
Journal of

Low Power Electronics
and Applications

Article

A Dynamic Reconfigurable Architecture for Hybrid Spiking
and Convolutional FPGA-Based Neural Network Designs

Hasan Irmak 1,* , Federico Corradi 2 , Paul Detterer 2 , Nikolaos Alachiotis 1 and Daniel Ziener 3

����������
�������

Citation: Irmak, H.; Corradi, F.;

Detterer, P.; Alachiotis, N.; Ziener, D.

A Dynamic Reconfigurable

Architecture for Hybrid Spiking and

Convolutional FPGA-Based Neural

Network Designs. J. Low Power

Electron. Appl. 2021, 11, 32. https://

doi.org/10.3390/jlpea11030032

Academic Editors: Aatmesh

Shrivastava and Vishal Saxena

Received: 10 July 2021

Accepted: 10 August 2021

Published: 17 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Architecture for Embedded Systems, Faculty of EEMCS, University of Twente,
7522 NB Enschede, The Netherlands; n.alachiotis@utwente.nl

2 Ultra-Low-Power Systems for IoT, Stichting IMEC Nederland, 5656 AE Eindhoven, The Netherlands;
federico.corradi@imec.nl (F.C.); paul.detterer@imec.nl (P.D.)

3 Computer Architecture and Embedded Systems, Department of Computer Science and Automation,
Technische Universität Ilmenau, 98693 Ilmenau, Germany; daniel.ziener@tu-ilmenau.de

* Correspondence: h.irmak@utwente.nl

Abstract: This work presents a dynamically reconfigurable architecture for Neural Network (NN)
accelerators implemented in Field-Programmable Gate Array (FPGA) that can be applied in a variety
of application scenarios. Although the concept of Dynamic Partial Reconfiguration (DPR) is increas-
ingly used in NN accelerators, the throughput is usually lower than pure static designs. This work
presents a dynamically reconfigurable energy-efficient accelerator architecture that does not sacrifice
throughput performance. The proposed accelerator comprises reconfigurable processing engines and
dynamically utilizes the device resources according to model parameters. Using the proposed archi-
tecture with DPR, different NN types and architectures can be realized on the same FPGA. Moreover,
the proposed architecture maximizes throughput performance with design optimizations while con-
sidering the available resources on the hardware platform. We evaluate our design with different NN
architectures for two different tasks. The first task is the image classification of two distinct datasets,
and this requires switching between Convolutional Neural Network (CNN) architectures having
different layer structures. The second task requires switching between NN architectures, namely a
CNN architecture with high accuracy and throughput and a hybrid architecture that combines
convolutional layers and an optimized Spiking Neural Network (SNN) architecture. We demonstrate
throughput results from quickly reprogramming only a tiny part of the FPGA hardware using DPR.
Experimental results show that the implemented designs achieve a 7× faster frame rate than current
FPGA accelerators while being extremely flexible and using comparable resources.

Keywords: FPGA; NN; CNN; SNN; partial reconfiguration

1. Introduction

The application of artificial intelligence models at the edge requires novel software
and hardware architectures capable of executing many tasks in an energy-efficient man-
ner. Many robotics applications are battery-limited, such as autonomous vehicles, drones,
and robotics. It is mandatory to execute many applications on the same hardware plat-
form in the most efficient way [1,2]. State-of-the-art Central Processing Unit (CPU) per-
forms 10–100 FLOP per second with typical power efficiency in the order of 1 GOP/J [3].
In contrast, GPUs offer up to 10 TOP/s of peak performance and are more suitable for
high-performance neural network (NN) applications at the expense of many hundreds
of watts of power consumption [4]. Recently, Field-Programmable Gate-Arrays (FPGA)
have been proposed for neural network processing [5]. They are ideal for highly parallel
workloads and can best exploit the properties of neural network computation. For this
reason, a promising approach is to build special optimized hardware blocks that can
accelerate several models of machine learning and deep neural network workloads [6].
Since NNs are increasingly becoming application specialized (such as language processing,

J. Low Power Electron. Appl. 2021, 11, 32. https://doi.org/10.3390/jlpea11030032 https://www.mdpi.com/journal/jlpea

https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0003-1953-3950
https://orcid.org/0000-0002-5868-8077
https://orcid.org/0000-0001-9329-1721
https://orcid.org/0000-0001-8162-3792
https://doi.org/10.3390/jlpea11030032
https://doi.org/10.3390/jlpea11030032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jlpea11030032
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea11030032?type=check_update&version=1

J. Low Power Electron. Appl. 2021, 11, 32 2 of 25

voice translation, object detection, and tracking), Dynamic Partial Reconfiguration (DPR)
on FPGAs can help alleviate the burden of executing various models onto a single hard-
ware platform. Among the most promising models of artificial NNs, Convolutional Neural
Networks (CNN) and Spiking Neural Networks (SNN) can be employed in almost all tasks.
CNN and SNN are complementary; CNNs are mostly used in high-throughput applications
(object detection, image classification, etc.), while SNNs are more bio-inspired models that
require memory distributed with the processing [7] and offer energy-efficient temporally
distributed computation. The energy cost for these types of SNNs implemented in FPGA
hardware is in the order of hundreds of pico joules per synaptic operation [8,9], and this
makes them attractive for massively parallel implementations in FPGAs. One of the major
differences among CNNs and SNNs is the fact that a CNN layer is a computational block,
and information needs to be fully computed before starting the computation of the next
layer (i.e., the matrix multiplication needs to be carried fully). In contrast, SNNs are truly
parallel, and spiking activity from each neuron is immediately sent to other neurons, which
are executed without the need of waiting for the computation from the previous layer to be
completed. Fully parallel SNNs implementation offers a trade-off between accuracy and
latency [10].

Background

This section introduces the basic system design for the typical FPGA-based NN accel-
erator design structure. In this work, we only focus on accelerated and efficient inference,
which means using a pre-trained and optimized model to perform prediction, regression,
or classification tasks. The highly parallel architecture of NNs requires massively parallel
computing capacity. In general, a NN model can be seen as a directed graph. Each vertex
of the graph indicates information flow between layers; data from a previous layer is used
as input to the next layer. In standard CNNs models, the parameters of each layer are
the connection weights, the neuron biases, and the input and output of each layer are
activations. CNN’s neurons do not store any state as their activations are computed at each
input cycle. In SNNs models, the parameters of each layer are also connection weights.
The neurons are biologically inspired models that are stateful and require parameters such
as integration time constant, membrane decay, threshold, and refractory period. In contrast
to CNN models, in SNNs, inputs and outputs of each layer are binary spikes that indicate
when the neuron membrane potential has crossed a threshold, a spike is emitted. In SNNs,
it is required to store the membrane potential for each neuron. Communication is binary
(only spikes), and computation is event-based. Each neuron is immediately evaluated upon
the arrival of an input spike, and this makes SNNs models hugely parallel as no global
signals need to be shared among neurons.

Partial reconfiguration is the ability to reconfigure part of the FPGA after initial
configuration. On the other hand, DPR allows reconfiguring part of the FPGA while the rest
of the device is still running. Thus, DPR feature offers to overcome the resource and power
limits of the design by enabling run-time reconfiguration of the selected regions of the
FPGA. Efficient utilization of the potential of the FPGA results in energy-efficient designs
compared to static designs. A DPR FPGA design can be divided into two parts. The static
part is the area of the FPGA that is not reconfigured again after the power-up configuration.
On the other hand, partial reconfiguration region is the dynamic part of the FPGA, and it
can be updated at run time using partial bitstreams. This region is called Pblock which is a
collection of cells and one or more rectangular areas. As shown in Figure 1, the same Pblock
can be used with different partial bitstreams to realize different implementations using
the same hardware resources. Thus, the functionality of the FPGA dramatically increases.
For uploading the partial bitstream to the FPGA, Internal Configuration Access Port
(ICAP) and Processor Configuration Access Port (PCAP) are offered by Xilinx FPGAs [11].
The latter one is provided to reconfigure FPGA from the processor side in Zynq FPGAs.

J. Low Power Electron. Appl. 2021, 11, 32 3 of 25

Figure 1. The Concept of Partial Reconfiguration.

Typical applications that benefit from DPR are network data processing, digital signal
processing, cognitive radio, and systems on a reconfigurable chip [12]. DPR capability is
also investigated in NN accelerators from different perspectives. In [13], it is proposed
an approach for realizing the deeper neural networks in low-resource FPGAs. In this
approach, a confidence level is calculated according to the output of the CNN. If it is under
a threshold, then the depth of the CNN is incremented using DPR. In other words, there is
an adaptive feedback mechanism for the decision of the classification, and if the image
is not classified, new layers are added to the NN architecture with DPR. Another similar
work [14] splits the NN into chunks consisting of a few layers and executes each chunk
separately. After execution of each chunk, the next chunk is uploaded to the FPGA using
DPR and then processed. Thus, resource usage of the accelerator is highly minimized.
Similarly, in [15], the same hardware resources are used for each convolution layer using
DPR and they are executed in a sequential manner. However, in these studies, the classifier
throughput is significantly affected by the DPR overhead. In addition, some studies [16],
particularly for accelerating Binarized NNs, explores DPR on disaggregated FPGA plat-
forms to improve the throughput performance by encapsulating complex sequences of
operations as instructions of variable length. Moreover, DPR can also be used in low-power
applications. Youssef et al. [17] apply DPR to adjust the power consumption according
to the power level of the battery. If the battery level is low, low power and low accu-
rate design (i.e., smaller bit sizes) are loaded to decrease the power consumption of the
FPGA. There are also other studies exploiting DPR for classification problems of different
datasets [18]. To do so, the convolutional filters are selected according to the class datasets
using DPR. However, to change the kernel filter size at run time, DPR can be inefficient
since there are also some works that reconfiguration of the convolutional filters can be
achieved at run time without using DPR [19]. Moreover, there are also very low-power
NN accelerators [20] without using DPR but they lack flexibility and are designed for
specific CNN designs. Previously, we proposed a flexible DPR architecture specifically for
CNN architectures with only digit and letter recognition [21]. This work builds upon and
extends our previous work [20,21] by proposing a flexible hardware architecture for NN
accelerators, and different NN architectures and also combinations of them (i.e., hybrid
architectures) can be realized using DPR without sacrificing throughput or accuracy of
the accelerator. Because we employ DPR for switching between different NN accelerators.
Thus, NN performance is not affected by the DPR overhead.

The main contributions of the paper are the followings:

• It is proposed a flexible hardware design and computer architecture that allows to
easily modify the NN accelerators (i.e., insert/delete/update the structure) at run
time using DPR.

• The proposed architecture can adapt to different networks and, therefore, also to
different applications using DPR without any degradation in accuracy or throughput.

• The proposed architecture consists of processing elements (PE). These PEs exploit
pipelining and other optimizations for better performance. To exemplify, for the
convolutional PE, it is proposed a novel method to perform feature extraction that

J. Low Power Electron. Appl. 2021, 11, 32 4 of 25

allows to hide the computations of a pooling layer behind the computations of a
convolutional layer. For other PEs, further optimizations are applied as well.

The rest of the paper is organized as follows: Section 2 presents the proposed accel-
erator architecture, different NN designs such as CNN and SNN architectures. Section 3
provides implementation details and an experimental evaluation. Section 4 concludes
this work.

2. Materials and Methods
2.1. Accelerator Architecture

The essential processing element in the proposed accelerator architecture is referred
to as the PE. PE is a high-level generic block with predefined interfaces. Firstly, it has a
high-speed data interface (i.e., AXI4-Stream) used for the connection of different PEs to
exchange data. Secondly, an AXI4 interface is used as a memory-mapped interface to write
and read from the internal memory and registers of the PEs. Thus, the processor can update
the memory or registers of the PEs using this interface. Lastly, for I/O operations, a GPIO
interface is employed. The interfaces of the PE can be seen in Figure 2. In addition, each PE
has DPR capability to implement different functions using the same hardware resources.

Figure 2. Interfaces of the Processing Element.

PEs are the building blocks of the hardware architecture. They implement the layers
of the NN accelerator. In this study, three different PE types are developed as shown in
Figure 3. Using these PEs, different NN accelerators can be realized. Firstly, a feedforward
PE is developed to implement Deep NNs (DNNs). In addition, to realize CNNs, a convo-
lution PE with optional integrated pooling is also designed. This is designed to optimize
performance by integrating the pooling layer with the convolution layer. CNN is a cascaded
connection of convolutional PEs and feedforward PEs. Lastly, for SNN implementations,
a spiking PE is developed. Some of the parameters of the PEs can be set before synthesis
and the others can be changed at run time. The data interface of the PEs is 64-bit wide.
The optimum bit sizes for parameters of the PEs are determined based on the accuracy drop,
as compared with the accuracy achieved with single-precision floating-point arithmetic.
Convolution and Feedforward PEs have 8-bit weights, and 16-bit activations and Spiking
PE has 6-bit weights, and 10-bit activations, with an accuracy drop of less than 0.1% in
comparison with the single-precision floating-point implementation. The hardware design
and optimizations of these PEs will be explained in the following sub-sections.

J. Low Power Electron. Appl. 2021, 11, 32 5 of 25

Figure 3. NN PE Types.

The proposed accelerator architecture consists of multiple PEs and configurable
switches that allow different connections for each PE interface (i.e., data, memory-mapped,
I/O). As shown from the proposed hardware architecture in Figure 4, every PE can be
interconnected to any other PE, processor, or I/O port of the FPGA using internal bus
switches, and these interconnections can be configured at run time. This allows to dynami-
cally update the NN architecture by adding or removing layers, as well as by replacing the
structure of the NN with another structure to realize different types of networks. In the
updated structure, the weights and biases can be updated using the memory-mapped
interface of the PEs. As a result, different NN types can be implemented on the same FPGA
resources using the proposed hardware architecture.

Figure 4. Proposed hardware architecture with multiple PEs.

In the proposed architecture, the hard/soft processor in the FPGA controls all the
connections of the PEs using the memory-mapped interface of the switches. In addition,
the stream switch supports the back pressure property and any PE can stop the input data
coming from another PE if it is not able to process the new data. In other words, it can
inform the previous PE to stop producing output by sending a busy signal. This means
that each PE can adjust the data transfer rate and it can also be run at different frequencies.
Besides, if any PE needs more clock cycles for execution, there will be a chance to run it at
higher frequencies to preserve the overall throughput.

2.2. Convolution with Optional Integrated Pooling PE

The convolution operation is the major operation for convolutional layers in CNN.
In this operation, a two-dimensional filter (i.e., a kernel) is applied to the input to create a
feature map that shows the presence of detected features. The main idea of the convolution
operation in CNN is the ability to automatically learn a large number of filters in parallel
which are designed to detect specific features anywhere on the input images. A typical
convolution operation is shown in Figure 5.

J. Low Power Electron. Appl. 2021, 11, 32 6 of 25

Figure 5. Convolution Operation in CNNs.

After the convolution operation, an activation function is applied to the output of the
convolutional layer in order to learn the complex features in the image by adding non-
linearity into NN. Thus, a NN can easily solve non-linear complex classification problems.
Moreover, the non-linearity of the activation functions allows back-propagation by having a
derivative function related to the inputs. Commonly used activation functions are Rectified
Linear Unit (ReLU), tanh, and sigmoid [22].

In almost every CNN architecture, in order to decrease the data size and performance
sensitivity to the location of the features, pooling layers can be used after the convolutional
layer. These layers have no parameters to learn and only downsample the image according
to the pooling type. There are two common pooling types: average pooling and max-
pooling. Average pooling calculates the average of the patches in the feature map. Thus,
it smooths the image and it may not identify the sharp features. On the other hand, max-
pooling selects the highest value in the patch and helps to extract the edges and low-level
features in the feature maps.

The most popular CNNs such as LeNet, Alexnet, and VGGNet use the pooling layer
after the convolution operation to decrease the data size [23–25]. In this study, we are
proposing a less complex method for the computation of convolution layers followed by
max-pooling layers by hiding the computations of the pooling layers into the computa-
tion of convolution layers. Normally, the output pixel of a convolution layer with input
image in() and activation function f () followed by a max-pooling layer with 2× 2 kernel,
and downsampling by 2 is given by Equation (1).

out(
i
2

,
j
2
) = max(f (Conv(in(i, j)), f (Conv(in(i, j + 1)),

f (Conv(in(i + 1, j))), f (Conv(in(i + 1, j + 1)))) (1)

In Equation (1), if f () is a monotonically non-decreasing function, like ReLU, tanh,
or sigmoid, applying maximum pooling operation before the activation does not change
the result. Therefore, the activation and max pooling operations are interchangeable. Thus,
the order of applying the activation operation can be replaced with the pooling operation
and can be written as in Equation (2).

J. Low Power Electron. Appl. 2021, 11, 32 7 of 25

out(
i
2

,
j
2
) = f (max(Conv(in(i, j)), Conv(in(i, j + 1)),

Conv(in(i + 1, j)), Conv(in(i + 1, j + 1)))) (2)

Using Equation (2) has two main advantages. Firstly, while computing the convolution,
the image data are already in the line buffers so the output of the convolution data can be
used without any write/read operations. In other words, the time for the computation of
the pooling layer is eliminated in the proposed method. Secondly, instead of the samples
of the convolution output, only downsampled samples are used to calculate the activation
functions. Thus, the complexity is less than the typical convolutional layer.

A typical block diagram for proposed convolution using 5 × 5 kernels, 2 × 2 pool-
ing with stride 2 is depicted in Figure 6. If there are enough resources on the FPGA,
all processing can be performed in parallel using 100 DSP elements (i.e., 25 DSPs per con-
volution). Equation (2) can be processed in one clock cycle using the proposed convolution
in Figure 5. In addition, according to the number of resources assigned to any convolution
layer, the number of clock cycles for this operation can be increased. For instance, if you
dedicate 50 DSPs for any convolution block, the execution time will become two clock
cycles for the computation in Figure 6. However, dedicating fewer DSPs results in more
memory and more logic usage to buffer the data temporarily and to realize the multiplexing
the data to feed the DSPs.

Figure 6. Block Diagram of the Proposed Convolution.

Lastly, in order to complete the proposed convolution in one clock cycle, the weights
have to be read in one clock cycle. Therefore, all the internal memories (i.e., BRAMs) storing
weights are 256 bits wide to read the kernel weights in one clock cycle. Each word of the
BRAM stores all kernel weights in a concatenated manner. Thus, switching from one kernel
to another has no time overhead in the convolution calculation.

2.3. Feedforward PE

Feedforward NNs are artificial NNs where the connections between nodes do not
form a cycle and information is transferred only in one direction. Feedforward NNs consist
of an input layer, an output layer, and hidden layers. A typical feedforward NN structure
can be seen in Figure 7.

J. Low Power Electron. Appl. 2021, 11, 32 8 of 25

Figure 7. Feedforward NN structure.

From a computational point of view, the main computation of a feedforward NN is
matrix multiplication. The pseudo-code for the conventional computation of a feedforward
layer is shown in Algorithm 1.

Algorithm 1 Conventional computation of feedforward layers

procedure FCLAYER(X, W, bias)
for i from 1 to outputNodeSize do

accumulator = 0
for j from 1 to inputNodeSize do

accumulator = accumulator + W[i][j]X[j]
end for
Y[i] = accumulator + bias[i]

end for
end procedure

FPGAs are very suitable for pipeline processing and parallel matrix multiplication
which requires a substantial amount of DSP elements and memory resources. Thus, based
on the time budget and available resources, parallel multiplication operations result in
a significant reduction in processing time. In the feedforward PE, we define a 4-input
multiply-accumulators in order to multiply the 4 input data with the corresponding weights
and accumulates them in a single clock cycle. The parallelism of these 4-input multiply-
accumulators are achieved by unrolling the inner f or loop as shown in Algorithm 1 and
the degree of parallelism is limited by the available resources for the specific feedforward
layer. Besides, the bias summation can be omitted by initializing the accumulator with
the bias value. These optimizations reduce the execution times of the feedforward layers,
and the pseudo-code of the proposed computation is given in Algorithm 2.

Algorithm 2 Proposed computation of feedforward layers

procedure FCLAYER(X, W, bias)
for i from 1 to outputNodeSize do

UNROLL_LOOP
accumulator = bias[i]
for j from 1 to inputNodeSize/4 do

accumulator = accumulator + MAC4DATA(&W[i][4 ∗ j], &X[4 ∗ j])
end for
Y[i] = accumulator

end for
end procedure
procedure MAC4DATA(∗a,∗ b)

return a[0]b[0] + a[1]b[1] + a[2]b[2] + a[3]b[3]
end procedure

Lastly, the output layer of a feedforward NN relies on a softmax function to convert
the vector of numbers to a vector of probabilities [26]. In a conventional NN, the output

J. Low Power Electron. Appl. 2021, 11, 32 9 of 25

of the softmax function can be interpreted as the probability of membership of each class,
and the highest probability member is selected as the classification result. The softmax
function consists of complex exponentials and divisions which are highly compute- and
resource-demanding operations. Using the softmax function only training of the NN offline
and instead of implementing a softmax function in hardware, the class having the highest
value in the output layer is selected as the classification result for simplification. Thus,
the same classification result is obtained in a computationally efficient way. In the design
of the feedforward PE, the data is processed in a pipelined manner so no additional clock
cycle is required to find the maximum. It is hidden in the computation of the output layer
of the feedforward PE.

2.4. Spiking PE

The Spiking PE is based on a design presented in [8]. The architecture of the PE is
organized in layers of fully connected spiking neurons. The neuron model utilized in
the spiking PE is a leaky-integrate-and-fire neuron model. Each neuron in the network
receives spikes and emits spikes (i.e., binary pulses as in Figure 8a), and all of the neurons
in the network are executed in parallel and are physically implemented with digital logic.
The connectivity among layers is fully connected, and the architecture supports forward
and recurrent connections, as shown in Figure 9. Input and output spikes can be routed in
and out of the PE using a high-speed (AXI4-Stream) data interface. Alternatively, spikes can
be generated by the input spike generators, and mean rate activity can be measured using
the Inter Spike Interval (ISI) calculator blocks. Once the input spikes are fed into the PE,
they enter a spike queue, and they are consumed by a weight controller that is in charge
of fetching the correct weight stored in on-chip memories (Block-RAM or Ultra-RAM).
Once the weight has been fetched, the weight controller sends the weighted stimulus to
the neurons, which, in turn, perform the integration. If the neurons reach their threshold
value, then a spike is emitted to the next layer. The Spiking PE is completely event-driven,
meaning that computation happens upon the arrival of spikes only. On-chip memories are
used to store the synaptic weights, and this ensures a high memory bandwidth. The energy
performance of the PE varies depending on network size, mapping parameters, and re-
source availability but is in the order of ∼0.2 nano Joule per synaptic operation (nJ/SOP)
and can achieve throughput in the order of 10/40 Giga synaptic operations per second [8].

Figure 8. Leaky-Integrate-and-Fire (LIF) neuron model. (a) Behavior of the neuron. (b) Digital behav-
ior, neurons receive spikes in the form of a timestamp. It integrates them if it is not in the refractory
period. It would emit a spike if the membrane potential exceeded the threshold. The leakage block is
implemented with a bit shift for resource savings.

J. Low Power Electron. Appl. 2021, 11, 32 10 of 25

Figure 9. Spiking Neural Network PE. Spiking PE architecture is organized in layers of fully connected spiking neurons
that are executed in parallel.

In the following sections, we provide explanations for the different blocks of the
spiking PE, visible in Figure 9, and we give intuitions on their digital implementations.

2.4.1. Digital Leaky-Integrate-and-Fire Neurons

The neuron model, in its simplest form, is a cell membrane modeled by a leaky
capacitor. The neuron circuit can be seen as an exponentially decaying RC system with
constant decay time. In our discrete time-stepped model, the cell membrane voltage of
neuron i at step n + 1th is modeled as:

Vi(n + 1) = Vi(n) · e
t

τm + ∑
j

Wi,jSj (3)

in which t is the time step, Wi,j are the synaptic weights, and Sj are the input spikes.
The input spikes are instantaneously integrated by the synapses that produce a step increase
(or decrease) of Wi,j to the membrane potential of neuron i when receiving spikes from
neuron j. The model also implements some features to more accurately model biological
neurons. These features are the implementation of a threshold Vthr that makes a neuron emit
one spike when Vmem > Vthr. After a spike is emitted, the neuron’s membrane potential
(Vmem) is reset to zero, see Figure 8a. Additionally, we have implemented a programmable
refractory period Tre during which a neuron is not sensitive to incoming spikes after the
emission of one spike, as shown in Figure 8. Importantly, our implementation of the
neuron model does not loop through time steps. Instead, our design is event-driven,
and the algorithm loops through spike events, indicating that computations only happen
upon spiking activity. Since calculating the exponential function for the neuron decay
is resource and time-expensive, we have approximated the exponential function with
bit-shifts operations. By shifting the membrane potential by n bits to the right, its value
is divided by 2n, and the least significant bits are eliminated. The function of spiking
PE digital logic is summarized in Algorithm 3. Since our architecture is based on fully
connected layers, the neurons in a layer receive a single previous spike time shared over
all neurons in a layer. Besides, an ‘else if’ statement is used to set the membrane potential
to zero if it becomes negative. While time-driven algorithm loops through all time steps,
our event-driven algorithm loops only through spike events, resulting in less computations
executed only upon spiking activity.

J. Low Power Electron. Appl. 2021, 11, 32 11 of 25

Algorithm 3 Event-driven LIF neuron update

Require: set of sorted spike times St
Require: set of corresponding source neurons Ssrc ∈ 1 . . . N
Require: set of corresponding destination layers ldst ∈ 1 . . . L with neurons Sl

dst ∈ 1 . . . M
Require: set of synaptic weights W ∈ RN×M

t1...M
re ← 0

t1...L
prev ← 0

for t in St do
for s in Ssrc do

for l in ldst do
tδ ← t− tl

prev

tl
prev ← t

for d in Sl
dst do

Vi
m ← Vi

m · e−tδ/τm

if t > ti
re then

Vi
m ← Vi

m + WSk
src ,i

end if
if Vi

m > Vthr then
Spike()
Vi

m ← Vi
reset

ti
re ← t + tre f rac

end if
if Vi

m < 0 then
Vi

m ← 0
end if

end for
end for

end for
end for

2.4.2. The Spike Queue

The spike queue is the purple module at the top of Figure 9. It receives two streams of
spikes, one for forward spikes generated by the previous layer and one for backward spikes
generated by the next layer. A spike is encoded by the address of the neuron that generated
the spike, including the forward or backward information. Each stream is separately
buffered using a FIFO. The FIFO outputs are arbitrated using a round-robin scheme.

2.4.3. The Neuron Wrapper

The neuron wrapper module in Figure 9 consists of a set of neurons. All neurons exist
in parallel, but the layer’s output is a serial stream of spike sources addresses, identical to
the spike queue input streams. The output spikes from all neurons in a layer are serialized
using a round-robin arbiter to grant exclusive access to the output stream. However,
this solution introduces two issues. Firstly, when the number of neurons N in a layer is
large, the number of resources to implement the arbiter and the number of logic levels in
the arbiter increases. This leads to high resource utilization and a low maximum clock
frequency. Secondly, the serial stream processes at a maximum of one spike per clock
cycle, while the neurons generate many spikes in a single clock cycle. For these reasons,
the neuron wrapper module groups neurons in clusters, and a subset of neurons in each
cluster is activated in parallel. This choice enables to limit of the maximum number of
spikes generated in parallel. This, in turn, reduces the requirement only to have one buffer
for each neuron in a cluster. Depending on the cluster sizes, this can save a significant
amount of buffers and, therefore, hardware resources. Figure 10 shows the sharing of spike
buffers for three clusters of two neurons. The spike signals are fed through a logical or gate
to generate the buffer write signal. As spikes are represented using their source address,

J. Low Power Electron. Appl. 2021, 11, 32 12 of 25

the information from the neuron addressing module is used. In this example, instead of
six buffers, one buffer for each neuron, only two buffers are required since, at maximum,
two neurons spike simultaneously. Lastly, the arbiter arbitrates between the buffers to
ensure fair and mutual access to the serial stream.

Figure 10. Spike buffer sharing mechanism.

2.4.4. The Weight Memory Block

The weight memory block stores the weight matrix for the connections between two
layers. One of the major challenges when designing an efficient spiking PE is to map the
connection matrices to the on-chip memories efficiently. The way the weights are dis-
tributed over the memories determines the memory bandwidth and, ultimately, the system
throughput. Additionally, this mapping determines the implementation of the weight
controller. Our design exploits dual-port on-chip memories (BRAM or UltraRAM), and to
increase the number of weights per single memory access, we adopt several strategies.
Firstly, we store quantized weights in memory (6-bits in this design). Secondly, we adopted
a generic and parametric description of the memory organization that can accommodate
on-chip memories of several bit-depth and bit-width. Lastly, we can explore the mapping
of the weights using a parametric search at design time. This ensures the selection of
optimal parameters for the available resources.

2.4.5. The Weight Controller

The weight controller takes care of fetching the correct weight from memory, depending
on the source address. Since our design assumes fully connected layers, the only infor-
mation required to retrieve the correct weight is the neuron source address. The weight
controller receives the spike source addresses Ssrc and spike direction (recurrent or forward)
from the spike queue. The weight controller contains a state machine that decodes the
address received, fetches the correct weight, and generates valid weight signals for the
destination neurons.

2.4.6. Input and Output Interfaces

The spiking PE communicates employing input and output spikes. In general, the spik-
ing PE is agnostic on the information coding scheme. In fact, it is compatible with temporal
coding and mean rate coding. To connect the spiking PE to traditional neural network
accelerators, we have implemented digital to spike conversion at the input of the spiking
PE that linearly converts M bits values into an input mean rate frequency. This is achieved
through a spike generator module, which is shown in Figure 11. This module uses the
digital input value as the probability of a neuron to spike within a fixed time window.
Small stochasticity is implemented using a Linear-Feedback Shift Register (LFSR) triggered
once every time. A spike is generated if the pseudorandom number is greater than the
mean rate. The value of the mean rate is relative to its maximum value of 2M − 1 for M

J. Low Power Electron. Appl. 2021, 11, 32 13 of 25

bits. A mean rate of zero results in zero spikes, and a mean rate of 2M − 1 results in one
spike every timer period. The probability that a neuron spike upon a timer trigger for a
mean rate of M bits is

P(spike) =
MR

2M − 1
. (4)

Figure 11. Spike generation with stochastic ISI.

When a mean rate coding is used, the output of the spiking PE can be interpreted
by means of the Inter-Spike-Interval (ISI) measure. The ISI is measured for each output
neuron by computing the interval between two consecutive spikes. The resulting values
are fed into registers and can be read via the AXI-lite register interface.

Additionally, input and output single spikes can be buffered via external (DDR)
memory and streamed to the spiking PE exploiting the AXI-Stream protocol. We used the
Xilinx DMA IP to outsource the communication to and from external memory. We have
only used AXI-stream for debugging as the use-cases and experimentation below are
carried using the mean rate mode of operation for the spiking neural network.

2.5. DPR

DPR is a powerful tool particularly for trying to reduce the resources and power
consumption needed to implement NNs with multiple functionalities. Moreover, instead
of training and implementing the NNs together, designing them separately, results in
more accurate results since separate designs are less complex and less deep than the
combined designs where different classes and datasets are trained together. Moreover,
power consumption is also substantially reduced with DPR, since some resources are
shared between different PEs and resource utilization is less than the combined designs.

From an architectural point of view, DPR introduces considerable flexibility to the
proposed system architecture by allowing different NN realizations on the same FPGA
implementation. By only updating a small part of the FPGA (i.e., a PE) with a partial
bit stream, a different NN accelerator can be implemented. Besides, the depth of the
NN (i.e., number of layers) can be changed via programming the interconnections in
the proposed architecture. Without changing the placement and routing of the static
design, a different NN architecture can be realized only by implementing the new PE.
Thus, implementation times are highly reduced while designing a new NN architecture by
changing some of the layers of the current NN.

3. Results and Discussion

For the proof of concept, two different use cases are implemented on the hardware.
In the first use case, three different CNN classifiers trained by three different datasets
are designed and switched using DPR for two different scenarios. In the first scenario,
a digit classifier trained by the MNIST dataset [27] and a letter classifier trained by EMNIST
dataset [28] are switched only updating the feedforward layers since the number of classes
is different between digit and letter classifiers. In the second scenario, a digit classifier
trained by MNIST and an object classifier trained by CIFAR10 dataset [29] are switched
by updating the first convolution layer because the dataset for digit classifier is grayscale
whereas the object dataset is an RGB image. Thus, the number of input channels is different,
and the first convolutional layers are required to be different. In both scenarios, the weights

J. Low Power Electron. Appl. 2021, 11, 32 14 of 25

and biases of the structurally identical layers are updated from the memory-mapped
interface of the PEs and the non-identical layers are dynamically partially reconfigured
with the corresponding PE. In the second use case, DPR is used to switch between a CNN
classifier and a hybrid NN (i.e., consisting of convolutional layers and spiking layers)
classifier. Both classifiers are digit classifiers and the convolutional layers of both classifiers
have the same structure and use the same weights and bias values. The switching between
CNN to hybrid NN is achieved by updating the feedforward layers with spiking layers.
The summary of both use cases is given in Figure 12. In this figure, intersection parts show
the common layers for the classifiers (i.e., static regions) whereas the other parts show the
layers specific to the related classifier (i.e., dynamic regions).

Figure 12. Summary of Use Cases: (a) Same NN architecture with Different Classifiers, (b) Different
NN architectures for Digit Classifier.

3.1. Use Case 1: CNN to CNN for Different Datasets

The proposed architecture can be used to switch between the same type of NN
architectures used for the classification of different classes. Since different NN classifiers
can have different number of output classes or different number of input channels, an NN
architecture may not be used as-is for the recognition of another class set even if weights
and biases are changed for the new classification problem. In other words, at least the
input or the output layer should be changed if there is a change in the input or the output
parameters, respectively. Therefore, in this use case, we investigate both alternatives
(i.e., a change in the number of input channels and a change in the number of output
classes) using different scenarios.

3.1.1. Digit Classifier to Letter Classifier Scenario

In the first scenario, we have two different CNN classifiers having a different number
of classes. The digit classifier is classifying the ten digits trained by the MNIST dataset.
On the other hand, a letter classifier is used to classify the 26 letters in the English alphabet,
trained by the EMNIST dataset. The CNN structure of the digit and letter classifiers can be
seen in Figure 13. Except for the weights and biases, the only difference between the digit
and the letter classifier is the feedforward layers. Without implementing the whole design
and reloading the whole bitstream, only implementing a feedforward PE for the letter
classifier and updating only a small part of the FPGA with partial bitstream is enough to
switch the letter classifier. To put it another way, using the proposed architecture, it can be
switched between digit classifier to letter classifier in a very short period of time without
waiting for the reconfiguration of the whole FPGA.

J. Low Power Electron. Appl. 2021, 11, 32 15 of 25

Figure 13. Digit classifier and letter classifier, and the switching between them using DPR.

As shown in Figure 13, the input of the CNNs is a 32 × 32 8-bit grayscale image,
and the output is the classification result. Each CNN accelerator consists of two convolu-
tional layers, two max-pooling layers, a hidden feedforward layer, and an output layer.
ReLU activation function is used in the convolutional and hidden layers. In convolutional
layers, the convolutional kernel and pooling kernel are selected as 5 × 5 and 2 × 2 for
their better performance as compared to other size kernels. In the pooling layers, the
downsampling factor is selected as 2. After the convolutional layers, data is flattened and
fed to the feedforward layers. In the letter classifier, 48 nodes and ten nodes are used for
hidden and output layers, respectively. For the letter classifier, 96 nodes and 26 nodes are
used for the hidden and output layers, respectively. The switching between accelerators is
achieved by updating the partial bitstreams corresponding to the feedforward layers of the
related CNN.

3.1.2. Digit Classifier to Object Classifier Scenario

The second scenario is based on the differences in the input format. Especially in
image classification applications, various datasets may have different image formats such
as grayscale, RGB, IR, and hyperspectral. Thus, the first convolutional layers are designed
according to the data format of the image. In this scenario, digit classifier and object
classifier are switched using DPR only by updating the first convolutional layer, since ob-
ject classifier is trained with CIFAR10 dataset consisting of three-channel colored image
(i.e., RGB) whereas digit classifier has single-channel grayscale image dataset for training.
Both datasets have ten classes so the other layers are in the same structure (i.e., second
convolutional layers and feedforward layers). The CNN structure of the digit and object
classifiers can be seen in Figure 14. Note that, weights and biases also differ between the
two CNN accelerators but they are updated through the memory-mapped interface of
the PE.

As shown in Figure 14, the digit classifier has the same structure as in Figure 13,
however, the object classifier RGB input format is 32 × 32 × 3. In other words, in the
first convolutional layer, the digit classifier has 1 input image and 3 output feature maps
whereas the object classifier has 3 input images and 3 output feature maps. Thus, to realize
the object classifier, the convolutional PE for layer 1 is updated from the digit classifier
implementation using DPR and in the order of milliseconds, both classifiers can be switched
between each other using partial bit files.

J. Low Power Electron. Appl. 2021, 11, 32 16 of 25

Figure 14. Digit classifier and object classifier, and the switching between them using DPR.

3.2. Use Case 2: CNN to Hybrid for Different Architectures

Each NN architecture has its own advantages that can be accuracy, throughput, power
consumption, or lower complexity. Thus, in some scenarios, it can be preferred to use
the same hardware resources to realize different NN designs, and switch between them
without reconfiguring the whole FPGA. Thus, in the second use case, we opt to switch
between different NN architectures using the proposed hardware architecture and DPR.
To do so, a digit classifier trained by the MNIST dataset is implemented with two different
NN architecture. The first architecture is a CNN architecture which is explained above in
Use Case 1 whereas the second architecture is a hybrid NN which is a concatenation of
convolutional layers and spiking layers. In this architecture, feature maps are first extracted
using the convolutional layers, and then these feature maps are fed to the spiking layers
for the classification of the digits. The details of these NNs are given in Figure 15.

Figure 15. CNN and Hybrid architectures and switching between each other using DPR.

3.3. Implementation

The proposed hardware architecture in Figure 4 is implemented using Xilinx Vivado
2020.2. Using the proposed hardware architecture, two different use cases and three
different scenarios explained in the previous section are implemented. In total, 5 different
PEs are designed to realize those scenarios. Except for the spiking PE which is a pure
VHDL design, all PEs are designed using the Vitis HLS tool, which is used to transform
C, C++, and System C codes into the register transfer level implementations [30]. The PE
designs are first verified in the simulation environment. Then, they are implemented
and tested on a Zedboard FPGA board [31] which is equipped with a Xilinx Zynq 7020

J. Low Power Electron. Appl. 2021, 11, 32 17 of 25

FPGA. The summary of the resource usage of each PE can be seen in Table 1. As shown in
Table 1, the resource usage is dominated by the Convolution PEs in the NN architectures.
In addition, Feedforward PEs use moderate DSP usage with the minimum deployment of
LUTs and FFs since the main computation is the matrix multiplication in Feedforward PEs.
On the other hand, the Spiking PE does not use any DSPs because there is no multiplication
in the spiking layers. However, it consumes more logical resources, such as LUTs and FFs.

Table 1. Resource usage of different PEs.

Classifier BRAM DSP LUT FF

Convolutional PE Digit/Letter Classifier Layer 1 17 34 4258 4604

Convolutional PE Object Classifier Layer 1 21 47 7485 6382

Convolutional PE Digit/Letter/Object Classifier Layer 2 15 113 13,894 11,893

Feedforward PE Digit Classifier 8.5 20 810 740

Feedforward PE Letter Classifier 20 20 601 616

Spiking PE Digit Classifier 21 0 5313 8931

In each scenario, to switch one classifier to the other classifier, only a single PE is
updated using DPR. However, for another application, more than a single PE could be
updated as well. For the DPR, Vivado’s partial reconfiguration flow is used. The size and
location of the Pblock of the corresponding PE is determined according to the resource
utilization of the related layer of the NN accelerator. In the use cases, two different
Pblocks are defined. The first Pblock is for the last layer of Digit CNN Classifier/Digit
Hybrid Classifier/Letter CNN Classifier. The second Pblock is for the first layer of Digit
CNN Classifier/Object CNN Classifier. Except for the Pblock, the remaining layout of the
implementation is static. Thus, only Pblock is placed and routed again for the new scenario
realizations. The layout of the implemented NN classifiers and the location of the related
Pblocks can be seen in Figure 16.

Figure 16. The layout of the implemented classifier accelerators. The red rectangles correspond to
the partial reconfigurable areas (i.e., Pblocks), yellow color shows the dynamic part, and cyan color
shows the static part of the designs: (a) Digit CNN Classifier/Digit Hybrid Classifier/Letter CNN
Classifier (b) Digit CNN Classifier/Object CNN Classifier.

In the hardware tests of the scenarios, the input images are loaded from the serial
port of the Zedboard and the results are written to the registers of the final PE in the chain.
The registers are read from the memory-mapped interface of the PE. In addition, the internal
data transfers between PEs are tested on the system using Vivado Hardware Manager.
All the implementations operate at 100-MHz clock frequency. Table 2 provides resource
usages of the classifier accelerator implementations: Digit Classifier (CNN), Letter Classifier
(CNN), Object Classifier (CNN), and Digit Classifier (CNN + SNN). In this table, the hybrid
classifier DSP usage is the lowest since spiking layers do not use any DSP because there is
no multiplication operation in the computation of the spiking layers. However, it consumes

J. Low Power Electron. Appl. 2021, 11, 32 18 of 25

more LUTs and FFs since some of the LUTs and FFs are used to convert the feature maps
to the spikes in Spiking PE. Moreover, the Digit Classifier CNN uses fewer BRAMs than
the other CNNs as it has fewer nodes in the Feedforward PE for the output layer and
fewer channels in the Convolution PE for the input layer. Lastly, the Object classifier
has the highest DSP usages among them because three-channel classifiers require more
multiplications in the input layer in comparison with the one-channel classifiers.

Table 2. Resource usage of different classifier accelerators, The numbers in parenthesis show the
utilization on Zedboard.

BRAM DSP LUT FF

Digit Classifier (CNN) 58.5 (42%) 167 (76%) 24,980 (47%) 27,925 (26%)

Letter Classifier (CNN) 70 (50%) 167 (76%) 24,771 (47%) 27,801 (26%)

Object Classifier (CNN) 62.5 (45%) 180 (82%) 27,402 (52%) 29,496 (28%)

Digit Classifier (CNN + SNN) 71 (51%) 147 (67%) 31,093 (58%) 37,698 (35%)

3.4. Evaluation

To conduct a fair performance evaluation of the proposed architecture, we compare
the performance of our digit CNN classifier with three state-of-the-art digit CNN classifiers,
trained by the MNIST dataset and using the same CNN architecture (i.e., two convolu-
tional layers, two pooling layers, one hidden layer). The first accelerator is a static CNN
accelerator [32]. In that study, a ZCU102 evaluation board is used for the implementation.
For each convolutional layer and pooling layer, separate accelerators are designed. The sec-
ond accelerator is a DPR design, and according to the energy level of the power source,
the processing system uploads the required partial bitstream at run time using ICAP [17].
The last work is using cascaded connections of processing engines designed to compute
the convolution [33]. Pipelining and tiling techniques are used to improve the performance
of that design. The performance comparison with these digit classifier accelerators is given
in Table 3. As can be seen from Table 3, our proposed digit classifier accelerator has the
shortest processing time to complete the classification of an image due to the hardware
optimizations in the PE designs that allow for a considerable throughput improvement
with using less number of DSPs in comparison with the other accelerators. However,
the LUT usage is slightly higher than the other designs because of the implementation of
the components for the flexibility of the proposed hardware architecture.

Table 3. Performance Comparison of Different Digit Classifiers.

BRAM DSP LUT Processing Time FPGA Model

Shi [32] 54 204 25,276 170 µs Zynq UltraScale+ 9EG

Youssef [17] 9 N/A 19,141 270 µs Zynq 7020

Li [33] 619 916 9071 490 µs Virtex7 485t

This work 58.5 167 24,980 62 µs Zynq 7020

In the proposed architecture, all data is processed in a pipelined manner. Although
the total processing time is 62 µs for the digit classifier; the accelerator can be fed with
a higher frame rate. Every PE can process new data after finishing its task, i.e., there is
no need to wait until the end of the overall processing of one image to proceed with the
next. As shown in Figure 17, the overall frame rate only depends on the processing time of
the PE with the largest delay which is 22 µs (processing time of Feedforward PE for the
digit classifier CNN). Therefore, using the pipelining in Figure 17, the proposed accelerator
architecture achieves frame rates of up to 45K images/sec in digit classification which is
7× higher than the state-of-the-art digit classifier accelerators given in Table 3.

J. Low Power Electron. Appl. 2021, 11, 32 19 of 25

Figure 17. Pipelined processing of the Digit Classifier Accelerator.

Using the DPR concept in the proposed architecture has two main advantages. Firstly,
instead of training different datasets together, realizing specialized classifiers as different
NN greatly increases the accuracy in each task. Table 4 shows the accuracy of three different
implementations. In this table, the Character Classifier-1 is a mixed static CNN accelerator
trained with both letter and digit datasets together. On the other hand, Digit Classifier
and Letter Classifier in Figure 13 are two distinct CNNs. The switching between the digit
classifier and the letter classifier is achieved using DPR, reconfiguring only some network
layers. The accuracy of the Character Classifier-1 drops by 5% and 10% compared to the
specialized letter and the digit neural network models. The increased difficulty causes this
drop in performance for a single neural network that needs to learn multiple tasks.

Table 4. Comparison of Digit Classifier, and Letter Classifier with Character Classifier-1 in terms of
resource usage and accuracy on Zedboard (Zynq7020).

BRAM DSP LUT Accuracy Execution Time

Character Classifier 1 (Static) 70 167 25,117 87.53 87.55 µs

Letter Classifier (DPR) 70 167 24,771 92.45 84.92 µs

Digit Classifier (DPR) 58.5 167 24,980 98.88 62.19 µs

The second advantage of using DPR is the reduction in power consumption. Without
sacrificing the accuracy and throughput, a NN design can be realized by using separate
Feedforward PEs for digit classifier and letter classifier respectively. Since the proposed
architecture allows to change the connection at run time, the classifier can be switched to
the related Feedforward PE by updating the connections in the AXI stream switch in the
proposed architecture. Thus, the accuracy and execution times remain the same as the digit
and letter classifiers given in Figure 13. However, instantiating both Feedforward PEs in
the same implementation results in an increase in resource usage and power consumption
compared with the DPR implementations as shown in Table 5. In the table, Character
Classifier-2 is a classifier design instantiating the Feedforward PEs of the digit classifier and
letter classifier in the same implementation. Thus, as clearly seen from Table 5, using DPR
makes the design more energy- and resource-efficient compared with the design having
both Feedforward PEs. There is a 7% and a 10% decrease in the power consumption of
programmable logic in DPR designs as compared to the static design having digit and
letter classifiers together. For the power consumption of the processor side, since the pro-
cessor is running with the same frequency with the same software architecture, the power
consumption is 1528 mW and is the same for all classifiers. These consumptions are taken
by Vivado’s power report of the implemented (i.e., post-routed) design.

J. Low Power Electron. Appl. 2021, 11, 32 20 of 25

Table 5. Comparison of Digit Classifier, and Letter Classifier with Character Classifier-2 in terms of
resource usage and power consumption.

BRAM DSP LUT Power Consumption (Programmable Logic)

Character Classifier-2 79 187 26,525 1231 mW

Letter Classifier 70 167 24,771 1123 mW

Digit Classifier 58.5 167 24,980 1146 mW

There are also some disadvantages of using DPR. First of all, using DPR increases the
difficulty of the design process. The size of the Pblock is to be defined well considering
the resource usage of the related PEs. Moreover, defining multiple Pblocks requires a
careful placement that should allow easy routing and prevent congestion. However,
these design difficulties are coped with only once and the location and size of the Pblocks
will probably not be updated unless there are major changes in the design. Besides,
another disadvantage of the DPR can be the power overhead during partial reconfiguration.
However, as compared with the total reconfiguration of the FPGA, DPR has negligible
overhead in terms of power consumption [34]. Similarly, in [35], different experiments
were conducted to evaluate the power consumption overhead of DPR for Zynq devices
and measurements were done for the processor and the hardware logic fabrics in real-time.
In that paper, it is noticed that the power consumed by the FPGA is almost unaffected
when applying DPR. Thus, it can be concluded that the proposed method has no significant
power or energy overhead while realizing different NN accelerators using DPR.

Lastly, in the proposed architecture, the switch time between digit and letter classifiers
(i.e., DPR time) is 9.4 ms, and the switch time between digit and object classifiers is
17.1 ms since the PCAP throughput is 145 MB/s [36] and the partial bit file sizes are
1.37 MB and 2.48 MB for the Pblocks given in Figure 16, respectively. However, for full
configuration time of Zedboard is around 250 ms [31]. Therefore, the proposed method
can be effectively used, especially in time-critical applications, without wasting the time
for updating the whole bitstream. The system can be switched in a very short period of
time between digit and letter classifiers only updating the partial bitstream. To do so, in a
short response time, the characters can be identified with higher accuracy as compared
to the static character classifier designs. However, when the switching between different
classifiers is very frequent, the throughput performance may be degraded by the DPR
overhead. Since the size of the partial bistream is directly proportional to the size of
the region it is reconfiguring, using smaller Pblock may help to decrease the DPR time.
In addition, DPR overhead can also be decreased using compressed partial bit files. Yet,
these optimizations have limited improvement on DPR overhead and in order to preserve
higher overall throughput, the number of switchings between different classifiers should
be kept minimal.

3.5. Evaluation of the Spiking PE

This section compares the spiking PE alone when solving MNIST digit recognition
with other spike-based neural network implementations in FPGA. We have implemented
a feed-forward network of four layers connected to the 784 input pixels from the MNIST
images. The layer size is 784-720-720-720-10. Input has been provided with the mean-rate
generators on board, and the outputs have been evaluated by means of the ISI calculators
blocks. The spiking PE achieves an accuracy of 99.3% and a peak-throughput of 40.71 Giga
Synaptic Operation Per second (GSOPS) with an efficiency of 0.050 nJ/SO. For compar-
ison, Table 6 shows a list of recently reported spiking neural networks implemented in
FPGA. The Bluehive project [37] from Cambridge University implemented 256,000 Izhike-
vich neurons with 1000 synapses each by interconnecting four FPGAs that each contains
64,000 neurons. Minitaur [9] and its improved version n-Minitaur [38] build upon [39]
and operate event-driven. They both time-multiplex 32 physical Leaky-Integrate-and-Fire
(LIF) neurons to emulate at a maximum of 65,536 neurons. Note that this is the only purely

J. Low Power Electron. Appl. 2021, 11, 32 21 of 25

event-driven implementation in the reported work. In [40] the Efficient Neuron Archi-
tecture (ENA) is proposed, which consists of layers of neurons that communicate using
packets. Using the LIF model and 32-bit precision, it promises to emulate 3982 neurons and
400 k synapses. The authors implemented only three neurons, though. In [41] an FPGA
Design Framework (FDF) is proposed that time-multiplexes up to 200,000 neurons with
one physical conductance-based neuron. Furthermore, a network is presented that consists
of 1.5 M neurons and 92 G synapses on an FPGA. Only the most significant bits of the
exponential decay are stored to reduce memory usage, and the least significant bits are
stochastically generated. The same authors emulate 20 M to 2.6 B neurons in a so-called
Neuromorphic Cortex Simulator (NCS) [42] using only one FPGA. There is a significant
drop in performance, which is likely a result of using off-chip memory, but that increases
the supported network size.

Table 6. FPGA-based spiking neural network implementations in chronological order.

Name Bluehive FDF n-Minitaur Pani NCS Tsinghua This Work

Reference [37] [41] [38] [43] [42] [44] N/A
Year 2012 2014 2016 2017 2018 2020 2021

FPGA Stratix IV Virtex 6 Spartan 6 Virtex 6 Stratix V Zynq 7000 Zynq Ultrascale+
Clock (MHz) 200 266 105 100 200 200 250

Neuron model Izhikevich Conductance LIF Izhikevich LIF LIF LIF
Network Unknown Unknown Feed-forward Recurrent Unknown Feed-forward Recurrent

Driven Time-driven Time-driven Event-driven Time-driven Time-driven Hybrid Event-driven
Weight storage Off-chip On-chip Off-chip On-chip Off-chip Off-chip On-chip

Weight bit-width 12 bits 12 bits 16 bits 7 bits 4 bits 16 bits 6 bits
Cores 16 23 32 8 200 k Unknown Same as neurons

Number of neurons 256 k 1.5 M 1794 1440 100 M 2842 2954
Time resolution 1 ms 0.32 ms N/A 0.1 ms 1 ms N/A N/A

Peak throughput (GSOPS) 0.256 1200 0.0535 0.0144 20 0.67 40.71
Power dissipation (W) Unknown Unknown 1.5 8.5 32.4 0.5 2.039

Energy efficiency (nJ/SO) Unknown Unknown 28 590 1.62 712 0.050
MNIST accuracy Unknown Unknown 94.1% Unknown Unknown 97.1% 99.3%

Digital ASIC implementations supporting spiking networks and can be extremely
power- and energy-efficient [45–47]. In ODIN [45], an open-source digital implementation
of a spiking neural network core is presented. ODIN’s design only supports one physi-
cal neuron core, but many (virtual) neurons can be simulated. Neuron states, as well as
synaptic weights, are stored in an on-chip SRAM memory. A state machine takes care
of time-multiplexing multiple virtual neurons and executes them in one physical core
sequentially. This choice results in a low-area and low power design with the number
of events per Synaptic Operation (SOP), which is in the order of ∼10 pJ/SOP at about
100 Mhz. ODIN has demonstrated an accuracy of 91.9% on MNIST using 4-bit synapses and
one physical neuron simulating 256 virtual neurons. In contrast, our spiking PE achieved
99.3% accuracy on MNIST—a significantly better result achieved through the fully param-
eterized digital implementation tailored to high-level abstraction designs. The behavior
agreement on application and RTL level allows the application specialist to optimize the
number of bits per synaptic contact, threshold parameters, and network structure (number
of neurons and layers) for better accuracy with fewer resources. Special attention is paid
to the memory allocation of synaptic weights to provide the required throughput with
minimal resources. Another recent digital ASIC has been presented by Intel [46], and it
is named Loihi neuromorphic processor. The Loihi processor exploits a similar concept
in which a neuron core emulates many (virtual) up to 1024 neurons and many (virtual)
synaptic connections. Time-multiplexing methods exploit timing slack provided by digital
silicon speed and constantly shuffle neuron’s membrane potential and synaptic weight
memory from/to a central memory. The Loihi architecture hosts multi-neuron cores whose
role is the emulation of a part of the network, e.g., a layer, which can exchange spikes

J. Low Power Electron. Appl. 2021, 11, 32 22 of 25

asynchronously in a packet-switched form through a network-on-chip (NoC). The advan-
tage of the time-multiplexing approach is a higher neuron and synapse density because
the computational core is implemented only once, and the neuron states and synaptic
weights are stored in very dense memories. However, in contrast to distributed neuron
networks, time-multiplexed networks’ performance and energy efficiency are limited by
memory bandwidth and lack of parallelism. The distributed neurons offer a high degree of
parallelism and reduce the overhead of data movement caused by shuffling of neuron’s
membrane potential in exchange for manageable area overhead. Furthermore, the low-
power functionality can also be achieved with distributed neurons through voltage scaling,
power gating, and clock gating. For these reasons, our spiking PE architecture does not
time-multiplex neurons and exploits a layered organization. Another recent digital spiking
neural network architecture called µBrain has been presented in [47]. The µBrain also phys-
ically implements each neuron and does not use time-multiplexing, achieving microwatt
power consumption for an always-on system of 336 neurons with 19,878 synapses while
performing MNIST or radar-based gesture classification tasks.

4. Conclusions

In this work, high-performance and flexible NN accelerator architecture is proposed
and implemented on an FPGA platform. Moreover, DPR is deployed to realize different
NN accelerators with updating only a part of the FPGA implementation. To compute
the layers in different NN architectures, different PEs with having the same interfaces
are designed. Thus, using these PEs with DPR concept makes the design very efficient
particularly for scenarios switching between different NN accelerators in a short period
of time and without implementing the whole project again. In addition, the proposed
architecture and DPR methodology are illustrated with different use cases to explain the
concept in detail. Lastly, the proposed architecture is evaluated by using one of the use
cases (i.e., digit classifier) with comparing other state-of-the-art methods. The results
showed that the proposed digit classifier achieves higher throughput with moderate DSP
and BRAM usage in comparison with previous implementations on FPGAs.

Author Contributions: Conceptualization, H.I., N.A. and D.Z.; methodology, H.I., N.A. and D.Z.;
software, H.I. and P.D.; validation, H.I., F.C. and P.D.; formal analysis, H.I. and F.C.; investigation,
H.I.; data curation, H.I. and F.C.; writing—original draft preparation, H.I. and F.C.; writing—review
and editing, H.I., F.C., P.D., N.A. and D.Z.; visualization, H.I. and F.C.; supervision, N.A. and D.Z.;
project administration, H.I.; funding acquisition, H.I. and F.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported in part by The Scientific and Technological Research Council
of Turkey (TUBITAK). This research was also supported in part by the ECSEL Joint Undertaking (JU)
under grant agreement No 826610. The JU receives support from the European Union’s Horizon
2020 research and innovation programme and Spain, Austria, Belgium, Czech Republic, France, Italy,
Latvia, The Netherlands.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ASIC Application Specific Integrated Circuit
CNN Convolutional Neural Network
CPU Central Processing Unit
DMA Direct Memory Access
DNN Deep Neural Network
DPR Dynamic Partial Reconfiguration
ENA Efficient Neuron Architecture

J. Low Power Electron. Appl. 2021, 11, 32 23 of 25

FDF FPGA Design Framework
FIFO First In First Out
FPGA Field-Programmable Gate Array
GSOPS Giga Synaptic Operation per Second
ICAP Internal Configuration Access Port
ISI Inter Spike Interval
LFSR Linear-Feedback Shift Register
LIF Leaky-Integrate-and-Fire Neuron
NN Neural Network
PCAP Processor Configuration Access Port
PE Processing Element
ReLU Rectified Linear Unit
SNN Spiking Neural Network
SOP Synaptic Operation
SRAM Static Random Access Memory

References
1. Wan, Z.; Yu, B.; Li, T.Y.; Tang, J.; Zhu, Y.; Wang, Y.; Raychowdhury, A.; Liu, S. A survey of fpga-based robotic computing.

IEEE Circuits Syst. Mag. 2021, 21, 48–74. [CrossRef]
2. Madroñal, D.; Palumbo, F.; Capotondi, A.; Marongiu, A. Unmanned Vehicles in Smart Farming: A Survey and a Glance at Future

Horizons. In Proceedings of the 2021 Drone Systems Engineering and Rapid Simulation and Performance Evaluation: Methods
and Tools, Budapest, Hungary, 18–20 January 2021; pp. 1–8.

3. Vestias, M.; Neto, H. Trends of CPU, GPU and FPGA for high-performance computing. In Proceedings of the 2014 24th
International Conference on Field Programmable Logic and Applications (FPL), Munich, Germany, 2–4 September 2014; pp. 1–6.

4. Rungsuptaweekoon, K.; Visoottiviseth, V.; Takano, R. Evaluating the power efficiency of deep learning inference on embedded
GPU systems. In Proceedings of the 2017 2nd International Conference on Information Technology (INCIT), Nakhonpathom,
Thailand, 2–3 November 2017; pp. 1–5.

5. Shawahna, A.; Sait, S.M.; El-Maleh, A. FPGA-based accelerators of deep learning networks for learning and classification:
A review. IEEE Access 2018, 7, 7823–7859. [CrossRef]

6. Umuroglu, Y.; Fraser, N.J.; Gambardella, G.; Blott, M.; Leong, P.; Jahre, M.; Vissers, K. Finn: A framework for fast, scalable
binarized neural network inference. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, USA, 22–24 February 2017; pp. 65–74.

7. Indiveri, G.; Liu, S.C. Memory and information processing in neuromorphic systems. Proc. IEEE 2015, 103, 1379–1397. [CrossRef]
8. Corradi, F.; Adriaans, G.; Stuijk, S. Gyro: A Digital Spiking Neural Network Architecture for Multi-Sensory Data Analytics.

In Proceedings of the 2021 Drone Systems Engineering and Rapid Simulation and Performance Evaluation: Methods and Tools,
Budapest, Hungary, 18–20 January 2021; pp. 9–15.

9. Neil, D.; Liu, S. Minitaur, an Event-Driven FPGA-Based Spiking Network Accelerator. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 2014, 22, 2621–2628. [CrossRef]

10. Rueckauer, B.; Lungu, I.A.; Hu, Y.; Pfeiffer, M.; Liu, S.C. Conversion of continuous-valued deep networks to efficient event-driven
networks for image classification. Front. Neurosci. 2017, 11, 682. [CrossRef] [PubMed]

11. Xilinx. Partial Reconfiguration User Guide. Available online: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx14_7/ug702.pdf (accessed on 25 June 2021)

12. Koch, D.; Torresen, J.; Beckhoff, C.; Ziener, D.; Dennl, C.; Breuer, V.; Teich, J.; Feilen, M.; Stechele, W. Partial reconfiguration on
FPGAs in practice—Tools and applications. In Proceedings of the ARCS 2012, Munich, Germany, 28–29 February 2012; pp. 1–12.

13. Farhadi, M.; Ghasemi, M.; Yang, Y. A Novel Design of Adaptive and Hierarchical Convolutional Neural Networks using Partial
Reconfiguration on FPGA. In Proceedings of the 2019 IEEE High Performance Extreme Computing Conference (HPEC), Waltham,
MA, USA, 24–26 September 2019; pp. 1–7. [CrossRef]

14. Seyoum, B.B.; Pagani, M.; Biondi, A.; Balleri, S.; Buttazzo, G. Spatio-Temporal Optimization of Deep Neural Networks for
Reconfigurable FPGA SoCs. IEEE Trans. Comput. 2020. [CrossRef]

15. Kästner, F.; Janßen, B.; Kautz, F.; Hübner, M.; Corradi, G. Hardware/Software Codesign for Convolutional Neural Networks
Exploiting Dynamic Partial Reconfiguration on PYNQ. In Proceedings of the 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), Vancouver, BC, Canada, 21–25 May 2018; pp. 154–161. [CrossRef]

16. Skrimponis, P.; Pissadakis, E.; Alachiotis, N.; Pnevmatikatos, D. Accelerating Binarized Convolutional Neural Networks with
Dynamic Partial Reconfiguration on Disaggregated FPGAs. In Parallel Computing: Technology Trends; IOS Press: Amsterdam,
The Netherlands, 2020; pp. 691–700.

17. Youssef, E.; Elsemary, H.A.; El-Moursy, M.A.; Khattab, A.; Mostafa, H. Energy Adaptive Convolution Neural Network Using
Dynamic Partial Reconfiguration. In Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and
Systems (MWSCAS), Springfield, MA, USA, 9–12 August 2020; pp. 325–328. [CrossRef]

http://doi.org/10.1109/MCAS.2021.3071609
http://dx.doi.org/10.1109/ACCESS.2018.2890150
http://dx.doi.org/10.1109/JPROC.2015.2444094
http://dx.doi.org/10.1109/TVLSI.2013.2294916
http://dx.doi.org/10.3389/fnins.2017.00682
http://www.ncbi.nlm.nih.gov/pubmed/29375284
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
http://dx.doi.org/10.1109/HPEC.2019.8916237
http://dx.doi.org/10.1109/TC.2020.3033730
http://dx.doi.org/10.1109/IPDPSW.2018.00031
http://dx.doi.org/10.1109/MWSCAS48704.2020.9184640

J. Low Power Electron. Appl. 2021, 11, 32 24 of 25

18. Qin, Z.; Yu, F.; Xu, Z.; Liu, C.; Chen, X. CaptorX: A Class-Adaptive Convolutional Neural Network Reconfiguration Framework.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2021. [CrossRef]

19. Meloni, P.; Deriu, G.; Conti, F.; Loi, I.; Raffo, L.; Benini, L. A high-efficiency runtime reconfigurable IP for CNN acceleration on
a mid-range all-programmable SoC. In Proceedings of the 2016 International Conference on ReConFigurable Computing and
FPGAs (ReConFig), Cancun, Mexico, 30 November–2 December 2016; pp. 1–8. [CrossRef]

20. Irmak, H.; Alachiotis, N.; Ziener, D. An Energy-Efficient FPGA-based Convolutional Neural Network Implementation. In Pro-
ceedings of the 2021 29th Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkey, 9–11 June 2021;
pp. 1–4.

21. Irmak, H.; Ziener, D.; Alachiotis, N. Increasing Flexibility of FPGA-based CNN Accelerators with Dynamic Partial Reconfiguration.
In Proceedings of the 2021 International Conference on Field-Programmable Logic and Applications (FPL), Virtual Conference,
30 August–3 September 2021; pp. 1–6. (accepted for publication)

22. Wang, Y.; Li, Y.; Song, Y.; Rong, X. The influence of the activation function in a convolution neural network model of facial
expression recognition. Appl. Sci. 2020, 10, 1897. [CrossRef]

23. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

24. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

25. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
26. Hu, R.; Tian, B.; Yin, S.; Wei, S. Efficient hardware architecture of softmax layer in deep neural network. In Proceedings of the

2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 1–5.
27. Deng, L. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag.

2012, 29, 141–142. [CrossRef]
28. Cohen, G.; Afshar, S.; Tapson, J.; Van Schaik, A. EMNIST: Extending MNIST to handwritten letters. In Proceedings of the 2017

International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 2921–2926.
29. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. Available online: http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf (accessed on 25 June 2021)
30. Vitis High-Level Synthesis. Available online: https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.

html (accessed on 25 June 2021).
31. Zedboard. Available online: https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/

(accessed on 25 June 2021).
32. Shi, Y.; Gan, T.; Jiang, S. Design of Parallel Acceleration Method of Convolutional Neural Network Based on FPGA. In Proceedings

of the 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Chengdu, China,
10–13 April 2020; pp. 133–137.

33. Li, Z.; Wang, L.; Guo, S.; Deng, Y.; Dou, Q.; Zhou, H.; Lu, W. Laius: An 8-bit fixed-point CNN hardware inference en-
gine. In Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications
and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), Guangzhou, China,
12–15 December 2017; pp. 143–150.

34. Nafkha, A.; Louet, Y. Accurate measurement of power consumption overhead during FPGA dynamic partial reconfigura-
tion. In Proceedings of the 2016 International Symposium on Wireless Communication Systems (ISWCS), Poznan, Poland,
20–23 September 2016; pp. 586–591.

35. Rihani, M.A.; Nouvel, F.; Prévotet, J.C.; Mroue, M.; Lorandel, J.; Mohanna, Y. Dynamic and partial reconfiguration power
consumption runtime measurements analysis for ZYNQ SoC devices. In Proceedings of the 2016 International Symposium on
Wireless Communication Systems (ISWCS), Poznan, Poland, 20–23 September 2016; pp. 592–596.

36. Xilinx. Zynq-7000 All Programmable Soc: Technical Reference Manual; ug585, v1. 8.1. 2014. Available online: https://www.
xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf (accessed on 25 June 2021)

37. Moore, S.W.; Fox, P.J.; Marsh, S.J.T.; Markettos, A.T.; Mujumdar, A. Bluehive—A field-programable custom computing machine
for extreme-scale real-time neural network simulation. In Proceedings of the 2012 IEEE 20th International Symposium on
Field-Programmable Custom Computing Machines, Toronto, ON, Canada, 29 April–1 May 2012; pp. 133–140. [CrossRef]

38. Kiselev, I.; Neil, D.; Liu, S. Event-driven deep neural network hardware system for sensor fusion. In Proceedings of the 2016 IEEE
International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 2495–2498. [CrossRef]

39. O’Connor, P.; Neil, D.; Liu, S.; Delbruck, T.; Pfeiffer, M. Real-time classification and sensor fusion with a spiking deep belief
network. Front. Neurosci. 2013, 7, 178. [CrossRef] [PubMed]

40. Wan, L.; Luo, Y.; Song, S.; Harkin, J.; Liu, J. Efficient neuron architecture for FPGA-based spiking neural networks. In Proceedings
of the 2016 27th Irish Signals and Systems Conference (ISSC), Londonderry, UK, 21–22 June 2016; pp. 1–6. [CrossRef]

41. Wang, R.; Hamilton, T.J.; Tapson, J.; van Schaik, A. An FPGA design framework for large-scale spiking neural networks.
In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 1–5 June 2014;
pp. 457–460. [CrossRef]

42. Wang, R.M.; Thakur, C.S.; van Schaik, A. An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator. Front. Neurosci.
2018, 12, 213. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TCAD.2021.3061520
http://dx.doi.org/10.1109/ReConFig.2016.7857144
http://dx.doi.org/10.3390/app10051897
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/MSP.2012.2211477
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.222.9220&rep=rep1&type=pdf
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://dx.doi.org/10.1109/FCCM.2012.32
http://dx.doi.org/10.1109/ISCAS.2016.7539099
http://dx.doi.org/10.3389/fnins.2013.00178
http://www.ncbi.nlm.nih.gov/pubmed/24115919
http://dx.doi.org/10.1109/ISSC.2016.7528472
http://dx.doi.org/10.1109/ISCAS.2014.6865169
http://dx.doi.org/10.3389/fnins.2018.00213
http://www.ncbi.nlm.nih.gov/pubmed/29692702

J. Low Power Electron. Appl. 2021, 11, 32 25 of 25

43. Pani, D.; Meloni, P.; Tuveri, G.; Palumbo, F.; Massobrio, P.; Raffo, L. An FPGA Platform for Real-Time Simulation of Spiking
Neuronal Networks. Front. Neurosci. 2017, 11, 90. [CrossRef] [PubMed]

44. Han, J.; Li, Z.; Zheng, W.; Zhang, Y. Hardware implementation of spiking neural networks on FPGA. Tsinghua Sci. Technol. 2020,
25, 479–486. [CrossRef]

45. Frenkel, C.; Lefebvre, M.; Legat, J.D.; Bol, D. A 0.086-mm2 12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking
neuromorphic processor in 28-nm CMOS. IEEE Trans. Biomed. Circuits Syst. 2018, 13, 145–158. [PubMed]

46. Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi:
A neuromorphic manycore processor with on-chip learning. IEEE Micro 2018, 38, 82–99. [CrossRef]

47. Stuijt, J.; Sifalakis, M.; Yousefzadeh, A.; Corradi, F. µBrain: An Event-Driven and Fully Synthesizable Architecture for Spiking
Neural Networks. Front. Neurosci. 2021, 15, 538. [CrossRef] [PubMed]

http://dx.doi.org/10.3389/fnins.2017.00090
http://www.ncbi.nlm.nih.gov/pubmed/28293163
http://dx.doi.org/10.26599/TST.2019.9010019
http://www.ncbi.nlm.nih.gov/pubmed/30418919
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.3389/fnins.2021.664208
http://www.ncbi.nlm.nih.gov/pubmed/34093116

	Introduction
	Materials and Methods
	Accelerator Architecture
	Convolution with Optional Integrated Pooling PE
	Feedforward PE
	Spiking PE
	Digital Leaky-Integrate-and-Fire Neurons
	The Spike Queue
	The Neuron Wrapper
	The Weight Memory Block
	The Weight Controller
	Input and Output Interfaces

	DPR

	Results and Discussion
	Use Case 1: CNN to CNN for Different Datasets
	Digit Classifier to Letter Classifier Scenario
	Digit Classifier to Object Classifier Scenario

	Use Case 2: CNN to Hybrid for Different Architectures
	Implementation
	Evaluation
	Evaluation of the Spiking PE

	Conclusions
	References

