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Abstract: Artificial intelligence (A.I.) has revolutionised a wide range of human activities, including
the accelerated development of autonomous vehicles. Self-navigating delivery robots are recent
trends in A.I. applications such as multitarget object detection, image classification, and segmentation
to tackle sociotechnical challenges, including the development of autonomous driving vehicles,
surveillance systems, intelligent transportation, and smart traffic monitoring systems. In recent years,
object detection and its deployment on embedded edge devices have seen a rise in interest compared
to other perception tasks. Embedded edge devices have limited computing power, which impedes
the deployment of efficient detection algorithms in resource-constrained environments. To improve
on-board computational latency, edge devices often sacrifice performance, creating the need for
highly efficient A.I. models. This research examines existing loss metrics and their weaknesses, and
proposes an improved loss metric that can address the bounding box regression problem. Enhanced
metrics were implemented in an ultraefficient YOLOv5 network and tested on the targeted datasets.
The latest version of the PyTorch framework was incorporated in model development. The model was
further deployed using the ROS 2 framework running on NVIDIA Jetson Xavier NX, an embedded
development platform, to conduct the experiment in real time.

Keywords: neural networks; YOLOv5; deep learning; ROS 2; CNN; object detection; NVIDIA;
NVIDIA Jetson Xavier NX; ROS; PyTorch

1. Introduction

The automotive and transportation industry has changed our lives, culture, and
climate more than any other innovation and technical development in human history
has. Level 5 vehicle autonomy, sometimes also referred to as fully connected autonomous
vehicles, is an advanced research topic in engineering science. A self-driving car can
visualise and sense its surroundings with the help of cameras, lidar, and other sensor
devices. In autonomous vehicles, data generated by the sensing devices are large [1]
and demand the development of efficient algorithms to process information and reach
intelligent decisions [2,3].

Computer-vision (CV) algorithms are utilised to provide a solution to such complex
tasks. CV uses artificial neural networks (ANNs) or convolutional neural networks (CNNs)
to address the problems of nonlinearity [4]. Applications of CV have been the most popular
in the last decade and show a rising trend [5]. However, the deployment of state-of-the-art
SSD [6], AlexNet [7], and RESNET50 [8] CNNs in resource-constrained edge devices is a
complex problem [9]. Edge devices are limited in their computation capabilities [10] and
are often battery-powered in remote locations [11]. Techniques such as model adaptive
mechanisms for resource-constrained edge device, and hardware acceleration approaches
for hardware and software were developed [12] to overcome the above challenge. The
NVIDIA Jetson and Tegra families provide dedicated GPU and TPU to perform computation
tasks in edge devices.
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Object detection is one of the fundamental problems of computer vision that shapes
the basis of other computer vision tasks, involving perception such as instance segmen-
tation [13], image captioning [14], and object tracking. When performing noncritical
computer-vision tasks requiring very high levels of accuracy, it is rational to trade off speed
for increased network accuracy. Object detection comprises tasks of object classification
and localisation or positioning. Two-stage object detectors depend on the presence or
absence of regional proposal networks (RPNs). Single-stage object detectors such as SSD
and YOLO [15] are popular choices of object detectors because of their high speed of
inference, frames per second (FPS), and accuracy. SSD does not contain an RPN but uses
a concept of prior predefined bounding boxes at different feature maps. One such object
detection method is You Only Look Once (YOLO), which was introduced by R. Joseph
et al. in 2015. It quickly gathered popularity as it was one of the leading single-stage
detector in the deep-learning era that outperformed other state-of-the-art methods such
as region-based convolutional neural networks (R-CNNs) and deformable part models
(DPMs). The function of a YOLO model depends on a unified detection technique that
fuses different modules into a single neural network. The YOLO architecture is widely
used in various research applications ranging from the detection of smaller objects such as
UAVs and face masks to multiobject autonomous detection [16].

We provide a brief background on object detectors and bounding box regression
concepts in Section 2. Section 3 explores the network architecture of the object detector
utilized in this research. Various existing loss metrics are presented and their drawbacks
are studied in Section 4. A new loss metric is proposed in Section 4.4 to provide an optimal
strategy for bounding box regression while overcoming the drawbacks of other metrics.
A simulation experiment was carried out on synthetic data to observe the performance
of the proposed loss metric in Section 5, followed by testing the YOLOv5 model in object
detection datasets PASCAL VOC 2007 [17] and CGMU [18] in Section 9. The research was
further extended to analyse the performance of the improved model in real-time situations
with the use of the Jetson NX module and robotic operating system (ROS) 2. The hardware
and software concepts are detailed in Section 6.

2. Background and Literature Review
2.1. Object Detectors

Object detectors use backbone architecture such as VGG16, VGG19 [19], and GoogLeNet [20]
to extract crucial features from the image. Backbone architectures are trained in the ImageNet
dataset consisting of about 1000 classes [21]. As network weights of the backbone layers improve
the model’s performance, they also increase the number of trainable parameters associated with
the model. This creates a heavy CNN model that requires extensive computation resources [22].
In order to solve the drawbacks of existing object detectors, various small and lightweight object
detectors such as MobileNetV2-SSDLite [23], YOLOv3 [24], FireNet [25], Light-Net [26], and
Tiny-DSOD [27] were investigated. The size of the model and parameters associated with the
neural network are reduced by compression techniques such as pruning [28] and quantisation [29],
generating a lightweight model for resource-constrained platforms. Floating-point operations
per second (FLOPS) indicate the number of operations performed by the GPU/CPU for the
particular neural-network architecture. Owing to its complexity, object detection and segmentation
frameworks contain a greater number of FLOPS and network parameters compared to that in
classification tasks. It is necessary to establish a proper trade-off among accuracy, FLOPS, and
network parameters to develop a small efficient model with better performance [27].

2.2. Bounding Box Regression Loss

Current object detection methods can be categorised into two types on the basis of the
presence or absence of anchor boxes. Anchor-based detectors contain predefined anchors
with prior scales and aspect ratios [30]. In contrast, anchor-free detectors utilise locations of
corners and centroids to group into bounding boxes if they are geometrically aligned [31].
Bounding box parameters must be estimated to determine localisation boxes for objects
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in an image. Prior research works [32] adopted ln normalisation losses for bounding
box regression and are sensitive to bounding boxes of varying scales. Selective search
algorithms are used to predict bounding box coordinates by prediction location, and size
offsets of prior bounding boxes [33]. This loss function was later replaced by IoU loss and
its variants. Various studies focusing on addressing drawbacks of existing loss functions
and providing alternative approaches were recently studied [31,34]. These developments
have significantly improved the deployment of object detectors.

2.3. Performance Metrics

To evaluate object detector performance across different datasets, average precision
(AP) and mAP are the most widely used metrics. mAP computes the difference between
the ground truth and predictions of the network [35]. This section outlines background
knowledge for mAP estimation with the use of precision and recall values. In order to
compute precision and recall, the following concepts are utilised.

• True positive (TP): correct prediction matching ground truth coordinates.
• False positive (FP): incorrect or misplaced detection of an object.
• False Negative (FN): undetected ground truth coordinates.
• True Negative (TN): prediction when no ground truth exists.

Since an infinite number of bounding boxes without any object are predicted by the
network inside a given image [36], TN predictions can be ignored in object detection. To
establish the difference between correct and incorrect predictions, the IoU threshold is
used. The IoU region calculates the overlap between prediction and ground truth. If the
prediction result of the network IoU is ≥t, it is classified as a correct prediction. Predictions
under the threshold limit are classified as incorrect.

The assessment of object detection is carried out with the use of precision (P) and
recall (R) estimation.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Precision estimates how accurate the predictions of the network are, and recall es-
timates how well the model estimates the positives among ground truth variables. The
precision–recall curve is a trade-off between precision and recall values for different confi-
dence thresholds ranging from 0.5 to 0.95. An ideal object detector achieves high precision
and high recall, indicating that it could identify all ground truth labels and relevant ob-
jects [37].

However, in practical cases, it is difficult to always achieve a higher area under the
curve (AUC), indicating very high performance. The 11-point and all-point interpolation
are performed to remove noise from the precision–recall curve, and AP is calculated
for all classes in the dataset [32]. mAP is the average AP of all the classes at a certain
overlap threshold.

mAP =
1
N

N

∑
i

APi (3)

N represents total number of object classes, and AP_i indicates the average precision
for each class.

3. YOLO

YOLO is a state-of-the-art single-stage object detector module that is lightweight and
suitable for deployment in edge devices. YOLOv5 is the latest in this series, and it is applied
here due to its accuracy, speed, and capability to detect objects in the first run. Identical to
the task of object detection in image-based visual analysis, multiobject tracking is a vital
component for examining videos. The Pytorch implementation of YOLOv5 belongs to
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the family of object detection architectures and models pretrained on the COCO dataset
that are passed to a deep-sort algorithm to track objects. This can track any object that the
YOLOv5 model was trained to detect. In this study, a video feed from cameras is processed
at the edge device using the YOLOv5 model for multiobject detection [38].

The YOLOv5 model was released in 2020, and it contains variants such as YOLOv5n,
YOLOv5s, YOLOv5m, and YOLOv5x. The YOLOv5 object detector module underwent
multiple improvements from YOLOv1 to YOLOv4 to accelerate and enhance model per-
formance. The baseline architecture is open-sourced and available at git URL [39]. YOLO
network divides input images into N × N grids. Each grid is treated as a regression prob-
lem to determine the bounding boxes of objects in the image. This model significantly
improved detection performance in the PASCAL and COCO [40] datasets. The architecture
of the model is shown in Figure 1.

Figure 1. YOLOv5 network. Architecture [38].

There are three major components of the YOLOv5 network: backbone, neck, and head.
In the backbone region of YOLOv5, a cross-stage partial network (CSPNet) is integrated
into Darknet [41], creating CSPDarknet. CSPNet reduces the number of parameters and
FLOPS of the model by solving problems associated with vanishing gradient. As shown in
Figure 1, the backbone structure begins with a focus module to downsample input images.
The backbone network extracts feature maps of various sizes from input samples through
complex convolutional and pooling layers. Pooling layers reduce network complexity by
reducing the dimensions of feature maps (downscaling) but retaining image characteristics.

The backbone utilises spatial pyramid pooling layers that execute pooling with dif-
ferent kernel sizes to effectively maintain an object’s image characteristics and spatial
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information. Feature maps from the backbone are fused in the neck portion of the network.
To increase information flow, YOLOv5 adopts PANet in the neck. PANet uses a feature
pyramid structure (FPN) to fuse low- and high-level feature maps [42]. Localisation and
robust semantic features are retained in the network with the use of FPN structures. The
head region of the network obtains fused feature maps from the neck. As shown in Figure 1,
three types of predictions are carried out in the head to attain multiscale predictions of
small, medium, and large objects [43]. Nonmaximal suppression (NMS) is implemented on
the head region to retain the best bounding box overlapping with the ground truth.

Both backbone and neck contain CSPDarknet layers that are different from each other.
CSPDarknet layers in the backbone are equipped with residual units, while the latter
contains convolutional layers. To increase the size of the feature maps, upsample block
is utilised. The second is the prediction head, where the network can predict objects of
varying shapes and sizes. This prediction technique is beneficial in scenarios of dense object
detection such as traffic signs or a crowded walking zone. YOLOv5 offers different models,
and YOLOv5n6 was chosen here because of its reduced size and better performance in
benchmark object-detection datasets [31]. The model size of YOLOv5n6 is 6.6 MB, with
3.2 million parameters and 4.3 GFLOPS (1GFLOP = 109 FLOPS).

4. IoU Loss Metrics

Popular loss functions that are used as an evaluation metric for bounding box regres-
sion are studied in this section, followed by the proposal of an efficient loss function.

4.1. Intersection over Union (IoU)

In 2D/3D computer-vision challenges, IoU is a commonly used evaluation metric to
find similarities or areas of intersection between two objects, namely, ground truth and
prediction boxes represented as Bg and Bp [44]. Boxes consist of independent coordinates
such as x1, y1, x2, and y2. They represent the edge coordinates of the boxes. These
coordinates together represent the boundary limits of the object in the frame. As shown in
Figure 2, x1 , x2, y1, y2 represent Xmin, Xmax, Ymin , Ymax, green represents the ground truth,
and red the represents prediction box.

IoU =
|Bp ∩ Bg|
|Bp ∪ Bg| (4)

LIoU = 1− IoU (5)

The numerator value in Equation (4) represents the intersection of ground truth
and prediction boxes, and LIoU represents the loss value. IoU loss is insensitive to the
object’s scale, symmetry, indiscernible identity, and the triangle inequality and experiences
following drawbacks.

• Figure 3a represents cases of no overlap between predicted and ground truth boxes.
In this scenario, the IoU metric performed poorly because Bp ∩ Bg → 0 and IoU→ 0,
the gradient also became 0, and LIoU → 1, a very high loss value. During these cases,
network training is halted. This can be observed as a primary drawback.

• The secondary drawback was observed during partial and complete overlap of bound-
ing boxes where the LIoU range was (0, 1). In Figure 3b, the overlap region remained
the same even for prediction boxes of different sizes; in Figure 3c, a similar case can be
observed, where the prediction box could be larger or smaller in size in comparison
to the ground truth box. The metric does not regress on the basis of the aspect ratios
and size of the bounding boxes. This leads to inaccurate predictions and errors in
classification during dense object detections.
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Figure 2. Bounding box coordinates.

(a) (b) (c)
Figure 3. Representation of different scenarios of bounding box overlap. (a) No overlap; (b) partial
overlap; (c) complete overlap.

4.2. Generalised Intersection over Union (GIoU)

To solve the existing drawbacks of IoU, an improved loss metric was proposed as fol-
lows.

LGIoU = 1− IoU +
|C− (Bp ∪ Bg)|

|C| (6)

C is a minimum/small convex area enclosing both B and Bgt.
The primary drawback of IoU metric is loss values being high when there is no

overlap between boxes. GIoU addresses this issue by calculating the small convex area
that covers both ground truth and prediction boxes [45]. When there is no overlap, the
gradient does not become 0, and the network would be able to regress in bringing the boxes
closer together.

However, the GIoU metric had a downside during the complete overlap of the two
boxes. As shown in Figure 3c, when the boxes overlapped, the minimal convex area
equalled the union area. During this condition, GIoU loss degraded to IoU loss.

4.3. Distance Intersection over Union (DIoU)

To address the drawbacks faced by IoU and GIoU losses, and improve regression
accuracy, DIoU is proposed [46].

LDIoU = 1− IoU +
d2(b, bgt)

c2 (7)

c2 = w2 + h2 (8)
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In Equations (7) and (8), bgt and b represent centres of ground truth and prediction
boxes, and c2 is the diagonal length of the convex box enclosing both boxes. DIoU loss
takes the centre point distance into consideration while estimating the loss value. The
distance estimation term acts as a penalty term in reducing distance between boxes and
minimising regression loss.

Though DIoU addresses drawbacks of previous losses, it fails to converge in the case
of concentric rectangles where centres match, and one box is smaller than another. During
these cases, DIoU losses simply behave like IoU loss, leading to poor convergence and
high regression errors [34].

Figure 4. Three different cases when boxes have same centres but different aspect ratios and areas.
Losses between boxes calculated by IoU, GIoU, DIoU and I IoU loss.

4.4. Improved IoU Loss (IIoU)

To addresses the drawback of DIoU that occurs when centres of bounding boxes align
at the same point, this research proposes a new loss function that estimates the distance
between the central coordinates of boxes along the x and y axes.

LI IoU = 1− IoU +
d2(xg, xp)

c2 +
d2(yg, yp)

c2 (9)

(xg, y1) and (xp, y1) represent the central coordinates along the x axis, and (yg, x1) and
(yp, x1) indicate the centra; coordinates along the y axis.

Equation (9) can be explained by three parts: IoU loss, and distance along the axis
lines of x and y centres. This improved metric calculates the distance between the central
coordinates of the ground truth and prediction boxes. IIoU loss significantly differs from
DIoU since centres of the x and y axes are considered while calculating loss. In intersection
cases with centrs aligned as shown in Figure 4, GIoU, DIoU loss performs as an IoU loss,
where the I IoU metric reduces the difference between the aspect ratios of the boxes and
helps the network in converging. Figure 4 represents the performance of all loss metrics
in various scenarios where the centres of boxes aligned but aspect ratios were different.
Algorithm 1 below represents sequential steps involved in estimating the loss metric. A
simulation experiment was carried out to compare all loss metrics, detailed in Section 5.
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Algorithm 1 Improved intersection over union loss estimation.

Input: Bg = (xg
1 , yg

1 , xg
2 , yg

2), Bp = (x1, y1, x2, y2).
Output: LI IoU .

1: Calculating union area of Bg and Bp

2: Ag = (xg
2 − xg

1) ∗ (yg
2 − yg

1)
3: Ap = (xp

2 − xp
1 ) ∗ (yp

2 − yp
1 )

4: Calculating intersection area between Bg and Bp

5: xmax
1 = max(xp

1 , xg
1) , xmin

2 = min(xp
2 , xg

2)
6: ymax

1 = max(yp
1 , yg

1) , ymin
2 = min(yp

2 , yg
2)

7: if xmin
2 > xmax

1 , ymin
2 > ymax

1 then
8: I = ( xmin

2 − xmax
1 ) ∗ (ymin

2 − ymax
1 )

9: else
10: I = 0
11: end if
12: Finding small enclosing convex box
13: xc

1 = min(xp
1 , xg

1) , xc
2 = max(xp

2 , xg
2)

14: yc
1 = min(yp

1 , yg
1) , yc

2 = max(yp
2 , yg

2)
15: C2

w = (xc
2 − xc

1 ) ** 2 , C2
h = (yc

2 − yc
1 ) ** 2 , c2 = C2

w+ C2
h

16: Ac = (xc
2 - xc

1 ) ∗ ( yc
2 -yc

1 )
17: IoU = I/(Ag + Ap - I )
18: GIoU = IoU − (Ac − (Ag + Ap − I))/Ac

19: Calculating central coordinates of boxes Bg and Bp

20: xg
cc = (xg

2 + xg
1)/2 , xp

cc = (xp
2 + xp

1 )/2
21: yg

cc = (yg
2 + yg

1)/2 , yp
cc = (yp

2 + yp
1 )/2

22: Calculating Euclidean distance between central coordinates
23: ρ2 (xg, xp) = (xg

cc − xp
cc) ** 2 + (yg

1 - yp
1 ) ** 2

24: ρ2 (yg, yp) = (yg
cc − yp

cc) ** 2 + (xg
1 - xp

1 ) ** 2
25: I IoU = IoU − ρ2 (xg, xp)/ c2 − ρ2 (yg, yp)/c2

26: return IIoU

5. Simulation Experiment

With the use of synthetic data, a simulation experiment was performed to visualise
the performance of the I IoU loss metric with other metrics. The experimental procedure
was adapted from [46], and various parameters associated with a bounding boxes such
as distance, aspect ratio and scale were considered during the experiment. The central
coordinates (x,y) of the target or ground truth boxes were fixed at (10,10). Seven target
unit boxes were created with different aspect ratios (1:4, 1:3, 1:2, 1:1, 2:1, 3:1, and 4:1) while
maintaining the width-to-height ratio as 1. Anchor boxes were uniformly distributed at
210 data points. Within a fixed radius, anchor boxes were generated around the centre of
(10,10). Then, 210 data points were uniformly chosen to place anchor boxes with 7 different
scales and aspect ratios. This included the cases of overlap and nonoverlap with target
boxes that had initially been created. Areas of anchor boxes were set to 0.5, 0.67, 0.75, 1,
1.33, 1.5, and 2 at different stages of iteration. Similar to the target box, anchor boxes were
also provided with the same range of aspect ratios (1:4, 1:3, 1:2, 1:1, 2:1, 3:1, and 4:1). There
were 115 anchor points, 7 aspect ratios, and 7 different scales adding to 5635 iterations.
There were 7 different target boxes, and 5635 ∗ 7 = 39,445 was the total number of iterations
for the simulation study.

In each iteration of Algorithm 2, the gradient descent algorithm was adapted for
bounding box regression. Prediction at given iteration t is obtained by

Bt
n,s = Bt−1

n,s + α(2− IoUt−1
n,s )∇Bt

n,s (10)
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Bt
n,s corresponds to the prediction box at iteration t, and ∇Bt

n,s denotes gradient loss at
iteration (t− 1). α(2− IoUt−1

n,s ) is multiplied with gradient loss for faster convergence in all
loss functions. The final regression error was evaluated using l1-norm.

Algorithm 2 Simulation experiment on synthetic data.

Input: {{Bn,s}S
s=1}N

n=1 indicates anchor boxes at 115 scattered points within the central
point at (10,10). S = 7× 7 covering 7 different scales and aspect ratio of the anchor
boxes. {Bgt

i }
7
i=1 is the set of ground truth boxes with centre (10,10) and 7 aspect ratios.

α corresponds to learning rate.
Output: Regression error E ∈ RT is calculated for each iteration and 115 scattered points.

1: Initialise E = 0 and iteration limit of 39, 445 (T) .
2: for t = 1→ T do
3: for n = 1→ N do
4: for s = 1→ 7 do
5: for i = 1→ 7 do
6: if α ≤ 80%T then α = 0.1
7: else if α ≤ 90%T then α = 0.01
8: else α = 0.001
9: end if

10: ∇Bt
n,s = ∂L(Bt−1

n,s , Bgt
i )/∂Bt−1

n,s
11: Bt

n,s = Bt−1
n,s + α(2− IoUt−1

n,s ) ∇Bt
n,s

12: E(t) = E(t) + |Bt
n,s − Bgt

i |
13: end for
14: end for
15: end for
16: end for
17: return E

Figure 5 shows the convergence speed of different loss functions over 39,000 iterations.
THe IoU loss metric had the lowest convergence because the gradient remained 0 in cases
where boxes did not overlap. The performance of DIoU loss was better than that of GIoU and
concurrent with results of the literature [46]. The proposed I IoU metric also converged at a
slightly faster rate compared to the DIoU metric. For instance, at iteration 40, IIoU had a loss
value of 2.07 ∗ 104 when compared to DIoU loss, which had 3.516 ∗ 104. DIoU and I IoU loss
converged at iterations 161.8 and 162.6 with total cumulative errors of 5.38 ∗ 106 and 4.12 ∗ 106,
respectively. This indicates that the proposed metric outperformed the previous metric with
better performance and almost the same cost.

Figure 5. Simulation results of regression errors of different loss functions at iteration t.
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We further extended the evaluation experiment of the proposed loss metric on object
detection datasets explained in Section 7.

6. Embedded Deployment

This section details the technical configurations of ROS, embedded software, and
Jetson NX, a low-powered embedded platform designed by NVIDIA for GPU computing
in edge devices.

6.1. Robot Operating System(ROS)

ROS is an open-source software development kit for robotics applications. It provides
services of a traditional operating system such as hardware abstraction, device control at a
low level, cross-functionality between various systems, message passing between processes,
and the management of data packets. The ROS communication infrastructure manages
many individual operations. It also provides services for transmitting data packets via
topics that are extremely helpful in computer vision when many sensors are involved [47].

The sections below briefly provide an introduction to three levels of essential concepts
in understanding ROS.

6.1.1. ROS Filesystem Level

ROS packages consist of ROS run-time processes called nodes, an ROS-dependent
library, and configuration files. Packages contain all essential information and data to
a granular level for successfully building software. A significant functionality of the
packages is providing the placeholder for ROS messages that are essential for transmitting
and receiving information between individual nodes. As shown in Figure 6, each node can
work independently and transmit messages when required.

Figure 6. ROS nodes and messages.

6.1.2. ROS Computation

ROS nodes are single units, a modular structure designed to perform tasks. The
processor acts as a primary or master node in a robotic architecture that receives information
from individual sensor nodes. Messages are published in the ROS pipeline through topics.
A node can subscribe to an issue and simultaneously publish data values to a different
topic. These topics are instantaneously available in the ROS queue.

6.1.3. ROS Community Level

ROS community provides resources across various distributions of the framework.
It is easier to collect the software and cross-compare with different versions. Since ROS
is open-source, it provides guidance and support to developers to release their custom
packages for other applications.

The latest version of ROS framework ROS 2 was utilised in this research. To gain
advantages of packages from earlier revisions, the ros1-bridge module acts as helper
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node. The developed neural network can be used for various applications such as a traffic
monitoring systems from a control room or placing an edge device in a remote location to
observe traffic flow. Real-time model performance and evaluation with network weights of
the architecture were tested in NVIDIA devices. The following section details the complete
description of the hardware and software setup required for deployment.

6.2. Embedded System

Jetson Xavier NX was used because of its low cost and capacity for handling graphical
and computational tasks. This device acts as a small artificial-intelligence (AI) computer.
The size of the module is 70 × 45 mm. This module achieves very high performance
while running on 10 watts of power. It is equipped with 40 expansion headers for external
peripherals such as I2C and SPI. This device can deliver up to 21 tera operations per second
(TOPS), so it is reliable for edge devices and systems. It is also equipped with 6 Carmel
ARM CPUs, 48 tensor cores, 384 NVIDIA CUDA cores, and two NVIDIA deep-learning
accelerator (NVDLA) engines. It can simultaneously process multiple neural-network
nodes in parallel and high-resolution data from various sensors [48].

Power usage is reduced for sensors and peripheral devices while still enabling more
software stacks on the device. The Jetson developer image was preconfigured with Ubuntu
Linux ×64, version 18.04, so it is more feasible to install Pytorch and Tensorflow packages
along with the needed Python libraries. The developer kit comprised 4 USB slots that were
beneficial in our research.

(a) (b)
Figure 7. Distribution of objects in training dataset. (a) PASCAL VOC; (b) CGMU.

7. Dataset Preparation

Dataset preparation and annotation are very important factors in developing an
efficient object detector. Two phases of training and evaluation were carried out with
the use of the PASCAL VOC [17] and CGMU dataset [18]. In the first phase, PASCAL
VOC 2007 and 2012 training and validation datasets were utilised for training the network,
and PASCAL 2007 was used for testing the network. The training and validation dataset
consisted of 16,551 images, and the testing dataset comprised 4952 images. The size
of the images in the PASCAL dataset was 512 × 512. In the second phase, the CGMU
dataset, acquired by road-side cameras at the city of Montreal, Canada, was utilised. The
training and validation dataset consisted of 8007 images, and the testing dataset consisted
of 1000 images. Since the CGMU dataset is very dense, image size was chosen to be 300 ×
300. Figure 7 shows the distribution of objects in the PASCAL and CGMU datasets. Objects
in the CGMU dataset are densely packed, thus hindering detection tasks.

PASCAL VOC dataset was separately trained with LIoU , LGIoU , LDIoU and LI IoU
metrics on the YOLOv5n6 model. CGMU was similarly trained on YOLOv5s model.
Performance evaluation is explained in Section 9.
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8. Network Training and Testing Infrastructure

This section briefly details the setup for training and testing the YOLOv5 network.

8.1. Training Infrastructure

Network training was performed in Indiana University’s large memory computer
cluster called Carbonate. Carbonate provides specialised deep learning and GPU partitions
to accelerate growth in deep-learning applications, and to provide access to students and
research labs. Carbonate servers are managed by UITS Research Technologies to facilitate
research activities [49]. The configuration of the training computer is listed below:

• Intel Xeon Gold 6126 12-core CPUs;
• 12 GPU-accelerated Lenovo ThinkSystem SD530 deep learning;
• Tesla V100;
• Operating system: UBUNTU 18.04;
• Pytorch Version 1.7.1;
• Python 3.7.3.

8.2. Testing Infrastructure

The Internet of Things (IoT) Collaboratory at Indiana University Purdue University at
Indianapolis provided the infrastructure to evaluate this research. The evaluation portion
of this research was conducted in two phases. In the first phase, the testing dataset was
experimentally evaluated out to observe the performance improvement of the model. In
the second phase, outdoor testing was carried out.

• NVIDIA Jetson NX;
• ROS2 Foxy version;
• Logitech USB camera;
• Tesla V100;
• NVIDIA GeForce GTX 1080;
• Linux4tegra operating system (Ubuntu-derived OS);
• Pytorch Version 1.7.1;
• Python 3.7.3.

9. Performance Evaluation
9.1. Performance Evaluation on PASCAL and CGMU Datasets

Network weights of the trained models with different loss metric were individually
evaluated in this stage. The main performance measure utilised in this research was AP.
AP = (AP50 + AP55 + AP60 + ... + AP95)/10, where each AP value indicates different IoU
thresholds, namely, 50%, 55%, 60% , ..., 95%. All AP values are reported for loss metrics and
are analysed. The confidence threshold for the evaluating networks was 0.001. Relative
improvements were estimated for each loss metric on the basis of LIoU . The final rows of
Tables 1 and 2 indicate the relative improvement of LI IoU in percentages.

Table 1 shows that LI IoU displayed significant improvement in performance over the
metrics. The relative improvement of the metric showed improved results across all thresholds,
and the network demonstrated higher performance in AP50, AP60, and AP75, with an overall
increase of 0.94% in AP. We could also observe that the AP50 of LI IoU was at 78.6 and greater
compared to that in the SSD512 architecture [6] trained in the PASCAL VOC dataset. Table 2
shows performance improvement in AP50, AP55, AP60, AP65, AP70, and AP.

9.2. Real-Time Testing and Analysis

Model weights from YOLOv5n6 (baseline)-improved YOLOv5n6 and SSD networks,
which were trained and evaluated with PASCAL VOC dataset, are utilised in this section.
Model weights were tested in real time using NVIDIA Jetson NX and ROS 2 middleware.
ROS 2 Foxy was installed in Jetson, followed by a configuration of the ROS environment
and setup of the workspace. ROS needed transport libraries to create a publisher camera
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node to access the USB camera. This node also creates a topic, USB/cameratopic, to publish
the captured frames to the ROS queue. A subscriber node was designed for storing the
incoming data from USB/cameratopic, and network weights of the architecture were
transferred to the Jetson.

Table 1. Quantitative analysis of YOLOv5n6 trained using LIoU , LGIoU , LDIoU and LI IoU . Results
reported on PASCAL VOC 2007 test dataset.

Loss Evaluation AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95 AP

LIoU 78.6 76.1 73.2 69.2 64 57.5 48.5 36.4 20.1 2.8 52.7

LGIoU 78.5 76.3 73.2 68.6 63.7 57 48.9 36.4 21.1 3.4 52.7

Relative improve-
ment

−0.1 0.2 0 0.4 −0.3 0.5 0.4 0 1 1.4 0

LDIoU 78.6 76.3 73.2 69.1 63.6 57.3 49.5 37.4 21.6 3.3 53

Relative improve-
ment

0 0.2 0 −0.1 −0.4 −0.2 1 1 1.5 0.5 0.3

LI IoU 78.7 76.5 73.5 69.3 64.1 57.8 50.2 37.5 21.4 3.2 53.2

Relative improve-
ment

0.1 0.4 0.3 0.1 0.1 0.3 0.7 1.1 1.3 0.4 0.5

Relative improve-
ment%

0.13 0.52 0.41 0.14 0.15 0.52 0.15 3.02 6.4 14 0.94

Table 2. Quantitative analysis of YOLOv5s trained using LIoU , LGIoU , LDIoU and LI IoU . Results
reported on CGMU test dataset.

Loss Evaluation AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95 AP

LIoU 48.8 45.8 42.4 38.3 32.3 27.7 20.7 13.6 6.2 0.79 27.7

LGIoU 49.6 46 42.9 38.6 34.2 28.5 22.1 14.7 5.6 1.0 28.3

Relative improve-
ment

0.8 0.2 0.5 0.3 1.9 0.8 1.4 1.1 −0.6 0.21 0.6

LDIoU 49.5 46.5 43.1 39 33.2 28.3 22.2 13.2 6.4 1.2 28.3

Relative improve-
ment

0.7 0.7 0.7 0.7 0.9 0.6 1.5 −0.4 0.2 0.41 0.6

LI IoU 52.1 48.6 44.6 40.5 35.5 28 18.5 11.6 4.6 0.6 28.5

Relative improve-
ment

3.3 2.8 2.2 2.2 3.2 0.3 −2.2 −2 −1.6 −0.19 0.8

Relative improve-
ment%

6.76 11.6 5.18 5.74 9.9 0.11 −10.6 −14.7 −25.8 −24 2.89

A USB camera was installed on the Jetson module to test the model in real time. When
the ROS shell script had been activated, the camera started publishing frames to the topic.
The work flow of the detection module is shown in Figure 8. The subscriber node that
captured the frame downsampled it to 512 × 512 before processing it. Detection results
were stored in a local repository. This process was repeated for YOLOv5n6 (baseline),
improving the YOLOv5n6 and SSD architectures. Experiments were repeated in multiple
outdoor environments ranging from busy crowded areas to empty parking lots, and FPS
was observed. Figure 9 represents the average FPS that we obtained for each architecture,
and model parameters in millions. The YOLOv5n6 model operated at approximately 25 FPS
as compared to SSD operating at 7 FPS. A higher number of parameters associated with
SSD is a factor to low FPS. The object detection results and corresponding bounding boxes
of SSD, and improved YOLOv5n6 models are shown in Figure 10. The SSD network was
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unable to detect more objects and produced inaccurate predictions Figure 10a as compared
to YOLOv5n6, shown in Figure 10b.

Figure 8. System workflow for real-time object detection.

Figure 9. Performance evaluation of YOLOv5n6, improved YOLOv5n6, SSD architectures in real-time
outdoor environments.

(a) (b)
Figure 10. Comparison of detection results between SSD and Improved YOLOv5n6 in real time.
(a) Real-time detection results from SSD. (b) Real-time detection results from improved YOLOv5n6.
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10. Conclusions

In this research, recent trends and developments in object detection and bounding box
regression were addressed along with challenges associated with deploying complex CV
algorithms on resource-constrained devices. An improved loss metric was proposed after
evaluating existing loss metrics. The proposed metric was implemented in a lightweight
YOLOv5 network, and laboratory evaluation experiments performed on PASCAL 2007 and
CGMU test datasets showed improved performance. Further experiments were carried out
to analyse the efficiency of the research in real time. The network model was deployed in
an embedded framework, NVIDIA Jetson NX, with ROS 2. Future works could involve
developing a semiautonomous robot with the proposed metric, with additional sensors
such as LIDAR and RADAR.
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