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Abstract: When deep neural network (DNN) is extensively utilized for edge AI (Artificial Intelli-
gence), for example, the Internet of things (IoT) and autonomous vehicles, it makes CMOS (Com-
plementary Metal Oxide Semiconductor)-based conventional computers suffer from overly large
computing loads. Memristor-based devices are emerging as an option to conduct computing in
memory for DNNs to make them faster, much more energy efficient, and accurate. Despite having
excellent properties, the memristor-based DNNs are yet to be commercially available because of
Stuck-At-Fault (SAF) defects. A Mapping Transformation (MT) method is proposed in this paper
to mitigate Stuck-at-Fault (SAF) defects from memristor-based DNNs. First, the weight distribu-
tion for the VGG8 model with the CIFAR10 dataset is presented and analyzed. Then, the MT
method is used for recovering inference accuracies at 0.1% to 50% SAFs with two typical cases,
SA1 (Stuck-At-One): SA0 (Stuck-At-Zero) = 5:1 and 1:5, respectively. The experiment results show
that the MT method can recover DNNs to their original inference accuracies (90%) when the ratio of
SAFs is smaller than 2.5%. Moreover, even when the SAF is in the extreme condition of 50%, it is still
highly efficient to recover the inference accuracy to 80% and 21%. What is more, the MT method acts
as a regulator to avoid energy and latency overhead generated by SAFs. Finally, the immunity of the
MT Method against non-linearity is investigated, and we conclude that the MT method can benefit
accuracy, energy, and latency even with high non-linearity LTP = 4 and LTD = −4.

Keywords: memristor; stuck-at-fault; deep neural network; accuracy; energy; latency; edge artificial
intelligence

1. Introduction

Data generated from edge devices are increasing exponentially with the prolifera-
tion of the Internet of Things (IoT). To minimize the data exchange with the cloud, the
edge devices handle more computational tasks than before, including processing, storage,
caching, and load balancing [1]. Besides, the successful implementation of DNNs (Deep
Neural Networks) on the edge device has further increased the computational complex-
ity even more [2]. As edge devices are usually portable and used in real-time scenarios,
the inference accuracy and latency as well as the energy consumption of the system are
critical [3]. However, the conventional CMOS-based edge devices, such as a high-speed
autonomous driving vehicle, face tremendous challenges to provide a quick and reliable
response in nanoseconds or picoseconds. Moreover, this problem becomes difficult to
solve because CMOS technology cannot continuously downscale to drive increment of the
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device speed [4,5]. Furthermore, the conventional CMOS-based edge devices struggle to
adapt to data-centric applications (DNN) due to energy-hungry characteristics. Therefore,
accuracy, latency, and energy consumption have become bottlenecks and restricted further
development of edge AI (Artificial Intelligence) in IoT.

The emerging device—memristor—possesses great potential and can act as a rescuer
from this deadlock. Years after Professor Chua’s postulation [6], Hewlett-Packard man-
ufactured the first memristor device in 2008 and implemented crossbar junctions using
a layer of platinum dioxide, followed by a monolayer film of switching molecules, and
finally a layer of titanium [7]. Then, different materials and structures were proposed for
memristors. For example, amorphous silicon (a-Si) and silver (Ag) have become popular
memristive materials [8]. Later, p-type crystalline silicon was used as a bottom electrode
along with Ag:a-Si structure [9]. Chalcogenide-based devices were also fabricated, where
Ag2Se and Ag were placed between Tungsten electrodes [10]. Likewise, titanium diox-
ide (TiO2)- [11] and hafnium dioxide (H f O2)-based [12] memristors also exhibited all the
excellent traits that can be used in high-density memory and neuromorphic computing
architecture. Apart from excellent characteristics like low computational complexity [13],
low power consumption [14], fast switching speed [15], high endurance [16], excellent
scalability [17], and CMOS-compatibility [18], memristor crossbar arrays can perform the
in situ matrix-vector multiplication which is the most essential operation of the DNN
algorithm [19], as shown in Figure 1. Unfortunately, due to the limitation of the immature
fabrication, low manufacturing yield is common and induces faults for almost all the mem-
ristors [9,12]. These faults can be classified as hard faults or soft faults. If a memristor has
soft faults, e.g., Read-One-Disturb (R1D) and Read-Zero-Disturb (R0D), it can be calibrated
because the resistance/conductance is still changeable with an external stimulus. However,
hard faults, especially Stuck-At-Faults (SAFs), cannot be removed, because memristors
would always stick at high-resistance state (HRS) or low-resistance state (LRS) [12]. Conse-
quently, weight values from mapped memristors and from DNN algorithms have a huge
discrepancy which results in a significant accuracy degradation. What is more, SAFs change
the weight distributions in memristor arrays and impacts overall energy consumption and
system latency.

Figure 1. Memristor crossbar arrays for matrix-vector multiplications.

Some related research works have been implemented by researchers, but most of
them aimed to alleviate the accuracy drop caused by SAFs. One method identifies the
significant weights in the neural network first and then prevents them being mapped to
the abnormal memristors [20,21]. Matrix transformation [22], stuck-at-fault tolerance [23],
and fault-tolerant training with on-line fault detection [24] are some other SAF rescuing
methods for restoring high inference accuracy in DNNs. Those methods are somewhat
successful in restoring the original accuracy in certain extreme hardware failure cases
like 20%. However, their shortcomings are as follows. (1) The above methods cause
hardware overhead by adding additional large, complex control circuitry. (2) The above
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methods disregard reporting the energy for the inference, making practical implementation
inefficient. Actually, it is obvious that the above methods will cause energy overhead. (3)
The above methods increase system latency, degrading the performance of the memristor-
based DNN in edge AI. (4) Most importantly, considering the sporadic nature of the SAF
and the huge number of devices in industry (such as IoT applications), an individual
optimization and custom design for each device is too time consuming and is not realistic.

Therefore, a new technique—Mapping Transformation (MT)—is proposed in this
paper. This method creates a strong immunity against SAFs with the controllable energy
consumption and latency. It does not aim to obtain the optimizing pattern for the individual
device but covers any memristor-based product, and it can be largely used to improve the
overall inference accuracy even as high as 50% in the SAFs case; therefore, it is especially
appropriate for the industry. This paper makes the following contributions:

• In order to investigate the inference accuracy drop in memristor-based DNNs due to
SAFs, the weight distribution for the VGG8 model is presented and analyzed.

• As the SAF defects are immensely random and vary from device to device, the accuracy
drop of a DNN is listed for different SAF ratios from 0.1% to 50% with SA1:SA0 = 5:1
and 1:5, respectively.

• A MT method is proposed to achieve outstanding accuracy recovery even in extremely
high SAF cases.

• The MT method for the accuracy improvement, energy saving, and latency reduction
is validated on the VGG8 model with the CIFAR10 dataset.

• It is also verified that even with the significant non-linear properties, the MT tech-
nology is still effective to recover the accuracy, save energy, and decrease latency in
memristor-based DNNs under various SAF conditions.

• Finally, the proposed MT method is compared with the state-of-the-art.

2. Methodology
2.1. Stuck-At-Fault (SAF)

Memristors typically have a metal–insulator–metal (MIM) structure where the resis-
tance of the device is determined by the insulation layer. When an external stimulus, such
as positive or negative pulse, is applied to a memristor, a certain amount of current flexes
through it and the resistance of the memristor changes between LRS to HRS. However,
sometimes the resistance state becomes forever stuck at HRS or LRS and stays unchanged
as a Stuck-At-Fault (SAF). This is because of the following: (1) During the complicated
fabrication process, the memristor encounters some imperfections, such as oxide thickness
fluctuation, line-edge roughness, and feature size shrinkage, making the memristor mal-
function and become stuck at LRS/HRS [25]. (2) Memristors in a newly fabricated crossbar
array must go through a forming process before performing the read/write operation.
The highly sophisticated process continues as long as 100 usfor lowering the resistance
to LRS from an extremely high initial resistance [12]. However, process variations and
unstable taster voltages can result in overforming, causing the memrisor to become stuck
at LRS [12]. (3) The memristor array structure, as shown in Figure 2, indicates that each
memristor connects Word Line (WL), Bit Line (BL), and Select Line (SL) to perform the
read/write operation. However, sometimes the broken WL or permanent open switch
makes the memristor inaccessible for those operations. No matter what the actual resistance
state is, the broken WL will always cause the read circuit to make a mistake as being HRS.
Therefore, SAFs can be classified into Stuck-At-Zero (SA0) and Stuck-At-One (SA1) fault.
SAFs would significantly degrade the inference accuracy of the memristor-based DNNs,
especially when SAFs have high ratio in memristor arrays. Unfortunately, it is reported
that a 4Mb Hafnium Dioxide (H f O2)-based memristor array shows SA1 and SA0 of 9.04%
and 1.75%, respectively [12]. In another worst-case scenario, overforming causes 60% of
cells in memristor arrays to suffer from SA0 [12]. Most important, the defected cells disturb
resistances of cells in memristor arrays, and thus the energy overhead is obviously to be
generated. This phenomenon can be interpreted by the following equation [26].
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Figure 2. Hardware implementation for Mapping Transformation (MT) method.

Ecell =
1
R

V2
RNTPULSE (1)

In Equation (1), R is the resistance of a memristor. VW is the reading voltage. N is the
number of applied pulses while reading a certain weight, and TPULSE is the pulse width.
The total energy consumption can be estimated as the sum of the energy consumption by
each memristor in an array. As VW , N, and TPULSE remain constant during the reading
operation, the energy consumption Ecell is inversely proportional to the resistance R. When
SA0 dominates SAFs and decreases total R, the energy consumption may increase. On the
other hand, when SA1 dominates SAFs and increases total R, the energy consumption may
decrease. However, because of the co-existence of SA1 and SA0, the energy consumption
in the case with SAFs is higher than that of a fault-free device (fault-free device: device
without considering SAF). This phenomenon will further be described in Section 3.2.2.

2.2. Weight Distribution

Figure 3 represents the weight distributions of the VGG8 model trained with the
CIFAR10 dataset from Layer 0 to Layer 7 and the overall weight distribution of the 8 layers,
where weights are an approximately normal distribution. The number of weights is shown
in each specific range. Although the VGG8 model contains more than 12.97 million weights,
among which, 5.61 million are negative, 3.31 million are positive, and 4.04 million are
neutral, most of them tend towards 0. As also shown in Figure 3, in the VGG8 model, the
mean values of weights in each layer and all layers approach 0, and generally, 99.83% of
total weights are between −3× 10−7 and 3× 10−7. Therefore, when mapping such a VGG8
model to a memristor-based DNN, usually most of the memristors are set to LRS.
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Figure 3. Weight distribution of VGG8 model trained by CIFAR10 dataset.

2.3. Mapping Transformation (MT)

A MT method is proposed in this paper as an efficient rescuer of memristor-based
DNNs from accuracy degradation, and energy and latency overhead. According to the
conventional mapping, algorithmic weights ranging from [−1, 1] are mapped on the
memristor arrays based on the resistance state [LRS, HRS]. The MT method changes that
range and re-initiates it from [0, 1] based on the same [LRS, HRS]; that is, an original weight
is split into two positive weights and then mapped on two memristors. A subtractor is used
to extract the original weight during computation as shown in Figure 2. The algorithm for
weight W in MT method is as follows:

Wa =

{
1 W ≥ 0,
1− |W| W < 0,

(2)

Wb =

{
1−W W > 0,
1 W ≤ 0,

(3)

where Wa and Wb are the two parts of a single weight that will be stored in two memris-
tors. Moreover, during the computation, the original weight will be extracted from two
memristors through a subtraction (Wa −Wb).

Figure 2 represents the hardware implementation of the proposed MT method. Here,
the weights Wa, Wb will be mapped on two memristors according to the cells resistive level
Ra and Rb, respectively. Then, an Op-Amp-based subtractor is used to subtract the weights
during the computation [27].

For example, as shown in Figure 4, weight 0.3 from the algorithm will be mapped
as 1 and 0.7 on two new memristors. At the end, a subtractor is used to get final weights
resulting from 1–0.7. Actually, there are no “1” in the original memristor array, but in two
new arrays, eleven “1” are generated and “1” is 11/18 of two new arrays. From Figure 4,
it can also be interpreted that most of the newly mapped weights on memristors are at
HRS (“1”), and such creations of “1” on memristor arrays will generate significant overlaps
between such HRS and SA1, which in turn suppresses the accuracy degradation caused by
the SA1.
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Figure 4. Mapping Transformation (MT) method.

Additionally, the MT method can be effective to manage energy and latency. Even
though the MT method uses two memristors to represent one weight, it consumes less
energy than that in the conventional mapping. For example, as shown in Figure 4, the
conventional mapping method will map weight 0.3 (LRS) directly to one memristor. How-
ever, after MT method is applied, two memristors—1 (HRS) and 0.7 (HRS)—are utilized.
According to Equation (1), HRS means higher resistance R and lower energy consumption,
because 1/0.3 > 1/1 + 1/0.7. As for the latency, in the MT method, two new memristors
are being read simultaneously during computation, not one after another. Therefore, the MT
method is always reported to have constant latency just like a fault-free memristor array.

3. Result and Discussion

In order to evaluate the proposed MT method, the DNN+NeuroSim platform is uti-
lized in this paper. DNN+NeuroSim is an integrated framework that emulates inference
performance or on-chip training performance on in-memory computing architecture [28].
Especially, an 8-layer VGG network with CIFAR-10 dataset is employed in DNN+NeuroSim
to provide accuracy, energy, and latency results of the hardware for our work. Most impor-
tantly, DNN+NeuroSim is based on the real device: 40 nm Ag:a-Si memristor. As shown in
Figure 5, the fabricated memristor with Silver (Ag) and Silicon (Si), as an active layer, is
tested and its current-pulse characteristics, maximum/minimum resistance, non-linearity,
and number of conductance level are utilized in DNN+NeuroSim for system evaluations.
The curves indicates that the memristor is programmed by consecutive 100 identical pos-
itive (LTP, 3.2 V, 300 µs) pulses followed by consecutive 100 identical negative pulses
(LTD, −2.8 V, 300 µs) [8]. The conductance is measured at 1 V just after each programmed
pulse and the read current is plotted. In addition, in order to consider the impact of some
hidden dynamics, such as the inter-cycle variability of a memristor, the standard/Gaussian
distribution N (µ, σ) is used in all our experiments on the DNN+NeuroSim. σ is set as 0.3%
for such an inter-cycle variability according to testing results of manufactured memristors
in Figure 5.
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Figure 5. Ag:a-Si based memristor Device.

3.1. Weight Distribution with MT

The MT method turns out to be efficient in restoring accuracy as well as controlling the
energy and latency. As SAFs are sporadic and the ratio of SA1 and SA0 can vary, we will
analyze two typical SA1:SA0 ratios, 5:1, and 1:5, to cover most scenarios. Algorithm 1 shows
the pseudocode of the MT method. Taking the same VGG-8 model trained by CIFAR-10
dataset as an example, after the MT is applied, the weight distribution of the model changes
as shown in Figure 6. Two new arrays totally include 12.97 × 2 million memristors. In one
array, the number of “1” is 7.35 million as 56.67% of all elements. The other array contains
9.65 million of “1” which is 74.40% of all elements. Totally, more than 18 million “1” are
created which is 65.54% of the total weights. In addition, more than 7 million (34.46%)
weights are greater than or equal to 0.9 and less than 1.

As a huge number of “1” is mapped on the memristor array, most of the SA1 will be
overlapped with the newly generated “1”. Besides, newly generated 34.46% of memris-
tors are also closer to 1, and if SAFs happen to this 34.46% of cells, the damage will be
insignificant.

Figure 6. Weight distribution of VGG8 model after MT method is applied.
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Algorithm 1: Mapping Transformation
Input :Weight Gradient Matrix, Matrix Element Index i, Matrix Element Maximum

value k, Stuck at 1 rate SA1, Stuck at 0 rate SA0.

1 for i = 1, 2, . . . ., k− 1 in Weight Gradient Matrix do
2 if (Wi >= 0) then
3 W+

i = 1 //a set of weight matrix;
4 W−i = 1−Wi //another set of weight matrix;
5 else
6 W+

i = 1− |Wi|;
7 W−i = 1;
8 end
9 Append W+

i value to a Matrix, Matp and W−i value to another matrix Matn;
10 end
11 F1 = random()×100% //failure rate generation
12 for i = 1, . . . ., k− 1 in Matp do
13 if (F1 <= SA1) then
14 W+

i = 1;
15 else
16 W+

i = W+
i ;

17 end
18 if (F1 <= SA0) then
19 W+

i = 0;
20 else
21 W+

i = W+
i ;

22 end
23 end
24 for i = 1, . . . ., k− 1 in Matn do
25 if (F1 <= SA1) then
26 W−i = 1;
27 else
28 W−i = W−i ;
29 end
30 if (F1 <= SA0) then
31 W−i = 0;
32 else
33 W−i = W−i ;
34 end
35 end
36 return Matp - Matn //final weight matrix

3.2. Impact of MT Method
3.2.1. Accuracy

Before applying the MT method, SAFs are introduced in the memristor array. As listed
in Tables 1 and 2, the accuracy exponentially degrades. Under as small as 2.5% SAFs with
both SA1:SA0 = 5:1 and SA1:SA0 = 1:5, DNNs are damaged completely and provided 10%
accuracy which is merely equivalent to a random guessing.

After applying the MT method, from Tables 1 and 2, accuracies are regained to 90% in
most of cases less than 2.5% SAFs. As the MT method is to transform most of the weights
from 0 to 1 or closer to 1, it can regain maximum accuracy in those conditions where SA1
dominates SAFs. Therefore, it concludes that when applying the MT method for 20%
SAFs, the DNN with SA1:SA0 = 5:1 regains the maximum accuracy of 88% due to the
SA1 dominancy; the DNN with SA1:SA0 = 1:5 regains accuracy only to 63%, because SA1
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becomes minor as compared to SA0. In addition, even under extremely high SAFs as 50%
with SA1:SA0 = 5:1, the MT method still enables the DNN to have strong immunity to SAFs
and restores up to as high as 80% accuracy.

Table 1. Energy and latency comparison when SA1:SA0 = 5:1.

SAF
(SA1 & SA0)

Before MTa After MT

Energy (J) Latency (s) Accuracy Energy (J) Latency (s) Accuracy

0.1% 2.550 × 10−5 66.490 × 10−5 90% 2.334 × 10−5 66.395 × 10−5 90%
1.0% 2.550 × 10−5 66.499 × 10−5 42% 2.335 × 10−5 66.401 × 10−5 90%
2.5% 2.550 × 10−5 66.479 × 10−5 10% 2.335 × 10−5 66.398 × 10−5 90%
20% 7.130 × 10−5 12.019 × 10−4 10% 2.330 × 10−5 66.397 × 10−5 88%
50% 7.127 × 10−5 12.019 × 10−4 10% 2.311 × 10−5 66.397 × 10−5 80%

MTa: Mapping Transformation.

Table 2. Energy and latency comparison when SA1:SA0 = 1:5.

SAF
(SA1 & SA0)

Before MTa After MT

Energy (J) Latency (s) Accuracy Energy (J) Latency (s) Accuracy

0.1% 2.542 × 10−5 66.465 × 10−5 88% 2.335 × 10−5 66.397 × 10−5 90%
1.0% 9.542 × 10−5 12.019 × 10−4 10% 2.336 × 10−5 66.401 × 10−5 90%
2.5% 9.517 × 10−5 12.019 × 10−4 10% 2.332 × 10−5 66.397 × 10−5 89%
20% 9.035 × 10−5 12.019 × 10−4 10% 2.274 × 10−5 66.387 × 10−5 63%
50% 9.029 × 10−5 12.019 × 10−4 10% 2.226 × 10−5 66.388 × 10−5 21%

MTa: Mapping Transformation.

3.2.2. Energy

In Table 1, SA1:SA0 = 5:1, and with the increment of the percentage of SAFs, the
number of SA1 cells stuck at HRS increases. Before applying the MT method, with the
increment in SA1, the R in Equation (1) will increase, and the total energy consumption
should decrease. However, instead, a large number of SAFs cause energy overhead because
of the coexistence of SA1 and SA0. In general, in a memristor-based DNN, the read circuit
is designed to sense the resistance of a memristor and uses such resistance to represent
the weight. Normally, a weight that represents LRS is assumed to have the lowest fixed-
resistance state. As discussed in Section 2.1, the non-ideal manufacture and over forming
causes SA0 in a memristor array, and the resistance of the overly formed memristors may
become 10 times or 100 times lower than the normal LRS [4]. Therefore, those overly formed
memristors may consume 10 times or 100 times more energy than memristors which are
not defective and normally mapped to LRS, according to Equation (1). Such a level of the
scale-up energy depends on how much the over forming causes the damage to a memristor
and how much the resistance of a memristor is lower than the normal LRS. As a result,
the energy consumed by memristor with SA0 will contribute much more to the energy
overhead. As shown in Table 1, when SAFs are up to 2.5%, the energy can be controlled,
and no overhead is generated. However, when SAFs are 20% and beyond, the SA0 in the
memristor array increases a lot along with an increase of SAFs, and energy consumption
enlarges to 240%.

Furthermore, the situation gets worse when SA1:SA0 is 1:5 as shown in Table 2. Even
when SAF is as little as 1%, the dominant SA0 increases the energy overhead up to 336%.
The comparison of Tables 1 and 2 also give some insight regarding the deteriorating impact
of more SA0 in the memristor array. The maximum energy consumption listed in Table 2 is
9.54× 10−5 J (SA1:SA0 = 1:5) which is almost 34% higher than the maximum energy listed
in Table 1, 7.13× 10−5 J (SA1:SA0 = 5:1).

However, after applying the MT method, the memristor array acts like a fault-free
device even in presence of significant SAFs. The MT method completely controls the energy
overhead. This is because the MT method uses two memristors (Ra) and (Rb) to represent
one weight, and the original algorithmic weight value (R) is extracted at the end, as shown
in Figure 2. Moreover, 1/R > 1/Ra + 1/Rb. As a result, the energy consumption with the
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MT method listed in Tables 1 and 2 are much decreased as compared with that before the
MT method is applied.

In addition, weights in Figure 6 actually show less standard deviations as compared
with weights in Figure 3. This means that after the MT method is applied, the weight
distribution is more average in the entire memristor array than before, therefore it avoids
hot spots and improve the thermal stability of the array.

3.2.3. Latency

Latency is defined as the time required for the output voltage to reach the switching
voltage threshold after the input voltage reaches the memristor [26]. It can be calculated by
using the Horowitz equation:

Latency = τf

√
ln(vs)2 +

2β(1− vs)

rampInput× τf
(4)

where vs and rampInput are the normalized switching voltage threshold (typically 0.5)
and input voltage ramp rate. β = 1/(gmR) is the reciprocal of the normalized input
transconductance times the output resistance R. τf is the total RC time constant at the
output node. Therefore, Equation (4) can be transferred as

Latency = RC

√
ln(vs)2 +

2(1− vs)

rampInput× RC× gmR
(5)

Therefore, Latency ∝
√

mR2C2 + nC. m and n are constants. The total latency is
calculated as the sum of gate level latency of all sub-circuits [29].

Similar with the energy analysis, as shown in Tables 1 and 2, before applying the MT
method, the DNN with 0.1% SAFs nearly fails to generate the latency overhead. However,
with SAFs increasing, an increasing number of defective memristors with a bigger RC are
inserted to replace original memristors, and then the latency becomes much larger than
before. As listed in Table 1, under 20% SAFs with SA1:SA0 = 5:1 and 1.0% SAFs with
SA1:SA0 = 1:5, the latency enlarges about 2 times than before.

However, after the MT is applied, as listed in Tables 1 and 2, the latency remains the
same, because total R = Ra + Rb, that removes the energy overhead. Furthermore, in the
memristor-based DNN, the weight tuning is also included in the latency calculation [26].
This value can add extra latency in the conventional mapping method. However, after
applying the MT method, approximately 65.54% of weights will almost always be mapped
to 1 as shown in Figure 6, and they do not go through the tuning process. Therefore, this
additional feature can also highly contribute to remove latency overhead.

3.3. Immunity of Mapping Transformation Method against Non-Linearity
3.3.1. Accuracy

DNN models are very sensitive to weights which are updated frequently [30]. A small
weight deviation between model and actual memristor can degrade the accuracy signifi-
cantly. Apart from SAFs, memristors also suffer from non-linearity that generates inaccurate
weight updating [19,31]. Applying a positive voltage pulse to a memristor that causes a
change in resistance from LRS towards HRS is defined as long-term potentiation (LTP).
Similarly, a negative voltage pulse to a memristor that causes a change in resistance from
HRS towards LRS is defined as long-term depression (LTD) [32]. When LTP = LTD = 0, the
memristor is ideal and no non-linearity exists. However, in practice, non-linearity cannot
be completely avoided, therefore, as for experiments in Tables 1 and 2, the non-linearity
is considered as LTP = 1.75 and LTD = −1.46. When further non-linearity as LTP = 4 and
LTD = −4, as listed in Tables 3 and 4, is introduced in memristor arrays, as compared
with results with LTP = 1.75 and LTD = −1.46, accuracies degrade more. For example,
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in Tables 1 and 2, when SA1:SA0 = 5:1/1:5, the accuracies are 90%/88% with 0.1% SAF,
but it is only 65%/53% in Tables 3 and 4.

Table 3. Energy and latency comparison with extreme non-linearity when SA1:SA0 = 5:1.

SAF
Before MTa LTP = 4, LTD = −4 After MT LTP = 4, LTD = −4

Energy (J) Latency (s) Accuracy Energy (J) Latency (s) Accuracy

0.1% 2.494 × 10−5 66.445 × 10−5 65% 2.287 × 10−5 66.354 × 10−5 71%
1.0% 2.090 × 10−5 66.396 × 10−5 10% 2.292 × 10−5 66.357 × 10−5 71%
2.5% 2.187 × 10−5 66.421 × 10−5 10% 2.286 × 10−5 66.358 × 10−5 70%
20% 7.127 × 10−5 12.019 × 10−4 10% 2.319 × 10−5 66.359 × 10−5 62%
50% 7.126 × 10−5 12.019 × 10−4 10% 2.322 × 10−5 66.365 × 10−5 50%

MTa: Mapping Transformation.

Table 4. Energy and latency comparison with extreme non-linearity when SA1:SA0 = 1:5.

SAF
Before MTa LTP = 4, LTD = −4 After MT LTP = 4, LTD = −4

Energy (J) Latency (s) Accuracy Energy (J) Latency (s) Accuracy

0.1% 2.499 × 10−5 66.431 × 10−5 53% 2.289 × 10−5 66.365 × 10−5 70%
1.0% 9.327 × 10−5 12.019 × 10−4 10% 2.298 × 10−5 66.359 × 10−5 69%
2.5% 9.205 × 10−5 12.019 × 10−4 10% 2.305 × 10−5 66.358 × 10−5 68%
20% 9.031 × 10−5 12.018 × 10−4 10% 2.309 × 10−5 66.366 × 10−5 30%
50% 9.030 × 10−5 12.018 × 10−4 10% 2.285 × 10−5 66.398 × 10−5 14%

MTa: Mapping Transformation.

The MT method shows the excellence in restoring the accuracy even under extreme
non-linearity (LTP = 4, LTD = −4). As listed in Tables 3 and 4, after MT is applied,
the accuracy increased to 71% from 10% with 1% SAF under SA1:SA0 = 5:1. Similarly,
the accuracy increased to 69% from 10% with 1% SAF under SA1:SA0 = 1:5. This is because,
according to the MT method, 65.54% memristors are mapped to “1” (HRS), as shown in
Figure 6. Moreover, such “1” (HRS), even for different LTP and LTD, were nearly identical,
as shown in Figure 7. Accordingly, those HRS cells are barely influenced by such non-
linearity. In addition, as shown in Figure 6, only 34.46% memristors are mapped to sub-1
(less than 1 but greater than or equal 0.9). Although these sub-1 are influenced by the
non-linearity, as compared with the original weights before the MT method is applied, their
differences are not significant as shown in Figure 7. Therefore, even with the large non-
linearity LTP = 4 and LTD= −4, as for the various SAF conditions, the inference accuracies
can be greatly restored.

Figure 7. Non-linearity in memristor cells device.

3.3.2. Energy and Latency

Unlike accuracy, the impact of non-linearity to energy and latency is not significant.
For instance, two ideal memristor with LTP = 0 and LTD = 0 provide two resistance state
A and B respectively after applying a certain number of pulses as shown in Figure 7.
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When LTP = 4, the resistance state A will change to C, which indicates the resistance
increases faster and decrease energy/latency, according to Equations (1) and (4). However,
when LTD = −4, the resistance state B will change to D, which indicates the resistance
decreases faster and increase energy/latency, according to Equations (1) and (4). This
trade-off will make the average energy/latency keep the same. As listed in Tables 1–4,
even under different non-linearity, when the MT method is applied, the energy/latency
have no noticeable changes. In a word, the MT method can still effectively eradicate the
energy/latency overhead by mapping most of the cells to HRS even with high non-linearity
LTP = 4 and LTD = −4.

4. Comparison

As listed in Table 5, compared with the state-of-the-art, our proposed method has some
advantages. To date, other works on handling SAF defects require an additional algorithm
or individual optimization because most of them need to first identify the defective cells
and the most significant weights. Then, they map those weights to the fault-free regions or
cells. Additionally, in other works, a complex control circuit is required which generates the
significant circuitry overhead. Our proposed MT method creates a universal solution that
would work in any memristor device irrespective of the randomness of the SAF defects.
It is significantly functional even in extreme SAF cases (50% SAFs) without adding large
peripheral circuits. Furthermore, the energy consumption and latency are thoroughly
analyzed in our work before and after MT is applied to exhibit the characteristics of
memristor-based DNNs in different SAF conditions which the other works often overlook.

Table 5. Comparison of the state-of-the-art.

Items [33] [34] [35] [21] [20] [24] [23] [22] [36] [25] This Work

No Additional Algorithm × × × × × × × × ×
√ √

No Individual Optimization
√

× × × × × × × ×
√ √

No Complex Control Circuit
√ √ √

× × × ×
√ √

×
√

Extreme SAF Considerations (50%) × × × × × × ×
√

× ×
√

Energy Analysis × × × × × × × × × ×
√

Latency Analysis × × × × × × × × × ×
√

5. Conclusions

Memristors are popular for the DNN hardware design and have demonstrated their
potential in boosting the speed and energy efficiency of analog matrix-vector multiplica-
tion. However, commonly occurring Stuck-At-Faults (SAFs) seriously degrade inference
accuracies of memristor-based DNNs. In this paper, a MT method is proposed to mitigate
Stuck-at-Fault (SAF) defects. Based on the VGG8 model with the CIFAR10 dataset, the ex-
periment results show that the MT method can recover the DNN to its original inference
accuracy (90%) when the ratio of SAFs is smaller than 2.5%. Moreover, even when SAFs
with SA1:SA0 = 5:1 is in the extreme condition of 50%, it is still highly efficient to recover
the inference accuracy to 80%. In addition, the MT method removes all overhead of energy
and latency even when SAFs hold a large ratio and are associated with high non-linearity
LTP = 4 and LTD = −4. Finally, a detailed comparison with the state-of-the-art is provided
to indicate some advantages of our proposed method.
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