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Abstract: In-memory computing (IMC) aims to solve the performance gap between CPU and memo-
ries introduced by the memory wall. However, it does not address the energy wall problem caused
by data transfer over memory hierarchies. This paper proposes the data-locality management unit
(DMU) to efficiently transfer data from a DRAM memory to a computational SRAM (C-SRAM)
memory allowing IMC operations. The DMU is tightly coupled within the C-SRAM and allows
one to align the data structure in order to perform effective in-memory computation. We propose
a dedicated instruction set within the DMU to issue data transfers. The performance evaluation of
a system integrating C-SRAM within the DMU compared to a reference scalar system architecture
shows an increase from ×5.73 to ×11.01 in speed-up and from ×29.49 to ×46.67 in energy reduction,
versus a system integrating C-SRAM without any transfer mechanism compared to a reference scalar
system architecture.

Keywords: in-memory computing; energy modeling; non-von neumann; instruction set; compilation;
stencils; convolutions; sram; energy wall; memory wall

1. Introduction

Von Neumann architectures are limited by the performance bottleneck characterized
by the “memory wall”, i.e., the performance limitation of memory units compared to CPU,
and the “energy wall”, i.e., the gap between the energies consumed for computation and
data transfers between different system components.

Figure 1a exposes the energy discrepancy between each component of a standard von
Neumann architecture. We note that the energy increases by ×100 between the CPU and the
cache memory, and by ×10, 000 between the CPU and the DRAM memory [1]. In-memory
computing (IMC) is a solution to implement non-von Neumann architectures and mitigate
the memory wall by moving computation directly into memory units [2]. It allows the
reduction of data transfers and thus energy consumption. However, the efficiency of IMC
depends on the proper arrangement of data structures. Indeed, to be correctly computed in
the memory, data should be arranged to respect a precise order (e.g., aligned in memory
rows) imposed by IMC hardware design constraints.

While various state-of-the-art works propose IMC solutions, very few take into account
their integration to complete computer systems while describing efficient methods to
transfer data from IMC to high-latency memories or peripherals. This lack of consideration
can be explained by the majority of IMC architectures being currently specialized for a few
use cases, i.e., AI and big data, which limits their efficiency for general-purpose computing.
We propose a data-locality management unit (DMU), a transfer block presented in Figure 1b,
coupled to an SRAM-based IMC unit to generate efficient data transfer and reorganization
through a dedicated instruction set. As IMC architecture, we consider the computational
SRAM (C-SRAM), an SRAM-based bit-parallel IMC architecture detailed in [2–4], and able
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to perform logical and arithmetical operations in-parallel thanks to an arithmetic and logic
unit (ALU) in its periphery. We integrate it within a CPU and a DRAM as main memory.

Figure 1. (a) Performance bottlenecks of von Neumann architecture; energy costs are based on [1].
(b) Proposed architecture with IMC to mitigate the “memory wall” and a “DMU” block to mitigate
the “energy wall” between IMC and low-latency memory.

The system evaluation of C-SRAM and DMU on three applications—frame differenc-
ing, Sobel filter and matrix multiplication—versus a system integrating C-SRAM without
a dedicated transfer mechanism shows an increase from ×5.73 to ×11.01 in speed-up and
from ×29.49 to ×46.67 in energy reduction, according to a baseline scalar architecture.

The rest of this paper is organized as follows. Section 2 presents related works.
Section 3 details our proposed solution. Section 4 evaluates the DMU on three applications
and discusses the gains obtained through its integration. Finally, Section 5 concludes the
paper and exposes future works.

2. Related Work
2.1. In-Memory Computing (IMC)

IMC architectures of the state-of-the-art can be differentiated by their technology
and programming model [5]. Volatile memory-based IMC architectures include DRAM
and SRAM technologies. DRAM-based IMC architectures propose to enhance DRAM
memories with bulk-bitwise computation operators. These solutions offer cost and area
efficiency and large parallelism, although their arithmetic support is limited to logical or
specialized operators [6,7]. SRAM-based IMC architectures are less scalable than DRAM-
based solutions in terms of design, but they implement more elaborated computation
operators, either through strict IMC using bit-lines and sense amplifiers, or through near-
memory computing by using an arithmetic logic unit (ALU) in the periphery of the bit-
cell array [3,8,9]. Other approaches using emerging technologies such as MRAM or Re-
RAM [10,11] have been explored. They present interesting opportunities in terms of access
latency and nonvolatile capability, but have drawbacks in terms of cycle-to-cycle variability
and analog-to-digital conversion of input data.
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Despite all these technological differences, a common challenge regarding system
integration is the specific memory management required to properly map data to be
able to perform effective computations. A study of the literature presents three main
mapping strategies of existing IMC architectures. First, bit-parallel mapping requires each
operand of a given operation to be aligned on the same bit-cells to be computed, which
induces the logical memory alignment of data [3,6]. Then, in bit-serial data mapping,
operands are aligned on the same rows, and all bits of a given operand are aligned on
the same bit-cell [8]. This requires data to be physically transposed in the array to be
effectively computed. Third, crossbar mapping is a 2D mapping scheme used to perform
computation in the form of convolutions between analog data driven through different
word-lines and data along each bit-line [11]. Bit-serial and crossbar mapping schemes
show advantages in terms of computation capabilities, but are difficult to integrate due to
their data management constraints (data transposing for bit-serial and digital-to-analog
conversion and rearrangement for crossbar) which conflict with the inherent bit-parallel
nature of modern computer systems.

In this paper, we focus on an SRAM-based bit-parallel architecture, which shows a
better compromise between computation capability, system integration and data compati-
bility [2–4].

2.2. Data Management Solutions for IMC

In this subsection, we focus on data management solutions devised by previous
works for IMC architectures. First, IMC architectures based on emerging technologies
evaluate their solutions while not considering the cost of external data transfers with high-
latency memories or peripherals, as their architectures are not yet mature for system
integration. We only retain two state-of-the-art solutions of data management when
focusing on conventional technologies, e.g., DRAM and SRAM-based.

“PIM-enabled instructions” [12] (PEI) establishes the specifications for a generic IMC
architecture while also defining its integration to the memory hierarchy. PEI computation
units (PCU) are integrated within a hybrid memory cube, each managing a DRAM module
to perform NMC on the main memory while a local PCU is coupled to the host CPU to
perform NMC at the cache-level, e.g., on SRAM. While the paper proposes hardware and
software mechanisms to ensure data coherency and locality management, the complexity of
this solution makes this architecture difficult to implement and program. Moreover, the cost
of data movements for PCUs computing on DRAM means that data management needs to
be statically scheduled to reduce dynamic rearrangement as often as possible. Finally, PEI
does not define specialized instructions for memory accesses, limiting the charge of data
management to the host CPU and extending it to DRAM memory.

The duality cache [8] is designed to be implemented in the last-level cache (LLC). Its
data management mechanism is based on the cache controller of the LLC to transfer data
to different data banks. Other mechanisms such as the transpose memory unit (TMU)
are implemented to transpose data from bit-parallel-in-DRAM to bit-serial-in-IMC. While
the hardware and software environment of the duality cache make for an effective data
management mechanism for its target applications (GPU kernels, especially AI), it is not
explicitly programmable and it is constraining for developers. This limitation implies
the static allocation and management of data before computation, and according to the
hardware mechanisms of the duality cache.

The transfer mechanism we describe in this paper proposes a dedicated instruction
set, integrated as an extension of the IMC ISA to offer explicit management on dynamically
allocated data to developers. Compared to previous solutions, our interest is compatibility
with general-purpose computing.
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3. DMU Specification
3.1. Overview

In this section, we present a DMU, a memory controller architecture to provide memory
access instructions to IMC to efficiently transfer and reorganize data before computation.
We implement in the DMU the control of source and destination offsets to enable fine-grain
data reorganization in IMC as well as DRAM memory to address alignment constraints
necessary for certain applications, and the implementation of two different operating modes
makes online data padding available. Finally, the DMU implements a dedicated instruction
set to program data transfers in a single clock cycle, compared to classical DMA solutions.
This instruction set is implemented as a subset of the C-SRAM instruction set architecture.
The DMU controller is proposed to be tightly coupled in the periphery of the IMC unit, as
shown in Figure 2. This means that there is a direct interface between the DMU and IMC
without going through the system bus, which is one of the main difference compared to
existing DMA controllers.

Figure 2. The integration of DMU to IMC offers an instruction set for efficient data transfers as well
as a dedicated transfer bus with the main memory.

3.2. Instruction Set Architecture

Table 1 shows the proposed instructions defined for the DMU. All instructions are
nonblocking for the host architecture, and a BLOCKING_WAIT instruction is implemented
to ensure synchronization between it and the C-SRAM.

Table 1. Summary of DMU instructions.

Operation Parameters

SET_SRC_DRAM_REGION
(Nonblocking)

DRAM base address, region width,
element size

SET_DST_DRAM_REGION
(Nonblocking)

DRAM base address, region width,
element size

READ_TRANSFER
(MEM→IMC, nonblocking)

Source X position, source Y position, dest. IMC
address, length, source offset, dest offset,

operating mode

COPY
(IMC→IMC, nonblocking)

Source IMC address, dest IMC address, source
offset, dest offset, operating mode

WRITE_TRANSFER
(MEM→IMC, nonblocking)

Dest X position, dest Y position, source IMC
address, length, source offset, dest. offset,

operating mode

BLOCKING_WAIT None

SET_SRC_DRAM_REGION and SET_DST_DRAM_REGION take as parameters 2D regions
in DRAM memory space, characterized by: their base address A and their width and
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height, respectively, W and H. The number of bits required for A is architecture-dependent
while the numbers of bits required to encode H and W are implementation-dependent. By
defining in advance the source and destination data structures in DRAM, READ_TRANSFER
and WRITE_TRANSFER instructions only require, respectively, the source and destination
positions (X, Y) in the target region, which can be encoded in log2(W) and log2(H) bits. This
indirect addressing effectively reduces the number of bits required for both instructions,
which are the most frequently called instructions of the instruction set. Figure 3 illustrates
this mechanism from the developer’s point of view.

Figure 3. Representation of a 2D region in the DRAM memory space, defined by SET_DRAM_REGION,
and a single element in said region. This decomposition allows reducing the number of bits required
in transfer instructions for DRAM address.

READ_TRANSFER, WRITE_TRANSFER and COPY can operate to transfer data and per-
form online reorganization. For example, the parameterizing of source and destination
offsets allow the data to be padded upon arrival in the C-SRAM. To cover most use-cases
induced with the configuration of the destination offset, we implement in the DMU two
operating modes through the transfer_start register, illustrated in Figure 4. A zero-
padding mode fills the blanks in between destination data with zeros to perform unsigned
byte extension, while an overwriting mode preserves the data present in the destination
C-SRAM row and updates only relevant bytes. The former is destructive but enables
online byte extension to perform higher-precision arithmetic for workloads such as image
processing or machine learning, while the latter is more suitable for nondestructive data
movements. Since most iterative codes such as convolutions induce strong data redun-
dancy, COPY can be used to duplicate data and mitigate accesses with the DRAM for better
energy efficiency.

Algorithm 1 describes the side effects generated by the READ_TRANSFER instruction,
according to its parameters and the offset mechanism described in Figure 4.

Algorithm 1: READ_TRANSFER description.
Data: x, y, dst_addr, length, src_off, dst_off, op_mode
src_addr = @DRAM[A + E × (src_y×W + src_x)];
forall i ∈ [0, length[ do

for j ∈ [0, E[ do
dst_addr[E × i × dst_off+ j] = src_addr[E × i × src_off+ j];

end
if op_mode == DMU_ZERO_PAD then we overwrite the gaps between written data with zeroes

for j ∈ [1, dst_off[ do
for k ∈ [0, E[ do

dst_addr[E × (i × dst_off+ j)+ k] = 0;
end

end
else we preserve data in gaps between written data

continue;
end

end
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(a)

(b)

Figure 4. DMU operating modes and their impact on destination memory, here an SRAM IMC
memory. (a) Zero-padding mode. (b) Overwriting mode.

4. Evaluation and Results
4.1. Experimental Methodology

Figure 5a,b present, respectively, the reference and the experimental architecture for
the evaluation. The reference architecture is a 1 GHz in-order scalar CPU with a single-level
cache hierarchy of 16 kB data and instruction caches, and a 512 MB LP-DDR main memory.
Our architecture substitutes the 16 kB data cache with an 8 kB data cache, an 8 kB C-SRAM
unit and our DMU controller. Both architectures are equivalent in terms of memory capacity
but differ by their computation capabilities and the usage of each of their memory units.
For each architecture, the cache memories implement a write-through policy to ensure that
the written output data are present in the main memory.

(a) (b)

Figure 5. Experimental memory architectures for the evaluation. All cache units have write-through
policy. Our proposed architecture substitutes the 16 kB L1 D with an 8 kB L1 D, an 8 kB C-SRAM and
a DMU. (a) Reference architecture; (b) proposed architecture.
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Our simulation methodology is based on QEMU in order to perform system-level
modeling and evaluation while performing ISA exploration for IMC as well as our DMU
instruction [13]. We describe and generate events to model the energy and latency costs
of our architecture, from CPU and IMC to the main memory and the cache hierarchy.
Table 2 shows the memory parameters of, respectively, the reference architecture and our
proposed IMC architecture. These parameters were extracted using CACTI [14] and the
characterizations from [2]. Though the specifications of the C-SRAM architecture do not
define fixed dimensions, e.g., a fixed row size and number of rows, we consider a 128-bit
C-SRAM architecture for the rest of this paper.

Table 2. Memory parameters of the reference and proposed architecture, used for the experimental
evaluation.

Component Operational Latency Operational Energy Cost

Reference architecture (REF), using CACTI [14]:

16 kB L1 I/D 1 ns 7.01 pJ

512 MB LP-DDR 17 ns 1.067 nJ

Our evaluated architecture (IMC-DMU), using [2,14]:

16 kB L1 I 1 ns 7.01 pJ

8 kB L1 D 1 ns 4.93 pJ

8 kB L1 C-SRAM 3 ns 7.94 pJ

512 MB LP-DDR 17 ns 1.067 nJ

4.2. Applications

We consider three applications to evaluate our proposed architecture (IMC-DMU)
versus the reference scalar architecture (REF):

• Frame differencing is used in computer vision to perform motion detection [15], and
performs saturated subtraction between two (or more) consecutive frames in a video
stream to highlight pixel differences. It has linear complexity in both computing
and memory.

• A Sobel filter applies two 3× 3 convolution kernels on an input image to generate its
edge-highlighted output. It is a standard operator in Image processing as well as
computer vision to perform edge detection [16]. It has linear arithmetic complexity
and shows constant data redundancy (2× 9 reads per input pixel, on average).

• Matrix-matrix multiplication is used in various domains such as signal processing or
physics modeling, and is a standard of linear algebra as the gemm operator [17]. It has
cubic (O(n3)) complexity in computing and memory and shows quadratic (O(n2))
data redundancy.

4.3. DMU Programming and Data Optimization

Iterative codes using complex patterns such as convolution windows often require
streams of consecutive and redundant data to be transferred and aligned before compu-
tation according to the mapping scheme of IMC. To reduce the overall transfer latency to
populate IMC with said data, we use READ_TRANSFER to copy nonpresent data from the
DRAM to IMC and COPY to directly duplicate redundant data instead of accessing the
DRAM memory.

Figure 6 shows the memory access patterns performed for convolution windows at
stride 1, each element but the very first and last on each row of the image during the visit
is read from the DRAM only once. The rest at some point can be directly read from the
C-SRAM to reduce the overall transfer latency. Figure 7 implements the data management
described in Figure 6. This technique can be applied to other iterative codes such as
stencils, though the appropriate address generations require effort from developers. We are
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currently developing a mechanism to automatically generate data transfers and duplication
from programmable memory access patterns to effortlessly achieve quasi-optimal energy
efficiency. We will soon publish our specifications and our results.

Figure 6. A stream of convolution windows, transferred row-major, shows opportunities of data
duplication to reduce transfer latency.
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Figure 6. A stream of convolution windows, transferred row-major, shows opportunities of data
duplication to reduce transfer latency.

/*
* The following code transfers image data by eight convolution windows to C-SRAM,

* the convolution data are aligned in order to perform vector computation

*/
// CSRAM_NBYTES & CSRAM_ROW_NBYTES are implementation-specific
#define NB_UINT16_PER_ROW (CSRAM_ROW_NBYTES / sizeof(uint16_t))
#define KERN_STRIDE 1
// _csram_16b is the memory mapping of C-SRAM at 16-bit granularity
volatile uint16_t \_csram_16b[CSRAM_NBYTES / CSRAM_ROW_NBYTES][NB_UINT16_PER_ROW];
for(int i = 1; i < img_height-1; i += 1)
{
for(int j = 1; j < img_width-1; j += NB_UINT16_PER_ROW)
{

int nrow = 0;
for(int iker = -1; iker <= 1; iker += 1)
{

READ_TRANSFER(i+iker, j-1, &_csram_16b[nrow], NB_UINT16_PER_ROW, KERN_STRIDE, sizeof(uint16_t), ZERO_PAD);
COPY(&_csram_16b[nrow ][1], &_csram_16b[nrow+1], NB_UINT16_PER_ROW-1, KERN_STRIDE, sizeof(uint16_t), ZERO_PAD);
READ_TRANSFER(i+iker, j , &_csram_16b[nrow+1][NB_UINT16_PER_ROW-1], 1, KERN_STRIDE, sizeof(uint16_t), ZERO_PAD);
COPY(&_csram_16b[nrow+1][1], &_csram_16b[nrow+2], NB_UINT16_PER_ROW-1, KERN_STRIDE, sizeof(uint16_t), ZERO_PAD);
READ_TRANSFER(i+iker, j+1, &_csram_16b[nrow+2][NB_UINT16_PER_ROW-1], 1, KERN_STRIDE, sizeof(uint16_t), ZERO_PAD);

nrow += 3;
}

}
}

Figure 7. Example code transferring convolution windows to C-SRAM using our DMU instruction set.

4.4. Results and Discussion

We evaluated the performance of our proposed architecture, according to a reference
architecture, in terms of speed-ups and energy reductions. We considered three scenarios:
(1) using the C-SRAM without DMU (C-SRAM-only), (2) using the C-SRAM with the
proposed DMU controller to fetch input data strictly from the main memory and (C-
SRAM+DMU) and (3) using the C-SRAM with the proposed DMU controller to perform
data transfers and data reuse whenever possible. In case 1, the data are transferred from
the L1 data cache to the C-SRAM by the CPU, while in cases 2 and 3, the CPU issues
data transfers directly between the main memory and the C-SRAM using the DMU. Case
3 is particularly relevant to the Sobel filter, which presents data redundancy due to the
application of the convolution filters on the input images.

Figure 8 shows the energy reduction and speed-up for the three applications, compared
to the reference scalar architecture. The X-axis represents the size of the inputs, and Y-axis
represents the improvement factors evaluated for each application (higher is better). Table 3
shows the average of the maximum speed-up and energy reductions evaluated for each
implementation across all applications. While the C-SRAM-only implementation shows
improvement compared to the scalar system, the integration of the DMU to the C-SRAM
improves the speed-up and energy reduction, respectively, from ×5.73 and ×11.01 to ×29.49
and ×46.67.

Figure 7. Example code transferring convolution windows to C-SRAM using our DMU instruction set.

4.4. Results and Discussion

We evaluated the performance of our proposed architecture, according to a reference
architecture, in terms of speed-ups and energy reductions. We considered three scenarios:
(1) using the C-SRAM without DMU (C-SRAM-only), (2) using the C-SRAM with the
proposed DMU controller to fetch input data strictly from the main memory and (C-
SRAM+DMU) and (3) using the C-SRAM with the proposed DMU controller to perform
data transfers and data reuse whenever possible. In case 1, the data are transferred from
the L1 data cache to the C-SRAM by the CPU, while in cases 2 and 3, the CPU issues
data transfers directly between the main memory and the C-SRAM using the DMU. Case
3 is particularly relevant to the Sobel filter, which presents data redundancy due to the
application of the convolution filters on the input images.

Figure 8 shows the energy reduction and speed-up for the three applications, compared
to the reference scalar architecture. The X-axis represents the size of the inputs, and Y-axis
represents the improvement factors evaluated for each application (higher is better). Table 3
shows the average of the maximum speed-up and energy reductions evaluated for each
implementation across all applications. While the C-SRAM-only implementation shows
improvement compared to the scalar system, the integration of the DMU to the C-SRAM
improves the speed-up and energy reduction, respectively, from ×5.73 and ×11.01 to ×29.49
and ×46.67.
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Figure 8. Energy reduction and speed-up for all applications compared to the reference scalar
architecture. The X and Y axes of the plots are, respectively, the data sizes and the improvement
factors, i.e., higher is better.

Table 3. Average maximum speed-up and energy reduction per evaluated implementation.

Average Maximum
Speed-Up

Average Maximum
Energy Reduction

C-SRAM-only ×5.73 ×11.01

C-SRAM + DMU ×29.49 ×46.67

4.4.1. Frame Differencing

We observe that both the speed-up and the energy reduction are similar without and
with the DMU for small resolutions, but are significantly improved by using the DMU
starting 100× 100 image resolution, with peak factors achieved of, respectively, ×48.54 and×57.09, compared to ×7.72 and ×10.35 when using only the C-SRAM. Because the DMU
offers a direct transfer bus between the main memory and C-SRAM, the entirety of the
input data can be fetched directly from the C-SRAM without generating as much conflict
misses on the L1 data cache. Our hypothesis is supported by the performance gap between
the C-SRAM-only and the C-SRAM + DMU implementation getting wider as the images
get larger starting 100× 100 resolution. The input and output sizes become too large for the
L1 data cache.

4.4.2. Sobel Filter

Similar to frame differencing, the speed-up and energy consumption of the Sobel filter
is consistently improved by the DMU. In addition, the Sobel filter offers the opportunity
to perform data reuse between consecutive convolution windows by reading part of their
components directly from the C-SRAM instead of the main memory. By using the DMU
without reusing data, the peak speed-up and energy reduction compared to the reference
scalar architecture is ×11.57 and ×33.41, while the data reuse implementation shows factors
of ×10.98 and ×52.22, which shows a trade-off between the execution performance of C-
SRAM + DMU and its energy efficiency. This trade-off is explained by the overhead of
the address generation algorithm required for IMC data duplication. The overhead might
change depending on the implementation of the algorithm and the CPU performance.
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4.4.3. Matrix-Matrix Multiplication

The overall performance of matrix-matrix multiplication is almost similar with and
without DMU on small matrices. However, for both implementations the speed-up and
energy reduction compared to the reference architecture improve significantly starting from
16 kB matrices, to, respectively, ×7.35 and ×30.93 for the C-SRAM + DMU implementation.
The improvement factors are higher for C-SRAM + DMU at this input size because only
one of the two operand matrices is transferred through the L1 data cache in this imple-
mentation, contrary to the C-SRAM-only implementation, which transfers all input and
output matrices through the L1 data cache. Furthermore, the performance drops for both
implementations at a 64 kB input size, because the capacity of the L1 data cache has been
attained on the experimental architecture to store the first operand matrix. The fact that
this drop is more significant for the C-SRAM + DMU implementation compared to the
C-SRAM-only variant shows the impact of the cache hierarchy on the performance of IMC
architectures without any dedicated transfer mechanism.

5. Conclusions

We presented the DMU, a programmable memory controller architecture to efficiently
transfer and reorganize data between the SRAM IMC memory and the main memory. We
integrated the DMU in a C-SRAM architecture and evaluated the energy reduction and
speed-up for three applications, compared to a reference scalar architecture. The integration
of the DMU to C-SRAM improved the speed-up and energy reduction, respectively, from×5.73 and ×11.01 to ×29.49 and ×46.67.

Our future works include the physical implementation of the DMU on a test chip
for the validation of our experiments and the compiler support of its ISA to implement
an efficient programming model at the language level. We also plan to describe the
specifications of a more elaborate instruction set, able to transfer complex data structures
such as stencil kernels and convolution windows using pattern descriptors, in order to
automate transfer optimizations at the hardware level.
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