues.
Mapping discrete-component (e.g., BJT vs. FET) analog music synthesis to FPAA devices
demonstrates translating intended and unintended dynamics [35].
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these new generations of FPAA devices. The projected scaling of FPAA devices enables
directly addressing this question, and that, in turn, requires further analysis into the
capabilities and flexibilities of FPAA architectures.

This discussion works through the the opportunities and questions towards building
a ubiquitous supply of large-scale Field Programmable Analog Arrays (FPAA), particularly
SoC FPAA type devices [19] for machine learning applications with ultra-low energy
requirements. The discussion starts by overviewing FPAA capabilities (Sec. 2) enabling the
structure around, as well as the machine learning core, for end-to-end machine learning.
Understanding the architectural and granularity tradeoffs in FPAA architectures (Sec. 3),
enables predicting the future capabilities of these devices (Sec. 4).

SRAM 
Program: 16k x 16 

Data: 16k x 16 

MSP430 
Open Core 
Processor 

M
em

o
ry

 M
ap

p
ed

 R
eg

is
te

rs
 

 D
A

C
s 

GP I/O 

Prog: 
ADC 

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

F
PA

A
 F

ab
ric O

u
tp

u
ts 

(a)

(b)

Analog FG Programming

Vg

Vtun Vd

Vs

Q

Floating 
Node

Analog Values

Vg1 Vgm

Vd1

Vdn

(c)

Manhattan Geometry: 
efficient sparse routing

CAB CAB

CAB CAB

CAB CAB

G
N

D

V
d

d

x2

x2

x2

x2

GND Vdd

Output Lines

Input Lines

x2

CAB
CAB CAB

(d)

Partial List of Demonstrated FPAA Algorithms
Vector-Matrix Multiplication (VMM) Analog Computing (e.g. ODE, Ax=b)
Acoustic and Bio sensor processing Neural interfacing and processing
Optimal Path Planning Neural architectures
Delay lines and linear phase filters Spatiotemporal Beamforming
Embedded machine learning Compressed Sensing Reconstruction
Acoustic Inference and training IC security / Noise Generators

(e)
Figure 4. FPAAs enable a range of computations in a single programmable and reconfigurable IC. (a) Block
diagram of a SoC FPAA device, that includes analog (A: CAB) and digital (D) elements in the routing fabric
integrated with a µP and other mixed-signal components. (b) The FPAA approach is enabled through analog
programmable Floating-Gate (FG) devices, providing non-volatile storage (e.g. < 100µV in 10 years) and routing
as well as computing directly through the routing crossbars. (c) SoC FPAA architectures use a manhattan
architecture to route between components in a Computational Analog Block (CAB). (d) A typical CAB utilizes a
number of components that may utilize FG parameters, as well as FG switches that can be used as part of the
computation. (e) Current FPAA devices are capable of a diverse set of demonstrated computations.

2. Configurable Technology, Architecture, and Capabilities

SoC FPAAs enable a mixed-signal end-to-end embedded machine platform as they
include analog elements and signals integrated with potential logic and mixed-signal
enabled routing (Fig. 4). End-to-end acoustic embedded learning and classification have

Figure 4. FPAAs enable a range of computations in a single programmable and reconfigurable IC. (a) Block
diagram of a SoC FPAA device, that includes analog (A: CAB) and digital (D) elements in the routing fabric
integrated with a µP and other mixed-signal components. (b) The FPAA approach is enabled through analog
programmable floating gate (FG) devices, providing non-volatile storage (e.g., <100 µV in 10 years) and routing as
well as computing directly through the routing crossbars. (c) SoC FPAA architectures use a Manhattan architecture
to route between components in a computational analog block (CAB). (d) A typical CAB utilizes a number of
components that may utilize FG parameters, as well as FG switches that can be used as part of the computation.
(e) Current FPAA devices are capable of a diverse set of demonstrated computations.
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Figure 5. An FPAA device can be a completely generic and known device, completely verified in a safe location,
and have the technology secret sauce be programmed in a safe location. The output product is a custom chip due
to the nonvolatile device programming.

3. Granularity for End-To-End Machine Learning: Flexibility vs. Switch Cost

To predict FPAA devices scaling to advanced process nodes, one needs to understand
how the configurable fabric might scale to larger technology nodes. An effective config-



J. Low Power Electron. Appl. 2022, 12, 33 6 of 20

urable fabric for embedded machine learning applications empowers the user’s creativity
through flexible opportunities while minimizing the added cost for that flexibility, particu-
larly with increasing application size. Flexibility (φ) enables more computations in a single
architecture, where Φ quantifies the possible combinations available. Flexibility affects
the types, sparsity, and energy efficiency of machine learning algorithms, as well as the
processing circuitry before and after the machine learning operations. Flexibility requires
switches, and more switches result in higher area, circuit, and interconnect cost (Figure 6).J. Low Power Electron. Appl. 2021, 1, 0 6 of 23
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larly with increasing application size. Flexibility (f) enables more computations in a single
architecture, where F quantifies the possible combinations available. Flexibility affects
the types, sparsity, and energy efficiency of machine learning algorithms as well as the
processing circuitry before and after the machine learning operations. Flexibility requires
switches, and more switches result in higher area, circuit and interconnect cost (Fig. 6).

A configurable architecture will always be a factor higher cost (K) in area, however
small, compared to the area of a fully custom architecture (A1). The custom block area (A1)
is fully custom, explicitly including in K any configurability or parameters. Each switch
linearly increases K by a factor a that is the ratio of the size of a switch compared to an
individual selection block. For n switches for configuring a custom block area, the resulting
area (A) is

A = KA1, K = 1 + an, A = (1 + an)A1. (1)

Typical values of a for small to moderate cells connected to this switch would be between
0.1 to 0.01; switches selecting a single transistor element would have a closer to 1. Switch
implementation in a particular technology Fig. 6b) directly affects a.

Switches add circuit costs to the flexible fabric. With the increase in area by (K), the
custom computation has a total load capacitance (CL), and the configurable computation
has an increased capacitance roughly scaled by the cost factor (K). Area efficiency due to

Figure 6. Impact of switches on routing architecture. (a) Continuum of FPAA routing granular-
ity. (b) Switch types compared considering significant resistive (R) losses nonvolatile capabilities
technology maturity for large-scale capabilities, and applications for these switches.

A configurable architecture will always be a factor higher cost (K) in area, however
small, compared with the area of a fully custom architecture (A1). The custom block area
(A1) is fully custom, explicitly including in K any configurability or parameters. Each
switch linearly increases K by a factor a that is the ratio of the size of a switch compared
with an individual selection block. For n switches for configuring a custom block area, the
resulting area (A) is

A = KA1, K = 1 + an, A = (1 + an)A1. (1)

Typical values of a for small to moderate cells connected to this switch would be
between 0.1 and 0.01; switches selecting a single transistor element would have a closer
to 1. Switches connecting individual transistors offers significant opportunities [36,37]
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with significant additional cost (a > 1). Switch implementation in a particular technology
(Figure 6b) directly affects a.

Switches add circuit costs to the flexible fabric. With the increase in the area by (K), the
custom computation has a total load capacitance (CL), and the configurable computation
has an increased capacitance roughly scaled by the cost factor (K). Area efficiency due to
configurability is the inverse of cost (1/K). The custom computation power-delay product
(E1) would be proportional to CL that is proportional to A1:

E1 ∝ CL ∝ A1. (2)

For subthreshold operation, near-threshold operation, and some other situations, E1 is
constant with frequency. The size, weight, and power (SWaP) metric, a product of the area
and power-delay product for a custom and configurable system, are

Custom : SWaP ∝ E1 A1,

Configurable ∝ K2E1 A1. (3)

Furthermore, CMOS switches have a resistive loss (Figure 6b), although other technologies
(e.g., III–V transistors and Chalcogenides) potentially can reduce the signal loss for an on
switch. Switch approaches include SRAM-driven transmission gates [38–47], memristor
elements [48–51], and phase-change memories [52–62], as well as FG devices.

Switch granularity is typically pictured as a continuum between course-grain granu-
larity that has a minimum of switches between a menu of items, and fine-grain granularity,
that has switches between the lowest level of components (Figure 6a). Different archi-
tectures create a different K in their attempt to achieve their desired flexility. Over the
following subsections, we will develop the cost of configurability (K), which trades off
with the resulting increase in flexibility (φ), described as increased functionality when
connecting n blocks together, including course-grain architectures (Section 3.1), Manhattan
architectures (Section 3.2), and fine-grain architectures (Section 3.3).

3.1. Course-Grain Architectures

Given the concern about switches, many FPAAs (e.g., [14,38–47,63]) utilize course-
grain architectures (Figure 6a), minimizing the number of switches (Figure 6b) and as-
sociated parasitics required for any particular computation. Course-grain architectures
attempt to minimize the effect of additional switches by only switching between large fixed
components, and the loss of opportunity by this strategy is incorporated into the flexibility
metric (φ). In a simple crossbar network (Figure 7a), Φ is

Selection :φ ≈ n,

Parallel connections : φ ≈ n2, (4)

where each block could have a selection connection to the n− 1 other blocks or could have
parallel connections to each of the n− 1 blocks (Figure 7c).

3.2. Manhattan Architectures Improve Flexibility

Manhattan architectures utilize a multilevel routing scheme to reduce the scaling
of K with the number of elements while still achieving significant flexibility. Manhattan
architectures enable reconfigurable and efficient routing of local and sparse interconnections,
a critical issue for many neural network algorithms. FPGAs significantly improve their
granularity through Manhattan architectures [64]. The evolution of configurable digital
from fully connected structures to Manhattan-type approaches enabled the production of
FPGAs with a routing structure that enabled a level of granularity beyond typical LUTs [64].
More flexible, efficient, and fine-grained granularity enables creativity by the designer;
although, these approaches require placement and routing design tools [64]. The wide
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range of configurations, as well as the portability of high-level code, enabled FPGAs to
solve the digital design legacy as well as enabled secure FPGAs. These techniques require
optimization algorithms to place and route an application into this architecture.

The Manhattan routing approach improves the effective granularity by assuming
more connections are effectively local—typical of digital and analog designs. Manhattan
routing structures (Figure 7b) assume a starting element size significantly larger than
the crossbar determined by the local switch matrix parameters—b (CAB/CLB lines), d
(lines into CAB/CLB), and f (lines in the connection block)—resulting in an improved
scaling metric. The values of b, d, and f would increase weakly for increasing total number
of nodes. K scales with local routing (b, d, f) within each module (e.g., CLB or CAB)
instead of the entire array (Figure 7b). Other multilevel routing schemes have similar
scaling properties. Manhattan architectures utilize these crossbar arrays in each of their
local regions (CLB/CAB) typically having n = 8 to 64 block elements, where one wants
to maximize Φ in each local region. A local region is defined as a large block where the
routing architecture focuses on local computation, enabling these bus connections to only
weakly grow with increased number of local regions and number of components.

J. Low Power Electron. Appl. 2021, 1, 0 8 of 23

n
 b

lo
ck

s

n lines

n
 l

in
es

n2 crossbar switches

b
 b

lo
ck

s

f 
st

re
et

 l
in

es

d lines

(a) (b)

(b+f)d per block

CAB/ 
CLB

C
A

B
/C

L
B

CAB/ 
CLB

CAB/ 
CLB

CAB/ 
CLB

n/b

n/b

n (1+f/b)d crossbar switches

Architecture K SWaP f

Simple Selection Crossbar (a) a n2

Simple Parallel Connection 1 + a n (1 + an)2 a n3/a
Parallel FG Analog (m-bit) Switch Parallel 2man3

Selection Manhattan (b) ad( f + b)
Parallel Switch Manhattan 1 + a(1 + f

b )d (1 + a(1 + f
b )d)2 ad2( f + b)

Parallel FG Analog (m-bit) Switch Manhattan a2md2( f + b)
(c)

Figure 7. Architecture scaling for interconnecting n-processors. (a) Individual crossbar array to fully connect n
processors requiring O(n2) switches. (b) Manhattan routing geometry to connect n processors having b processors
in a CAB with d lines running out of the CAB onto the street (or C-block) of f lines. The number of switches for n
processors becomes O(n(1 + f

b )d). (c) Summary of cost (K) and flexibility (f) for n blocks as a function of typical
architectures.

termined by the local switch matrix parameters b (CAB/CLB lines), d (lines into CAB/CLB),
and f (lines in the connection block) resulting in an improved scaling metric. The values
of b, d, and f would increase weakly for increasing total number of nodes. K scales with
local routing (b, d, f) within each module (e.g. CLB or CAB) instead of the entire array
(Fig. 7b). Other multilevel routing schemes have similar scaling properties. Manhattan
architectures utilize these crossbar arrays in each of their local regions (CLB/CAB) typically
having n=8 to 64 block elements, where one wants to maximize F in each local region.
A local region is defined as a large block where the routing architecture focuses on local
computation, enabling these bus connections to only weakly grow with increased number
of local regions and number of components.

3.3. Fine-grain architectures

CMOS devices using FG elements allow for non-volatile switches potentially enabling
analog granularity. Analog parameters improve the resulting density and resulting system
flexibility (Fig. 7c). For analog m-bit switch elements, the increased parallel flexibility
increases by a 2m factor. Having analog parameters with parallel connections enables using
routing fabric as computing fabric [31]. In this computing in memory approach [1,32], the
number of additional switches, and therefore K, for a particular computation decreases
significantly.

Manhattan architectures with fine-grain analog storage provides an energy and area
efficient implementation of reconfigurable routing of local and sparse interconnections,
where the neural-network weight computation occurs directly through the weight-fabric
routing. In these cases, the network complexity scales as the number of neurons, and only
weakly on the number of synapses within reasonable neuron sparsity.

Fine-grain granularity, particularly analog programmable granularity, greatly im-
proves the tradeoff between configurable architecture efficiency (1/K) and flexibility (F),
requiring fewer nodes for similar flexibility as well as having a lower cost (K) of that
flexibility (Fig. 8). The higher granularity by parallel analog connections significantly
decreases the number of components (n=1000s to 15) as well as the resulting SWaP ef-
ficiency (1/K ! 0.1% to 80%) illustrates the potential advantage using switch elements

Figure 7. Architecture scaling for interconnecting n-processors. (a) Individual crossbar array to fully connect n
processors requiring O(n2) switches. (b) Manhattan routing geometry to connect n processors having b processors
in a CAB with d lines running out of the CAB onto the street (or C-block) of f lines. The number of switches for n
processors becomes O(n(1 + f

b )d). (c) Cost (K) and flexibility (φ) for n blocks as a function of typical architectures.

3.3. Fine-Grain Architectures

CMOS devices using non-volatile switches FG elements enables analog granular-
ity. Analog parameters improve the resulting density and resulting system flexibility
(Figure 7c). For analog m-bit switch elements, the increased parallel flexibility increases
by a 2m factor. Having analog parameters with parallel connections enables using routing
fabric as computing fabric [65]. In this computing in memory approach [1,66], the number
of additional switches, and therefore K, for a particular computation decreases significantly.

Manhattan architectures with fine-grain analog storage provide an energy- and area-
efficient implementation of reconfigurable routing of local and sparse interconnections,
where the neural network weight computation occurs directly through the weight fabric
routing. In these cases, the network complexity scales as the number of neurons, and only
weakly on the number of synapses within reasonable neuron sparsity.

Fine-grain granularity, particularly analog programmable granularity, greatly im-
proves the tradeoff between configurable architecture efficiency (1/K) and flexibility (Φ),
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requiring fewer nodes for similar flexibility as well as having a lower cost (K) of that
flexibility (Figure 8). The higher granularity by parallel analog connections significantly
decreases the number of components (n >> 1000 to n = 15), and the resulting SWaP ef-
ficiency (1/K→ 0.1% to 80%) illustrates the potential advantage using switch elements
as programmable transistors. Decreasing the required number of blocks for the same Φ
illustrates the potential system-level reduction to achieve a range of potential applications.
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as programmable transistors. Decreasing the required number of blocks for the same F
illustrates the potential system-level reduction to achieve a range of potential applications.

Fine-grain, analog switch architectures provides a favorable tradeoff between config-
urable architecture efficiency (1/K) and flexibility (F), and further research to enable these
techniques should yield many significant opportunities. These advantages are consistent
with the demonstrated orders of magnitude advantage of FPAA devices using analog
switching matrices, such as the SoC FPAA [1,19]. As the computational routing fabric
becomes more important because of the high F, additional fabric infrastructure, such
as partial high-speed in-circuit reconfigurability [19,33], further empowers the range of
potential targeted applications.

The difference in F between digital connection switches and parallel analog switches,
enabling computing through the switches structured in a memory configuration, can be
seen by the capabilities of a typical CLB and CAB (Fig. 9). Where a typical CLB can
impressively enable a state machine per CLB, a CAB could potentially implement a small
acoustic classifier stage in a single CAB. These differences in capabilities are almost entirely
due to the fine-grain routing vs. an efficient traditional routing approach; course-grain
routing techniques leave even more F and capability unused.

Figure 8. Impact of fine-grain granularity with analog programmability. (a) Configurable architecture efficiency
(1/K) and flexibility for simple crossbar networks (Figure 7a) as a function of the number of blocks (n) for
connection architectures, parallel switch architectures, and parallel analog (12-bit) switch architectures. (b) Effi-
ciency (1/K) vs. flexibility (Φ) for these three architectures. Higher granularity, particularly analog-programmed
granularity, enables significant flexibility with fewer resources (e.g., n), and at lower cost.

Fine-grain, analog switch architectures provides a favorable tradeoff between config-
urable architecture efficiency (1/K) and flexibility (Φ), and further research to enable these
techniques should yield many significant opportunities. These advantages are consistent
with the demonstrated orders of magnitude advantage of FPAA devices using analog
switching matrices (e.g., SoC FPAA [1,28]). As the the high Φ makes the computational
routing fabric more important, additional fabric infrastructure, such as partial high-speed
in-circuit reconfigurability [28], further empowers the range of potential applications.

The difference in Φ between digital connection switches and parallel analog switches,
enabling computing through the switches structured in a memory configuration, can be
seen by the capabilities of a typical CLB and CAB (Figure 9). Where a typical CLB can
impressively enable a state machine per CLB, a CAB could potentially implement a small
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acoustic classifier stage in a single CAB. These differences in capabilities are almost entirely
due to the fine-grain routing vs. an efficient traditional routing approach; course-grain
routing techniques leave even more unused Φ and capability.
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4. Scaled FPAA Devices Opportunities towards Low-Energy Machine Learning

We want to understand the scaling opportunities for new Machine-Learning capable
FPAA devices given current FPAA capabilities. Configurable mixed-signal devices, having
the opportunity of flexibility in a reasonably granular solution, can justify the IC design
cost for new embedded devices (Fig. 10). As mask costs exponentially increase with de-
creasing processing node, the resulting design costs to obtain value from these investments
exponentially increases, requiring a significantly higher expected market return from the
effort (Fig. 10). Only a few applications (e.g. cell phone processors) can have the market
impact that are necessary to justify the cost of advanced IC nodes (e.g. 10nm, 14nm), where
configurable solutions can utilize a single IC design across a number of applications to
justify the investment cost.
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Figure 9. Comparison of the computation possible in a single local region, such as a computational logic block
(CLB) or a computational analog block (CAB). A CLB typically uses binary connection switches to form multiple
(e.g., 8) lookup tables and some selection RAM, enabling small state machines in a single CLB. A CAB typically
uses analog parallel switches for its computation, that includes FG routing that can be used for programmable and
configurable computation, as well as programmable FG-based circuits. Within such a structure, a small auditory
classifier could be compiled in a single CAB.

4. Scaled FPAA Devices Opportunities towards Low-Energy Machine Learning

We want to understand the scaling opportunities for new machine-learning-capable FPAA
devices, given the current FPAA capabilities. Configurable mixed-signal devices—-having
the opportunity of flexibility in a reasonably granular solution—can justify the IC design
cost for new embedded devices (Figure 10). As mask costs exponentially increase with de-
creasing processing node, the resulting design costs to obtain value from these investments
exponentially increases, requiring a significantly higher expected market return from the
effort (Figure 10). Only a few applications (e.g., cell phone processors) can have the market
impact that are necessary to justify the cost of advanced IC nodes (e.g., 10 nm, 14 nm),
where configurable solutions can utilize a single IC design across a number of applications
to justify the investment cost.
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Figure 10. Configurable devices such as FPGA and FPAA devices provide a cost effective machine learning
end-to-end solution, because of the ever-increasing cost of IC design for scaled-down processes. The costs for
making a set of IC masks scales inversely as a power law of the CMOS minimum channel length, and typically the
design cost for a new design is at least 10× the mask cost, typically requiring a 10× the expected financial return
to even attempt such a venture. The resulting cost for designing an IC is often far too high for most engineering
applications to hope to reach these financial returns. A configurable device can spread this resulting engineering
cost over a wide number of designs.
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4.1. Machine Learning Computation Opportunities from Scaled CMOS FPAAs

Given the demonstration of high flexibility of fine-grain capabilities compared with
architectural cost, as well as demonstration of SoC FPAAs for embedded machine inference
and learning [2,28], we ask the following question: What is the potential of these FPAA
devices given the existing understanding of these techniques? Scaling allows for a higher
signal bandwidth in the FPAA fabric architectures (Figure 11a), roughly with an inverse
quadratic scaling on the minimum channel length, enabling some RF bandwidths (e.g.,
4 GHz) at 40–45 nm CMOS [67,68].
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4.1. Machine Learning Computation Opportunities from Scaled CMOS FPAAs

Given the demonstration of high flexibility of fine-grain capabilities compared to
architectural cost, as well as demonstration of SoC FPAAs for embedded machine inference
and learning [2,19], what is the potential of these FPAA devices given existing understand-
ing of these techniques? Scaling allows for a higher signal bandwidth in the FPAA fabric
architectures (Fig. 11a), roughly with an inverse quadratic scaling on the minimum channel
length, enabling some RF bandwidths (e.g. 4GHz) at 40-45nm CMOS[37,38].

FG devices scale to a number of CMOS processes (e.g. 40nm, 14nm) [37], and do not
limit any expected scaling opportunities. FG devices have been demonstrated across a
number of IC technologies from 2.0µ to 40nm CMOS [11,37,38,51], with designs awaiting
measurement in 14nm CMOS. Issues around different insulators [37,38], temperature issues
on circuit operation [48,49], handling of voltage levels on-chip for programming [1,50,52],
and long-term reliability & multiple writing [21,22] have all been carefully studied and their
capabilities across standard CMOS processes have been established. Future IC processes
from 14nm and below show no significant constraint on further scaling of these devices as
CMOS continues to scale to smaller channel lengths.

The impact of scaled down FPAA devices for end-to-end machine learning (e.g. Neural
Network) applications builds from a number of experimental results of FPAA devices at the
350nm CMOS Inode. Initial early experimental measurements in smaller IC processes (e.g.
[37,38]) and efforts in analog system automation derived from FPAA tools (e.g. [1,23–25])
give significant grounding of these next generation FPAAs. The FPAA CAB / CLB density
should be similar to existing FPGA densities. The complexity of a CLB in the 350nm
SoC FPAA [1] is the same size and complexity (8 LUTs + registers) as the CLBs used by
Xlinix Zynq RF enabled devices. The 200 CAB+ CLBs in existing 350nm FPAAs could be
optimized to improve the density by at least a factor of 2. Scaled sizes show similar number
of CLBs in a similar area 20-40k (40nm CMOS) vs. 50k in Zynq RF (12-16nm CMOS) [16].
Many different features might be possible in each case, and yet, these approaches are of
similar order of magnitude.

Scaling creates smaller switches and processing elements resulting in higher density
and lower energy consumption (Fig. 11b,c). One expects a significantly increased number of
FG devices with CMOS scaling depending on process capabilities (Fig. 11b). The number of
Vector-Matrix Multiplications (VMM) on a 5mm x 5mm die grows rapidly with decreasing

Figure 11. Bandwidth, parallel computational units, computational capability, and computational efficiency for
scaled-down FPAA devices, extrapolated from experimental measurements and early studies of scaled-down FG
and FPAA devices. (a) Typical FPAA fabric bandwidth for scaled process nodes. (b) Number of FG elements for
scaled process nodes that directly relates to the number of parallel computations (e.g., MAC). (c) Computational
capability and computational efficiency for scaled-down FPAA devices.

FG devices scale to a number of CMOS processes (e.g., 40 nm, 14 nm) [67], and do
not limit any expected scaling opportunities. FG devices have been demonstrated across a
number of IC technologies from 2.0 µm to 40 nm CMOS [9,67–69], with designs awaiting
measurement in 14 nm CMOS. Issues around different insulators [67,68], temperature issues
on circuit operation [70,71], handling of voltage levels on-chip for programming [1,72,73],
and long-term reliability and multiple writing [30] have all been carefully studied and their
capabilities across standard CMOS processes have been established. Future IC processes
from 14 nm and below show no significant constraint on further scaling of these devices, as
CMOS continues to scale to smaller channel lengths.

The impact of scaled-down FPAA devices for end-to-end machine learning (e.g., neu-
ral network) applications builds from a number of experimental results of FPAA devices
at the 350 nm CMOS node. Initial early experimental measurements in smaller IC pro-
cesses (e.g., [67,68]) and efforts in analog system automation derived from FPAA tools
(e.g., [1,31,32]) give significant grounding of these next generation FPAAs. The FPAA
CAB/CLB density should be similar to existing FPGA densities. The complexity of a CLB
in the 350 nm SoC FPAA [1] is the same size and complexity (8 LUTs + registers) as the
CLBs used by Xlinix Zynq RF-enabled devices. The 200 CAB+ CLBs in existing 350 nm
FPAAs could be optimized to improve the density by at least a factor of 2. Scaled sizes
show similar number of CLBs in a similar area 20–40 k (40 nm CMOS) vs. 50 k in Zynq RF
(12–16 nm CMOS) [24]. Many different features might be possible in each case, and yet,
these approaches are of a similar order of magnitude.

Scaling creates smaller switches and processing elements, resulting in higher density
and lower energy consumption (Figure 11b,c). One expects a significantly increased number
of FG devices with CMOS scaling depending on process capabilities (Figure 11b). The
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number of vector–matrix multiplications (VMM) on a 5 mm × 5 mm die grows rapidly
with decreasing process node (Figure 11b); these results assume that 1/8 of the total routing
fabric are VMM computations. The 45 nm and 14 nm devices are capable of PMAC(/s) level
computation on a single die, computation levels typically requiring a large supercomputer
(Figure 11c). A neural network or similar machine learning problem could utilize PMAC(/s)
computations for inference and learning. As one expects 10,000–10,000,000,000 PMAC for
current and future large fielded applications (e.g., [5]), a single 10 W, 10 PMAC(/s) device
at 40 nm and a single 25 W, 250 PMAC(/s) device at 14 nm dramatically decreases the
computing time and power requirements, as well as decreases significantly the overall
energy requirements (Table 1).

Table 1. Potential scaled FPAA computation time, energy, and power for machine learning tasks.

CMOS 10,000 PMAC Power/ 10,000,000,000 PMAC Power/

process Time, 1 device Energy Time, 100,000 devices Energy

40 nm 20 min 10 W→ 10 kJ 3.3 h 1 MW→ 10 GJ
14 nm 2 min 25 W→ 1 kJ 20 min 2.5 MW→ 1 GJ

Another important aspect of these devices would be the significantly lower required
energy consumption for these operations, particularly the possible computation at 1 µW
and 1 mW levels (Figure 11c). The range of machine learning (inference and learning)
demonstrations have been demonstrated with the 350 nm CMOS FPAA device [2–4]. In this
application, a range of acoustic microphone-to-classification machine learning (inference
and training) techniques have been demonstrated with inference in 350 nm CMOS at
20–30 µW levels. Improved circuit design in 350 nm CMOS would already move these
devices to 1 µW levels [2]; therefore, scaled devices certainly would certainly implement
machine learning for similar applications at 1 µW levels. Further improvements by utilizing
more neuromorphic physical algorithms in FPAA devices, such as neurons, synapses, and
dendrites (e.g., [9,74–76]), with their improved energy efficiency over analog matrix–vector
multiplication used in NN (e.g., [9]), further illustrate the opportunities for energy-efficient
neural network and machine learning computing at 1 µW energy levels.

A device requiring 1 mW average energy could be easily supplied by a battery, en-
abling months of continuous fielded use, and a device requiring 1 µW average energy
could easily be supplied by small (<1 cm2) energy-harvesting devices. Energy levels of
1 mW can possibly be supplied by moderate-sized (e.g., 10 cm × 10 cm) devices. A 40 nm
CMOS structure enables 1GMAC(/s), around the level of a fully capable laptop computer,
and around 1 TMAC(/s), around the level of a small GPU or FPGA cluster. Embedded
low-power end-to-end embedded machine learning powered through energy harvesting
eliminates the need for external energy sources, eliminating part of the machine learning
energy crisis [5].

4.2. Algorithm Opportunities from Scaled CMOS FPAAs

The current [1] and future (Figure 12) FPAA directions towards machine learning show
opportunities for embedded end-to-end system algorithms. Increased density, decreased
energy consumption, and increased bandwidth at each CMOS node (Figure 12) directly
impact the range of computations; although, the same computations are possible at each
CMOS node at a lower operating frequency and problem size.

Developing end-to-end machine learning systems require building the computation
before the machine learning, as well as the computing for the machine learning operations
(Figure 13). The optimal operating frequency matches the input data rate to eliminate the
need for any internal storage or related infrastructure. For a given operating frequency, the
objective is to minimize energy consumption, as well as the classification latency (small for
analog computing). Analog numerical analysis [77], analog architecture theory [78], and
real-valued computing theory [12] provides the framework for analog computations.
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Figure 12. Scaling FPAA devices enables a range of new applications at scaled down nodes. (a) Scaling
FPAA devices from 350nm CMOS to 130nm, 40nm ,and 14nm processes predictably increases the computational
efficiency, area per operation, and fabric bandwidth, as well as opens new application spaces at each node. (b)
Fabric perating conditions and CAB/CLB sizes for scaled FPAA devices.

power required in a 40nm node. An FPGA has significant initial static power (100’s of mW
to W) because of the on-chip SRAM storage. A 40nm CMOS FPAA would have roughly
20k CABs and CLBs with roughly 50M multiplication elements in the FPAA fabric that are
likely to be typically accessible. The highest end Zync processor has roughly 50k CLBs and
4k DSP (with single multiply) units. This 40nm FPAA device would be similar to the 350nm
SoC FPAA, likely with multiple embedded processors (MSP430 or RISC V), in open design
architecture; Zync includes 6 ARM cores with a 1-2GHz maximum clock rate. A 14nm
FPAA device should have improved metrics; a 40nm FPAA device requires considerably
less building costs and design costs.

End-to-end solutions requires different front-end solutions for different applications
(e.g. acoustic, imaging, RF) to set the data before the network inference and training (Fig.
13). Acoustic or speech processing or classification, scaling increases the problem size
(command word to small vocabulary to speech classification) while potentially further
improving the energy efficiency. Acoustic applications often require front-end filterbanks,
delay lines, and other subbanding processes before the machine learning computation, as
well as asynchronous event processing to encode the machine-learning process (Fig. 13a).

A 40nm FPAA, similar to what is already done in 350nm SoC FPAA, could directly
implement the front-end computation before the classifier would include BPF over acoustic
frequencies, amplitude detections, and continuous-time delay approximations in each
parallel channel. One expects energy costs of 1-20µW for this entire front-end infrastructure
(e.g. [3,19]) with an upper-end output frequency of 1kHz for each output. A speech
recognizer using multiple neural layers (phoenems, syllables, words) in realistic SNR
(<10dB) environments with a moderate number of weights (10M) that might use single
layer VMM+WTA blocks (e.g. [3]). As the NN computation requires 10µW (10GMAC(/s) ),
one easily expects this application to fit in a 50µW budget including additional potential
overhead.

Figure 12. Scaling FPAA devices enables a range of new applications at scaled-down nodes. (a) Scaling FPAA
devices from 350 nm CMOS to 130 nm, 40 nm, and 14 nm processes predictably increases the computational
efficiency, area per operation, and fabric bandwidth, as well as opening new application spaces at each node.
(b) Fabric operating conditions and CAB/CLB sizes for scaled FPAA devices.

A single 40 nm FPAA device (Figure 12) could potentially be used for an acoustic
NN classifier, an image NN classifer, and an RF NN classifer. These examples provide a
good comparison with a single high-end (e.g., RF Zync [24]) FPGA IC (12–16 nm CMOS),
solving these applications (Figure 13). The 5 GHz FPAA bandwidth (dc to 5 GHz [67])
compares to the highest-end 10 GSPS DACs on the RF Zynq [24]. The FG elements that
are not programmed are initialized to accumulation, and the negligible current (e.g., [67])
results in little static power required in a 40 nm node. An FPGA has significant initial static
power (100’s of mW to W) because of the on-chip SRAM storage. A 40 nm CMOS FPAA
would have roughly 20 k CABs and CLBs with roughly 50 M multiplication elements in
the FPAA fabric that are likely to be typically accessible. The highest end Zync processor
has roughly 50 k CLBs and 4 k DSP (with single multiply) units. This 40 nm FPAA device
would be similar to the 350 nm SoC FPAA, likely with multiple embedded processors
(MSP430 or RISC V) in an open design architecture; Zync includes 6 ARM cores with a
1–2 GHz maximum clock rate. A 14 nm FPAA device should have improved metrics; a
40 nm FPAA device requires considerably lower building costs and design costs.

End-to-end solutions requires different front-end solutions for different applications
(e.g., acoustic, imaging, RF) to set the data before the network inference and training
(Figure 13). Acoustic or speech processing or classification scaling increases the problem
size (command word to small vocabulary to speech classification), while potentially further
improving the energy efficiency. Acoustic applications often require front-end filterbanks,
delay lines, and other sub-banding processes before the machine learning computation, as
well as asynchronous event processing to encode the machine learning process (Figure 13a).

A 40 nm FPAA, similar to the process which is already carried out in 350 nm SoC
FPAA, could directly implement the front-end computation before the classifier would
include BPF over acoustic frequencies, amplitude detection, and continuous time delay
approximations in each parallel channel. One expects energy costs of 1–20 µW for this entire
front-end infrastructure (e.g., [3,28]) with an upper-end output frequency of 1 kHz for each
output. A speech recognizer using multiple neural layers (phonemes, syllables, words) in
realistic SNR (<10 dB) environments with a moderate number of weights (10 M) that might
use single-layer VMM+WTA blocks (e.g., [3]). As the NN computation requires 10 µW
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potential resources for Acoustic, Image, RF, and NN training accelerator applications comparing against a
high-end RF Zynq Xlinix FPGA (12-16nm CMOS) and potential 40nm FPAA (40nm CMOS).

In other cases, the increased problem size opens new architectural solutions, such as a
in image classification where more processing can occur on the incoming streamed image
from a sensor (Fig. 13b).

Image classification on larger nodes might take a standard database with an on-board
compression (e.g. Compressed DCT [47]), where a scaled down system would compute
and classify subimages in parallel.

Typical image processing and NN classification architectures would build around
an image IC that transmits an image one pixel value at a time (Fig. 14a). Matching data
and computing speed results in optimal computing efficiency and minimal overhead mini-
mizing the expensive requirement for buffering or caching data. An alternate path could
enable a CMOS imager to have direct interconnections between a pixel and reconfigurable
Si processing on another IC that would enable significantly higher computing opportunities
(Fig. 14b). Image processing would have CABs or groups of CABs for handling different
symbols. Data goes throughout the IC and utilizes by local computing in memory; can
have 2 percent pixels a piece operate on the scanned image input. A 10M Pixel imager
requires an average 10TMAC (/s) at roughly 10-20mW in the FPAA device, similar cost as
the CMOS imager, and similar cost in transmitting the data between the two chips on a
PCB. If imager has vertical connections from one wafer to another, the vertical connection
would change the algorithm and more parallelism due to parallel input (naturally from
source).

An FPAA device could be a common module for RF related machine learning (Fig. 13c)
at 45nm and smaller CMOS nodes [38]. CMOS scaling enables this application applications,
such as beamforming and demoduation that could be 40MHz at 350nm CMOS, while im-
proving to 400MHz at 130nm CMOS, 4GHz at 40nm CMOS, and higher for smaller CMOS
processes [37]. The device, depending on process node, might include some specialized
LNA at input, configuration for initial signal processing (e.g. VMM for beamforming), as
well as demodulation for classifying modulated signals. The 40nm FPAA device can be
directly built to enable 10-20GHz signals with 4-5GHz signal bandwidths (dc to 4-5GHz)
in the routing fabric [38], including FG tunable delay elements for spatiotemporal filter-
ing through the routing fabric. These inputs could directly be used to classify spectrum
dynamics, utilizing a large classifier network (again, 10M NN) as well as utilizing those
dynamics with minimal system latency [40]. 10M NN operating at 1GHz bandwidth puts
the computation at 10PMAC(/s) range operating at 10W of average power.

Using multiple FPAA devices could enable a platform for larger algorithms as well
as an accelerator for training a network. Training today’s NN models requires multiple

Figure 13. A single FPAA device could enable a range of embedded machine learning applications (a) A
microphone sensor (acoustic)-embedded machine learning problem. (b) A CMOS imager-sensor-embedded
machine learning problem. (c) A multi-antenna (RF)-embedded machine learning problem. (d) Summary of
potential resources for acoustic, image, RF, and NN training accelerator applications comparing against a high-end
RF Zynq Xlinix FPGA (12–16 nm CMOS) and potential 40 nm FPAA (40 nm CMOS).

In other cases, the increased problem size opens new architectural solutions, such as an
in-image classification, where more processing can occur on the incoming streamed image
from a sensor (Figure 13b). Image classification on larger nodes might take a standard
database with an on-board compression (e.g., compressed DCT [79]), where a scaled-down
system would compute and classify sub-images in parallel.

Typical image processing and NN classification architectures would build around
an image IC that transmits an image one pixel value at a time (Figure 14a). Matching
data and computing speed results in optimal computing efficiency and minimal overhead
minimizing the expensive requirement for buffering or caching data. An alternate path
could enable a CMOS imager to have direct interconnections between a pixel and recon-
figurable Si processing on another IC that would enable significantly higher computing
opportunities (Figure 14b). Unlike the trajectories for single wafer imagers (e.g., [80,81]),
through-hole wafer connections and die stacking (e.g., [82,83]) enable a wide range of
opportunities for 3D die-stacked imagers [84–89]. Image processing would have CABs or
groups of CABs for handling different symbols. Data moves throughout the IC and utilizes
local computing in the memory. A 10 M Pixel imager requires an average of 10 TMAC (/s)
at roughly 10–20 mW in the FPAA device, similar cost as the CMOS imager, and similar
cost in transmitting the data between the two chips on a PCB. If an imager has vertical
connections from one wafer to another, then the vertical connection would change the
algorithm and more parallelism would occur due to parallel input (naturally from source).

An FPAA device could be a common module for RF related machine learning (Figure 13c)
at 45 nm and smaller CMOS nodes [68]. CMOS scaling enables this application, such as
beamforming and demodulation, that could be 40 MHz at 350 nm CMOS, while improving
to 400 MHz at 130 nm CMOS, 4 GHz at 40 nm CMOS, and higher for smaller CMOS
processes [67]. The device, depending on process node, might include some specialized
LNA at input, configuration for initial signal processing (e.g., VMM for beamforming),
as well as demodulation for classifying modulated signals. The 40 nm FPAA device can
be directly built to enable 10–20 GHz signals with 4–5 GHz signal bandwidths (dc to
4–5 GHz) in the routing fabric [68], including FG tunable delay elements for spatiotemporal
filtering through the routing fabric. These inputs could directly be used to classify spectrum
dynamics, utilizing a large classifier network (again, 10 M NN), as well as utilizing those
dynamics with minimal system latency [78]. A 10 M NN operating at 1 GHz bandwidth
puts the computation at 10 PMAC(/s) range operating at 10 W of average power.
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allowing parallel processing of input signals.

parallel networks training for different initial conditions and other parallel type structures.
One would expect many FPAA chips compiled to the desired NN structure with the same
signal and training inputs with the system recording the near-digital classified outputs,
and eventually reading the converged weight values. Rewriting of the networks is a small
percentage of time compared to training algorithm. Supplying an arbitrary network vectors
of analog signals requires a large number of DACs, and therefore, compiling and using the
preprocessing algorithms on the FPAA with the NN would drastically reduce the amount
of DACs (e.g. acoustic classification), system complexity (e.g. input data movement), and
energy requirements by utilizing the end-to-end computing. Again using the same 40nm
FPAA devices with an application of 10M weights with the bandwidth accelerated (where
possible) to 1GHz speeds, one expects 10PMAC(/s) range operating at 10W of average
power. A parallel system of 1000 devices would occupy a rack infrastructure with 10kW
of computing power. The infrastructure to control the system (input DAC signals) and
store the resulting inputs likely requires similar complexity for this 10EMAC (/s) system.
FPGAs used in accelerators for training follow a similar path, although with higher energy
and complexity (data movement) requirements seen in the other applications. An FPGA
system would also benefit from implementing front-end processing, reducing the input
complexity. The FPAA system would require roughly 20-40kW of power, and the FPGA
system would require on the order of 100MW of power, typical of a data-computing node.
The large 10,000,000,000 PMAC(/s) production training problems would require roughly
2 weeks of compute time assuming the FPAA reconfiguration / reloading time is a small
fraction of the computing time.

5. Summary and Further Directions

We have shown that FPAAs have the potential to handle machine inference and learn-
ing applications with significantly lower energy requirements, potentially alieviating the
high cost experienced today even in cloud-based systems. FPAA devices enable embedded
machine learning, one form of physical mixed-signal computing, enables machine learning
and inference on low-power embedded platforms, particularly edge platforms. The SoC
FPAA device uses fine-grain analog programmability and therefore minimizes the high
cost of fine-grain switch networks. Today’s FPAA devices are platform of mixed-signal
development as well as analog-enabled computing, and future FPAA devices significantly
increase the size, area, and energy efficiency of these capabilities. Next-generation FPAAs
can handle the required load of 10000 to 10,000,000,000 PMAC required for today’s and

Figure 14. CMOS imager interfacing options (a) Interfacing between two ICs. Single data input with single
pixels arriving on each sample. Different imagers (e.g., event) have different approaches, but still have a single
pixel per time scale. (b) Vertical stacking of a CMOS imager and a FPAA device with multiple inputs for each
pixel allowing parallel processing of input signals.

Using multiple FPAA devices could enable a platform for larger algorithms and an
accelerator for training a network. Training current NN models requires multiple parallel
networks training for different initial conditions and other parallel-type structures. One
would expect many FPAA chips compiled to the desired NN structure with the same
signal and training inputs with the system recording the near-digital classified outputs, and
eventually reading the converged weight values. Rewriting the networks consumes a small
percentage of time compared with the training algorithm. Supplying an arbitrary network
with vectors of analog signals requires a large number of DACs; therefore, compiling and
using the preprocessing algorithms on the FPAA with the NN would drastically reduce
the amount of DACs (e.g., acoustic classification), system complexity (e.g., input data
movement), and energy requirements by utilizing the end-to-end computing. Again using
the same 40 nm FPAA devices with an application of 10 M weights with the bandwidth
accelerated (where possible) to 1 GHz speeds, one expects 10P MAC(/s) range operat-
ing at 10 W of average power. A parallel system of 1000 devices would occupy a rack
infrastructure with 10 kW of computing power. The infrastructure to control the system
(input DAC signals) and store the resulting inputs likely requires similar complexity for
this 10 EMAC (/s) system. FPGAs used in accelerators for training follow a similar path,
although with higher energy and complexity (data movement) requirements than those
seen in the other applications. An FPGA system would also benefit from implementing
front-end processing, reducing the input complexity. The FPAA system would require
roughly 20–40 kW of power, and the FPGA system would require on the order of 100 MW
of power, typical of a data-computing node. The large 10,000,000,000 PMAC(/s) production
training problems would require roughly 2 weeks of compute time, assuming the FPAA
reconfiguration/reloading time is a small fraction of the computing time.

5. Summary and Further Directions

We have shown that FPAAs have the potential to handle machine inference and learn-
ing applications with significantly lower energy requirements, potentially alleviating the
high cost experienced today even in cloud-based systems. FPAA devices enable embedded
machine learning—one form of physical mixed-signal computing—enabling machine learn-
ing and inference on low-power embedded platforms, particularly edge platforms. The
SoC FPAA device uses fine-grain analog programmability and therefore minimizes the high
cost of fine-grain switch networks. Current FPAA devices are platform of mixed-signal
development as well as analog-enabled computing, and future FPAA devices will signifi-
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cantly increase the size, area, and energy efficiency of these capabilities. Next-generation
FPAAs can handle loads of 10,000–10,000,000,000 PMAC required for current and future
large fielded applications at orders of magnitude of lower energy levels than expected by
current technology, motivating the need to develop these new generations of FPAA devices.

An end-to-end solution perspective tends to take the computing communication issues
into account, from sensor to classified result. As part of the configurability items, the
related architecture constraint requires avoiding large external memories, because they
will significantly reduce performance without significantly increasing Φ. The local com-
puting eliminates the deep communication to memories, as well as difference in learning
architecture efficiently computed, etc. [78]. Manhattan architectures with fine-grain analog
storage provide an energy- and area-efficient implementation of reconfigurable routing of
local and sparse interconnections, where the neural network weight computation occurs
directly through the weight fabric routing. In these cases, the network complexity scales
as the number of neurons, and only weakly on the number of synapses within reasonable
neuron sparsity.

FPAAs for online learning may want to incorporate direct FG on-chip learning algo-
rithms into the architecture. FPAA networks that both use FG elements for routing as well
as for adaptation have been demonstrated, requiring use of nFET FG elements to route the
pFET adaptive paths while retaining their immediate state. These architectures should be
considered in the next generations of FPAA devices where specializations towards machine
learning would be used.

One might question the long period of research and development before a commercial
SoC FPAA device will be available. The development of FPGA devices took considerable
time in an environment where digital computing was well established with a clear frame-
work, and other system design issues were happening in parallel [64]. The success of the
SoC and earlier FPAA devices [1] led to the development of an initial complete toolset [33],
a toolset that shows the next steps in FPAA automation. These successes to develop 350 nm
FPAA devices to a significant size (nearly 1 M FG parameters, ≈200CAB + CLB, µP) with
design tools capable of designing an entire FPAA target, led to development of analog
computing techniques [12,90] that included foundational work on analog numeric [77],
architectures [78], and abstraction [91]. Like the SoC FPAA devices, these techniques are
still relatively new, and are expanding towards new applications (e.g., [92]).

From a technical perspective, the current and projected SoC FPAA capabilities could
impact a range of applications. Commercial success often requires an alignment of a
combination of technical and non-technical factors, and the path for platform technologies,
such as FPGAs, is rarely a linear path [64]. The decades of market interest in Anadigm
FPAAs, as well as recent interest in the FG-based Aspinity FPAAs, shows a continued
market interest for FPAAs given its limited capabilities. Even though it is hard to predict
commercial opportunities, the technical capabilities potentially open new opportunities in
low-power end-to-end computing for machine learning applications.
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