
Supplementary Material to: A Network
Simulator for the Estimation of Bandwidth Load
and Latency created by Heterogeneous Spiking
Neural Networks on Neuromorphic Computing
Communication Networks

Version: 3.1 | Date: February 25, 2022

Forschungszentrum Jülich GmbH
ZEA-2 | System Modeling
52425 Jülich

Last updated on: February 25, 2022 Page 2 of 13

Contents

Abbreviations 4

1 Modelling and Simulation 5
1.1 Concept . 5
1.2 Model Description . 5

1.2.1 Generation of the Neural Network . 6
1.2.2 A Directed Graph Representing the Communication Network 8
1.2.3 Mapping Neurons to Hardware Graph . 9
1.2.4 Modelling of the Spike Packets . 10
1.2.5 Simulation Log . 13

Last updated on: February 25, 2022 Page 3 of 13

Abbreviations

ACA Advanced Computing Architectures

BC Broadcast

BCF Broadcast First

BCL Broadcast Last

ESPR Enhanced Shortest Path Routing

JSON JavaScript Object Notation

MC Multicast

NC Neuromorphic Computing

NN Neural Network

RNDC NN Randomly Connected Neural Network

UC Unicast

VLSI Very Large Scale Integration

Last updated on: February 25, 2022 Page 4 of 13

1 Modelling and Simulation

This folder contains the following files:

• network_sim.py

• netlist_generation.py

• hardware_graph.py

• sim_log.py

• config.ini

1.1 Concept

The purpose of the simulator is to allow the evaluation of different communication network archi-
tectures in order to make a well-considered decision for the design of the physical implementation.
We are not (yet) interested in the actual behaviour of the Neural Network (NN) or individual
neurons, but solely in the performance of a chosen communication infrastructure. Therefore, to
simplify the model, the nodes internal behaviour such as neuronal membrane potentials, synaptic
behaviours, etc. are not considered and only the movement of a spike from the source node to its
destinations is modelled. After the spike reaches its destination it is dropped.

In a Neuromorphic Computing (NC) system, the communication packets are generated by
neurons firing and transmitting a notion of this event, a so called spike packet, to their connected
synapses. As mentioned before, the model does not consider the nodes internals and thus is
unable to determine which neuron is firing and has send out a spike. Instead, every neuron is
assumed to fire once and the corresponding traffic generated by each neuron firing is calculated.
The total network traffic can then be determined by superimposing the traffic generated by each
neuron. A consequence of this assumption is that the simulation would only be valid for NN in
which all neurons have approximately the same level of activity. At high levels of abstractions,
when precise NN configurations are unknown, this is not a problem. However, it is not represen-
tative for biological NN in which neurons typically have different levels of activity. To work around
this limitation, neurons in the model are assigned a firing rate. During the superimposition, this
firing rate is used as a multiplier for the contribution of that neuron.

The final output of the simulation is the amount of spikes going over each link within a given time
frame corresponding to the chosen firing rate. For example, if the firing rate of every neuron is set
to 1 with a biological average firing rate of 10Hz, the simulation output corresponds to the amount
of traffic generated within a tenth of a second of running (not considering the acceleration factor).

1.2 Model Description

The current model is implemented in Python (3.7) and is version 3.1 of the model1. The choice for
this programming language was made because of the versatility and ease of use as well as com-
patibility with partner institutes within the Advanced Computing Architectures (ACA) project.

1The earlier versions were based on the same concept but lacked some additional features and optimizations.

Last updated on: February 25, 2022 Page 5 of 13

During the simulation, the following steps are performed:

1. Read out the config file and set simulation parameters,

2. Set up neural network,

3. Generate a directed graph, representing the communication network,

4. Map neurons from the NN to a node in the graph,

5. Mimic a (weighted) spike event for each neuron in the NN, sending a spike packet to all
connected neurons locations.

The top level module of the simulator is network_sim.py. This module reads the config.ini which
contains the simulation settings, controls the execution of all submodules and writes the results of
the simulation in a JavaScript Object Notation (JSON) file.

1.2.1 Generation of the Neural Network

The generation of the neural network happens in one of two ways. The connectivity is either deter-
mine prior to the simulation by the module netlist_generation.py and stored in a python dictionary,
referred to as the netlist, or the connectivity is determined on-the-fly, during the simulation itself.

Netlist based simulation

The first approach allows the repetition of a simulation with exactly the same connectivity, how-
ever, the memory required by the netlist dictionary, limits the size of the NN to be simulated. As
the models purpose is to calculate the spike traffic, the neural network generated in this step is
not a fully defined NN and only contains the connectivity information and firing rates of the neu-
rons. Accessing a neuron in the netlist returns a sub-dictionary which includes the firing rate of
the particular neuron and a list of connections the neuron has to other neurons. In the config.ini,
the user can define the type of network that is to be generated. The module includes a couple of
different network types, ranging from abstract networks, such as the Randomly Connected Neu-
ral Network (RNDC NN), to more defined network structures, such as the ACA project test cases.
The module generates the specified type of network netlist based on the given parameters in the
netlist_dict_template. This dictionary is passed to the netlist generator function and overwrites the
default values with the given parameters. The format of the resulting netlist is shown below for
an arbitrary exemplary network. This dictionary is then also saved in the netlists subfolder of the
simulator, as a JSON file, to be used again if desired.

{

"neuron0": {"FR": 1.1, "connected_to": [neuron1, neuron4, neuron12, ...]},

"neuron1": {"FR": 1.8, "connected_to": [neuron3, neuron5, neuron8, ...]},

"neuron2": {"FR": 0.3, "connected_to": [neuron1, neuron2, neuron24, ...]},

...

...

"neuronn": {"FR": frn, "connected_to": [...]}

}

Last updated on: February 25, 2022 Page 6 of 13

The different types of networks implemented at this point in time, for this type of network genera-
tion, and their corresponding input parameters can be found in table S1.1. As the project
continues, other network types might be added. If the simulation folder already contains a netlist
for the given parameters, the module will recognize this and load the old netlist file instead of
creating a new one. If desired, users can also load their own netlist files into the simulator by
writing or generating their own netlist file.

Network Type Input Parameters
Hopfield NN Number of neurons: n
RNDC NN Nr. of neurons: n

Connectivity probability: epsilon
RNDC NN with fixed out degree Nr. of neurons: n

Out-degree: connections
Two population network - Brunel Number of neurons: n
ACA project testcase Ratio exhibitory neurons: beta

Connectivity probability: epsilon
Two population network - Vogels-Abbott Number of neurons: n
ACA project testcase Ratio exhibitory neurons: beta

Connectivity probability: epsilon
Nr. of input neurons: m

Cortical microcircuit model - Potjans-Diesman Network size scaling: scale_factor
ACA project testcase

Table S1.1: Implemented netlist types.

On-the-Fly network generation

The second approach does not store the connectivity, instead, the connectivity of a neuron is de-
termined when it’s being processed and is forgotten straight after. This connectivity is determined
with a connection probability, which can be different for different pairs of source and target neurons
and are directional, i.e. p(AconnectstoB) ≠ p(BconnectstoA). The probability can be set in two
different ways, as a "hardware dependend" probability or as a connectivity matrix which contains
the statistical information needed to create a NN. In the former scenario, the connection proba-
bility is given as a function of the distance between the source and potential target neuron. This
probability function is the same for every source neuron, thus resulting in a homogeneous neural
network. This way of network generation is explained more in section 1.2.3. The latter option,
uses predefined connectivity statistics given as a matrix fi le. Each row in the connectivity matrix
(CM) contain the size of the neuron population and the probabilities that a neuron from the cor-
responding population connects to a neuron in the population of the corresponding column. This
way of network generation is very similar to the netlist based network generation. The difference is
the storing of the connectivity in the netlist based approach, making the simulation deterministic,
and the mapping of the neurons. In this approach the mapping can only be done on a statistical
level and only the type of neuron, i.e. the population name, is stored to the node. In the netlist
based approach, the population name and the neurons index within the populations needs to be
stored. An example of a matrix file is shown below, the header row, printed in blue, is not included
in the actual file, and is added to the example for clarity.

Last updated on: February 25, 2022 Page 7 of 13

Population Nr. Neurons L2/3E L2/3I L4E L4I L5E L5I L6E L6I TC
L2/3E 20683 0.1009 0.1346 0.0077 0.0691 0.1004 0.0548 0.0156 0.0364 0
L2/3I 5834 0.1689 0.1371 0.0059 0.0029 0.0622 0.0269 0.0066 0.0011 0
L4E 21915 0.0437 0.0316 0.0497 0.0794 0.0505 0.0257 0.0211 0.0034 0
L4I 5479 0.0818 0.0515 0.135 0.1597 0.0057 0.0022 0.0166 0.0005 0
L5E 4850 0.0323 0.0755 0.0067 0.0033 0.0831 0.06 0.0572 0.0277 0
L5I 1065 0 0 0.0003 0 0.3726 0.3158 0.0197 0.008 0
L6E 14395 0.0076 0.0042 0.0453 0.1057 0.0204 0.0086 0.0396 0.0658 0
L6I 2948 0 0 0 0 0 0 0.2252 0.1443 0
TC 902 0 0 0.0983 0.0619 0 0 0.0512 0.0196 0

1.2.2 A Directed Graph Representing the Communication Network

The model of the communication network is stored as a directed graph. Each node in the graph
corresponds to a computational node of the system while the edges represent the links between
nodes. In the currently existing NC systems, nodes are connected with bidirectional links, whereas
the graph uses directed edges - a problem which can be circumvented with ease by creating 2
separate links between nodes, one for each direction. The choice for these directed edges was
made, as this is a better representation of the actual hardware. In many cases, bidirectional
links are nothing more than two parallel connections, operating completely independent from each
other. By modelling it this way, the possibility that a high load in one direction gets cancelled out by
low traffic in the other, is eliminated and a higher level of insight can be reached. If the bidirectional
links are not implemented as parallel unidirectional links, the sum over the two edges can be used
to get the traffic load on the combined l ink. The combined number of spikes going over the link is
not effected by the chosen approach and thus remains valid.

The graphs are generated as class objects. The class declarations and all related class methods
are encoded in the hardware_graph.py module. The foundation of this module is the Network -
class. This class functions a (grand)parent class for all the other types of network, each of which
have their own class. This (grand)parent class covers all the basic functions the communication
network needs to fulfil, such as adding/removing nodes or edges to/from the graph, returning all
the traffic i n t he n etwork a fter a s imulation r un, a nd r esetting t he n etwork. T he (grand)parent
class also contains the more complex methods which are independent of the topologies, such as
uniform filling or random mapping of the network (more on this in section 1.2.3), and the Dijkstra
routing algorithm. The hierarchical structure of the classes in this module is shown in figure
S1.1. Besides the network methods, the network class also contains a node class and an edge
class1. Instances of these classes are used to construct the graph and store its properties, as well
as the results of a simulation run. Table S1.2 shows the data stored in each instance of these
objects.

Network
Mesh4

Mesh6
Mesh8

CombinationalMesh (Multi-Mesh)
SpiNNaker

BrainScaleS
TrueNorth
Hubnetwork

Mesh3D

Figure S1.1: Hierachical structure of network classes of the hardware_graph.py module.

1These are nested classes, not to be mistaken with the subclasses discussed earlier.

Last updated on: February 25, 2022 Page 8 of 13

Node
ext_packets_handled Counts the number of spike packets passed to

the node by other nodes
int_packets_handled Counts the number of spike packets send by

the nodes internal computational unit
neurons A list of neurons mapped to this node
edges A dictionary with all outgoing edges.

{"target node": "Edge object"}

Edge
weight A normalized length unit, used to indicate the

cost of using this link
packets_handled The number of packets send over this link

Table S1.2: Overview of the Node- and Edge-classes.

1.2.3 Mapping Neurons to Hardware Graph

In order to model the spike traffic, the location of the neurons i n the hardware graph, i .e. which
node models which neuron, needs to be known. The determination of these neuron locations is
referred to as placement or mapping. A comparison can be made here to the "Place & Route"
process performed in Very Large Scale Integration (VLSI) design. The mapping algorithm has
to designate a location for every neuron1 in the NN with a given maximum number of neurons
per node, NpN , and can be seen as optimization problem. Placing neurons which are connected
closer to each other results in a shorter travel distance for the spike and in turn a lower traffic
load. Unlike VLSI "Place & Route" algorithms, the mapping does not have to consider constraints
like fitting a ll wires o r t he d riving power o f one neuron t o t he o ther and even c an, i n r egards to
the model, neglect timing constraints. Free of these constraints, the mapping should be much
simpler, but the level of connectivity in NN is over 3 orders of magnitude larger than basic VLSI
design, which greatly increases the complexity. First attempts to adapt and implement existing
VLSI placement algorithms in the first version of the model, turned out to be slow and resulted in
only slight improvements of traffic loads.

Currently, the third version only contains some basic mapping algorithm. These algorithms
search for an optimized solution, but simply place the neurons randomly on a node or place the
neurons in the order they appear in the netlist, on the first available n ode. Obviously, the former
does not attempt to solve the optimization problem and will act as a benchmark for other mapping
algorithms. The latter on the other hand, sequential placement referred to from here onwards,
does reduce traffic load in certain scenarios, even i f i t might not seem so at fi rst. A requirement
for this is that the NN that is used as test case contains populations or clusters of neurons which
have a higher level of connectivity to other neurons within the same group. On top of that, the
populations and clusters need to be declared in succession in the netlist as well. If both of these
requirements are met, sequential placement will place the neurons of the same population in the
same general area of the network, as it goes through the nodes in chronological order2. While
the average traffic reduction of sequential placement compared to the random placement i s sig-
nificant, i t is far f rom an optimized s olution. A slightly larger gain was achieved with the adapted
VLSI algorithms, the recursive min-cut algorithm and the quadratic wire length algorithm. Unfortu-

1As biological NN inherently possess a great level of redundancy, the mapping algorithm could omit some neurons
while the NN remains functional. However, as the goal of the ACA project is to build a NC system for computational
neuroscience and exact behaviour is to be investigated, this is not preferred.

2In case of the auto-generated meshes, this means the network is filled row-by-row.

Last updated on: February 25, 2022 Page 9 of 13

nately, the runtime of these algorithms quickly rose up to several hours, even for a relatively small
test case of 5000 neurons, making them infeasible to use. Further improvement of the mapping
definitely shows potential and is incorporated in the planning. The currently available mapping
algorithms are incorporated into the network classes and can be found in the hardware_graph.py
module. The connection based mapping methods are currently only available for the netlist based
NN approach. For the matrix based approach, similar algorithms could be used, however, they
would have to be based on the statistical connection probabilities instead of the absolute number
of connections. Unfortunately, this adaption has not yet been made in the current version, but
might be added to a later version.

Hardware Dependent Neural Network Generation

A alternative to mapping a given NN to the hardware graph, is the generation of a NN in depen-
dence of the hardware graph. The former, i.e. the netlist based and matrix based approaches,
have been the main focus during the development of the simulator. Either a NN is given or the
properties for a NN are given and a hardware graph with an appropriate size: NpN ·N ≥ n, is gen-
erated and the neurons are mapped (efficiently) to the graph. The alternative approach changes
dependencies and with it the order of process steps. In this approach, a hardware graph is created
with a given size and all nodes are filled with the given number of neurons NpN . However, no
connections between the neurons are defined as of yet. In the second step, connections for each
neuron are determined at random with a connectivity probability distribution. A uniform distribu-
tion, i.e. p(x) = const. results in a NN comparable to the RNDC NN network type discussed in
section 1.2.1. Other possibilities are a distance dependent probability distribution, p(di,j) = C

di,j
where di,j is the distance between neuron i and j, or a given biologically inspired probability distri-
bution. The benefit of using this approach is the fact that no mapping is required. A good mapping
algorithm tries to place connected neurons close to each other, but proves to be complex and time
expensive. Here, with the distance dependent probability distribution, neurons which are located
close to each other are more likely to be connected, inherently solving the mapping problem. In
general, this is also true for biologically inspired probability distribution as these contain distance
dependent component as well. The limitation of this approach is that it results in a homogeneous
network, all neurons are alike. To create a network in which different groups of neurons have
different characteristics, the probability distribution needs to be changed, depending on the node
currently being processed. This however, has the undesired effect that the inherent mapping solu-
tion might become less efficient. And besides this, it would still not be possible to create the same
type of detailed network structure as for example in the Potjans Diesmann test case.

1.2.4 Modelling of the Spike Packets

All the previously described steps are part of the initialization of the model. The next step of the
simulation is the emulation of spikes travelling through the network. In the old version, the simulator
looped through every node in the network and the routes were calculated for each neuron on
that node individually. This step is not significant on i ts own in regards of computation t ime, but
dominates overall run time, due to the large number of repetitions. So, instead of doing this for
each source neuron individually, the second and later versions of the model combine the neurons
that are located on the same node. How the neurons are combined depends on the type of casting
used and is visualized in figure S1.2.

The simplest case here is Broadcast (BC), in which every neuron communicates with every
node, regardless of the neurons it is connected to. As the list of destinations is the same for all
neurons, the routes resulting from this destination list is equal for all neurons in a node. Thus, in-
stead of processing each neuron individually and multiplying the resulting routes with the neurons

Last updated on: February 25, 2022 Page 10 of 13

firing rate, the firing rates off all neurons on the node are accumulated A⃝. The routes to all nodes
from the current node can be determined once and then weighted by this accumulated
firing rate.

The other types of casting require some additional steps to calculate the routes. For
each neuron mapped to the current node, the "connected_to" list is read out and every
neuron in this list is converted to the node ID on which it is located B⃝. From here onwards,
this list will be referred to as a destination list of a neuron. When using Unicast (UC), the
destination lists are not equivalent for all neurons, but a route from Nodei to Nodej will
remain the same and only has to be calculated once. To prevent unwanted repetitions of
the same calculation, the destinations list are converted to a weighted list (implemented
as Python dictionary) with unique entries C⃝UC. Each entry in the destination list of a
neuron, adds a value equal to the neurons firing rate to the weight of that entry in the
weighted list. Because the routes only depend on the source node and not the actual
source neuron, this process can be repeated for all neurons in the current node, resulting
in a single weighted list with unique entries for each node D⃝UC. With this weighted list,
the routes to all destinations can then be calculated once and weighted appropriately.

The local-Multicast (MC) case is very similar to UC. However, UC sends a separate
spike to each neuron, whereas local-MC sends a separate spike to each node which has
at least one neuron it needs to communicate with. If neuron ai needs to communicate with
two neurons, bj and bk, located on the same node B, only one spike packet will be send to
node B. The local router of node B will then branch off this spike to both neurons. Here,
this means that any duplicate nodes in the destination list of the individual neurons can
be removed C⃝local-MC. After this, the conversion to a weighted list can be done to combine
the destination lists of all neurons in the node D⃝local-MC.

This optimization becomes more complex in case of MC. This is because the branch
nodes - nodes at which a spike packet splits off to multiple other nodes - are calculated
by superimposing the routes from one neuron to all its destinations and removing any du-

Figure S1.2: Combining the route calculations of neurons to speed up the simulation.

Last updated on: February 25, 2022 Page 11 of 13

plicate links (Fig. S1.3a). The resulting superimposed route depends on the
combination of routes, not just the individual destinations and thus has to be done per
neuron individ-ually. This makes it impossible to use the same approach as before. It
is still possible to reduce the number of redundant calculations on a lower level in
some cases. When the route from node A to node B does not depend on the other
destinations (Fig. S1.3b (DOR)), this calculation can still be combined for all neurons on
a node. Then, only the superimposition of the routes has to be done individually for
every neuron.

However, some MC routing types, such as Enhanced Shortest Path Routing (ESPR),
are optimized for MC and calculate the path from the source to a destination depending
on the other destinations as well. This means that the routes from two neurons on node
A, to node I are not necessarily the same as shown in figure 1.3b. Unfortunately, this
also means that the route calculation has to be done individually for each neuron, as was
done in the previous model version1.

For the Hubnetwork topology, as well as the Combinational-/Multi- Mesh topology, a
combination of different casting types have been implemented as well. As the intercon-
nect network of topologies can be divided into multiple levels, different casting types can
be used on the different levels. One of the possibilities are the Broadcast First (BCF)
casting types. Here, the spike is broadcasted over the upper level (after being trans-
ported to a hub in case of the Hubnetwork) in the first phase. Then in the second phase,
the spikes are communicated from the hubs to their respective destinations by one of the
previously described casting types. The second group of additional casting types is the
exact opposite of BCF, Broadcast Last (BCL). This group of casting types uses on of
the previously described casting types to communicate the spike packets to the hubs lo-
cated near a target and from these hubs, the spike packets are broadcasted to all nodes
surrounding the hub.

The Path Dictionary

As these different types of casting calculate and combine their routes in slightly different
ways, a small adaption was necessary in order for the routing to function properly. In the
model, the different routing methods don’t return the actual route from a source node to
the destination node, but return a ’path’ dictionary. The (key, value) pairs in this dictionary
give a route description in the opposite direction. A value belonging to a key entry in the
dictionary indicates the previous node on the route from source to destination. The route

1Because of some other improvements, this version will still perform better for MC compared to the old code, but
does not reach the same level of speed-up as it did for the other casting types.

(a) Omitting duplicates entries in the route
to get the multicast route.

(b) Routing depends on other destinations
for optimized MC routing algorithms.

Figure S1.3: Multicast routing.

Last updated on: February 25, 2022 Page 12 of 13

to a node can then be determine from this path dictionary by going backwards from the
destination to the source and reversing the resulting route. An exemplary path-dictionary
is shown in figure S1.4a. To determine the route from node A to node I in this example, we
can go backwards through the dictionary until the source is reached, resulting in this case
in the sequence I → H → E → B → A. And thus the route from A to I is therefore [(A, B), (B,
E), (E, H), (H, I)]. The path dictionary contains all necessary routing information for all
nodes in the dictionary. Figure S1.4b shows the routes from A to all other nodes in the
exemplary network.

{
A: "source", B: A,
C: B, D: A,
E: B, F: C,
G: D, H: E,
I: H

}

(a) Path dictionary. (b) Routes to all nodes.

Figure S1.4: Exemplary routing case.

1.2.5 Simulation Log

The model files contain one other module which has not been discussed so far, sim_log.py.
This module serves debugging purposes and offers the user additional information about
a (failed) simulation run. After a run is started, a log file i s generated and the specified
parameters of this run are saved first. Further along the run, the log keeps track of com-
pleted tasks, the execution times of these tasks, as well as notices, warnings, errors or
in the case of a failed run, fatal errors that occurred during a run. Even after a success-
ful run, the user should evaluate any notions and/or warnings raised during the run, to
validate the correctness of the run.

Last updated on: February 25, 2022 Page 13 of 13

	Abbreviations
	Modelling and Simulation
	Concept
	Model Description
	Generation of the Neural Network
	A Directed Graph Representing the Communication Network
	Mapping Neurons to Hardware Graph
	Modelling of the Spike Packets
	Simulation Log

