
Journal of

Low Power Electronics
and Applications

Article

Energy-Efficient Non-Von Neumann Computing Architecture
Supporting Multiple Computing Paradigms for Logic and
Binarized Neural Networks

Tommaso Zanotti 1,* , Francesco Maria Puglisi 1 and Paolo Pavan 1

����������
�������

Citation: Zanotti, T.; Puglisi, F.M.;

Pavan, P. Energy-Efficient Non-Von

Neumann Computing Architecture

Supporting Multiple Computing

Paradigms for Logic and Binarized

Neural Networks. J. Low Power

Electron. Appl. 2021, 11, 29. https://

doi.org/10.3390/jlpea11030029

Academic Editors: Alex Serb and

Adnan Mehonic

Received: 31 May 2021

Accepted: 30 June 2021

Published: 6 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Dipartimento di Ingegneria “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via P. Vivarelli 10/1,
41125 Modena, Italy; francescomaria.puglisi@unimore.it (F.M.P.); paolo.pavan@unimore.it (P.P.)
* Correspondence: tommaso.zanotti@unimore.it

Abstract: Different in-memory computing paradigms enabled by emerging non-volatile memory
technologies are promising solutions for the development of ultra-low-power hardware for edge com-
puting. Among these, SIMPLY, a smart logic-in-memory architecture, provides high reconfigurability
and enables the in-memory computation of both logic operations and binarized neural networks
(BNNs) inference. However, operation-specific hardware accelerators can result in better performance
for a particular task, such as the analog computation of the multiply and accumulate operation for
BNN inference, but lack reconfigurability. Nonetheless, a solution providing the flexibility of SIMPLY
while also achieving the high performance of BNN-specific analog hardware accelerators is missing.
In this work, we propose a novel in-memory architecture based on 1T1R crossbar arrays, which
enables the coexistence on the same crossbar array of both SIMPLY computing paradigm and the
analog acceleration of the multiply and accumulate operation for BNN inference. We also highlight
the main design tradeoffs and opportunities enabled by different emerging non-volatile memory
technologies. Finally, by using a physics-based Resistive Random Access Memory (RRAM) compact
model calibrated on data from the literature, we show that the proposed architecture improves
the energy delay product by >103 times when performing a BNN inference task with respect to a
SIMPLY implementation.

Keywords: BNN; logic-in-memory; RRAM; SIMPLY

1. Introduction

The demand for more ubiquitous edge computing promoted by the rapidly growing
volume of data exchanged over the communication network by devices for the Internet
of Things (IoT) requires the development of more energy-efficient computing architec-
tures [1,2]. Accordingly, several new computing paradigms [3–10] have been proposed,
encouraging a departure from the traditional von Neumann architecture. All these new
computing approaches aim at performing computation directly inside the memory by
exploiting novel emerging non-volatile memory (ENVM) technologies, therefore bypass-
ing the main performance bottleneck of traditional von Neumann architectures, i.e., the
communication between the memory and the processing unit over a slow bus. While
operation specific hardware accelerators can achieve very high performance when ex-
ecuting a specific task, the possibility to reconfigure the type of operations computed
in-memory may benefit resource-constrained devices for edge computing applications [11].
Among in-memory computing paradigms providing reconfigurability [4,12–16], architec-
tures based on resistive memory devices and the material implication (IMPLY) logic are a
promising solution [13]. Also, a smart IMPLY (SIMPLY) [17] architecture was proposed
for solving the reliability issues of conventional IMPLY-based architectures demonstrating
high reliability and high energy efficiency when implementing logic operations. Recently,
a binarized neural network (BNN) [18] implementation based on the SIMPLY architecture

J. Low Power Electron. Appl. 2021, 11, 29. https://doi.org/10.3390/jlpea11030029 https://www.mdpi.com/journal/jlpea

https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0002-4145-8830
https://orcid.org/0000-0001-6178-2614
https://doi.org/10.3390/jlpea11030029
https://doi.org/10.3390/jlpea11030029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jlpea11030029
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea11030029?type=check_update&version=2

J. Low Power Electron. Appl. 2021, 11, 29 2 of 18

was proposed [19,20] and shown to improve energy efficiency with respect to conventional
embedded system implementations. Nevertheless, specific BNN hardware accelerators
based on resistive memory technologies [21–25] which accelerate in analog the multiply and
accumulate (MAC) operation can achieve higher performance if properly designed, lacking,
however, reconfigurability options. Thus, a solution enabling the coexistence of both com-
puting approaches on the same resources would enable the development of reconfigurable
ultra-low-power edge computing hardware, but such a solution is still missing.

In this work, we design a new in-memory computing architecture enabling the coex-
istence on the same 1T1R crossbar array of both the SIMPLY logic-in-memory paradigm
and the analog acceleration of the multiply and accumulate operation for BNN inference
applications. We analyze the design tradeoffs of the proposed architecture and indicate
the opportunities and limitations introduced using different emerging non-volatile mem-
ory technologies. Finally, exploiting a physics-based Resistive Random Access Memory
(RRAM) compact model calibrated on a TiN/HfOx/AlOx/Pt RRAM technology from the
literature [26], we benchmark with respect to a SIMPLY implementation the performance
improvements for an inference task on a BNN provided by the novel architecture.

2. Results
2.1. Logic-in-Memory and the SIMPLY Architecture
2.1.1. Material Implication Logic

The IMPLY logic is based on two logic operations, i.e., the IMPLY, the truth table
of which is shown in Figure 1c, and the FALSE which always results in a logic zero.
These two operations can be implemented with RRAM devices and the circuit shown in
Figure 1a, which comprises a resistor (i.e., RG in Figure 1a), a control logic and analog
tri-state buffers to deliver appropriate voltages to RRAM devices. Since the IMPLY and
the FALSE form a complete logic group, all logic operations can be implemented with a
sequence of these two operations [27]. In this framework, logic bits are mapped to RRAM
devices resistances, and a logic 0 and a logic 1 are encoded into a high-resistive state
(HRS) or low-resistive state (LRS), respectively. When performing computations RRAMs
act at the same time both as the inputs and the outputs of computation. In particular, to
perform an IMPLY operation between two bits (i.e., P and Q in Figure 1b,c), the control logic
simultaneously drives the top electrodes of the two input RRAM devices with two voltage
pulses with amplitudes VCOND and VSET (see Figure 1b) on the two devices, respectively.
By determining an appropriate value for VSET and VCOND voltages, which must satisfy
all the different requirements for each input combinations reported in Figure 1c, the state
of the device receiving VCOND (i.e., P in Figure 1b,c) never changes while the state of
the other device (i.e., Q in Figure 1b,c) changes according to the IMPLY truth table (see
Figure 1c, where Q’ is the state of Q after the IMPLY operation execution). The FALSE
operation is executed by applying a negative voltage pulse with amplitude VFALSE to a
single device to reset it into a HRS (see Figure 1d). However, this IMPLY scheme is affected
by several reliability challenges, such as logic state degradation and small tolerance to
voltage variations, which hinder its implementation [28,29].

2.1.2. SIMPLY

A solution to the reliability issues affecting the conventional IMPLY architecture is the
SIMPLY architecture [17]. In SIMPLY, the computation of the IMPLY operation is split into
two steps, i.e., a read step and a conditional write step. As shown in the IMPLY truth table
(see Figure 1c), the state of Q, which is the device storing the result of the IMPLY operation,
changes only when both P and Q (i.e., the inputs of the IMPLY operation) are in HRS. This
condition can be detected by applying two simultaneous small read voltage pulses with
amplitude VREAD to P and Q and comparing the voltage across RG (VN) with a threshold
(VTH) using a comparator, as shown in Figure 2a. In fact, VN is lower when both inputs are
zero than in all the other cases (see Figure 2b), providing a sufficient read margin (RM) for
the comparator. The output of the comparator is fed to a control logic which then pulses

J. Low Power Electron. Appl. 2021, 11, 29 3 of 18

VSET on Q only when necessary. By using a sufficiently low VREAD voltage the problem
of logic state degradation is effectively solved [17]. Also, the drivers in the peripheral
circuitry of the array can be simplified, as VCOND is no longer required. In addition, the
high VSET voltage pulse is applied only in the first case of the truth table, while in the
other three cases the main energy consumption is due to the small VREAD pulses and the
comparator. As described in previous works [19,20], the latter can be implemented with
the voltage sense amplifier (VSA) in Figure 2d, which is fast and energy efficient (i.e., the
VSA implemented with a 45 nm technology from [30], and a VDD of 2V dissipated just 8 fJ
per comparison on average). Therefore, SIMPLY considerably improves the energy per
IMPLY operation in three out of four cases of the truth table compared to the conventional
IMPLY architecture [17,19].

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 3 of 19

(a) (b)

Input
Combination

Output
(Q’)

Requirements

P=0 Q=0 1 High VSET, Low VCOND
P=0 Q=1 1 Low|VCOND-VSET|
P=1 Q=0 0 Low|VSET-VCOND|
P=1 Q=1 1 -

(c) (d)

Figure 1. (a) Circuit implementing the elementary IMPLY logic gate. (b) Driving voltage scheme implementing the P
IMPLY Q operation. (c) IMPLY operation truth table highlighting the contrasting requirements on VSET and VCOND for a
reliable gate functionality. Q’ represents the state of Q after the IMPLY operation execution. (d) Driving voltage scheme
implementing the FALSE Q operation.

2.1.2. SIMPLY
A solution to the reliability issues affecting the conventional IMPLY architecture is

the SIMPLY architecture [17]. In SIMPLY, the computation of the IMPLY operation is
split into two steps, i.e., a read step and a conditional write step. As shown in the IMPLY
truth table (see Figure 1c), the state of Q, which is the device storing the result of the
IMPLY operation, changes only when both P and Q (i.e., the inputs of the IMPLY
operation) are in HRS. This condition can be detected by applying two simultaneous
small read voltage pulses with amplitude VREAD to P and Q and comparing the voltage
across RG (VN) with a threshold (VTH) using a comparator, as shown in Figure 2a. In fact,
VN is lower when both inputs are zero than in all the other cases (see Figure 2b),
providing a sufficient read margin (RM) for the comparator. The output of the
comparator is fed to a control logic which then pulses VSET on Q only when necessary. By
using a sufficiently low VREAD voltage the problem of logic state degradation is
effectively solved [17]. Also, the drivers in the peripheral circuitry of the array can be
simplified, as VCOND is no longer required. In addition, the high VSET voltage pulse is
applied only in the first case of the truth table, while in the other three cases the main
energy consumption is due to the small VREAD pulses and the comparator. As described
in previous works [19,20], the latter can be implemented with the voltage sense amplifier
(VSA) in Figure 2d, which is fast and energy efficient (i.e., the VSA implemented with a
45 nm technology from [30], and a VDD of 2V dissipated just 8 fJ per comparison on
average). Therefore, SIMPLY considerably improves the energy per IMPLY operation in
three out of four cases of the truth table compared to the conventional IMPLY
architecture [17,19].

To further improve the energy efficiency, the same approach can be used for the
FALSE operation [19,20]. When a device is in HRS the high VFALSE voltage results in
unnecessary energy dissipation. This can be prevented by first reading the state of the
device and then applying the VFALSE only when the device is in LRS (see Figure 2c). The
effectiveness in reducing the energy per operation depends on the employed RRAM
technology [19]. In fact, the achieved energy reduction with RRAM technology
characterized by very high HRS is limited, while it is relevant for technologies with
relatively low HRS.

Control Logic

VP

P Q

RG

VQ

VCOND

VSET
VPVQ,

time (a.u.)

P IMPLY Q

VFALSE<0

time (a.u.)

VQ

FALSE Q

Figure 1. (a) Circuit implementing the elementary IMPLY logic gate. (b) Driving voltage scheme
implementing the P IMPLY Q operation. (c) IMPLY operation truth table highlighting the contrasting
requirements on VSET and VCOND for a reliable gate functionality. Q’ represents the state of Q after
the IMPLY operation execution. (d) Driving voltage scheme implementing the FALSE Q operation.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 4 of 19

(a) (b) (c) (d)

Figure 2. (a) Circuit implementation of the elementary IMPLY gate in the SIMPLY framework. (b) Driving voltage
scheme used to implement the P IMPLY Q operation. The control logic pulses VSET on Q only when the comparator
detects P = Q = 0 (green lines) while the drivers are kept in high impedance (Hi-Z) in all other cases (dashed black lines).
(c) Driving voltage scheme used to implement the FALSE Q operation in the SIMPLY framework. The comparator
detects when Q = 1 (black lines) and pulses VFALSE accordingly. (d) Voltage sense amplifier implemented and simulated
with a 45nm technology [30]. All FETs have minimum size (i.e., L = 50 nm W = 90 nm).

The RM is the most important reliability metric, and enough RM must be ensured
even in presence of resistive state variability and random telegraph noise (RTN). While a
higher RM can be achieved by slightly increasing VREAD (see Figure 3a), a higher RM is
also obtained by using the optimal value for RG (see Figure 3b) that is determined using
equation (1) from [31], where RHRS,MAX and RHRS,MIN are the ±3σ values of the RHRS
distribution, while RLRS,MAX is the +3σ value of the RLRS distribution.

R
M

A

The SIMPLY framework can be implemented also on crossbar arrays [19].
Specifically, to implement SIMPLY on the 1T1R crossbar array the architecture shown in
Figure 4 is needed. Additional field effect transistor (FET) devices in the array periphery
are used to connect adjacent rows of the crossbar to perform IMPLY operations between
devices on the same column but different rows, and to select specific rows. Also, the
degree of parallelism in the SIMPLY architecture can be increased by adding more VSAs
in the array periphery, as shown in Figure 4. Using multiple VSAs enables the
realization of single instruction multiple data (SIMD) architectures, in which the IMPLY
and FALSE operations can be performed in parallel on data stored in different rows but
aligned on the same columns. For instance, to perform IMPLY operations in parallel,
two columns are driven with the read voltage, then only the FETs implementing RG and
those enabling the selected rows are enabled, therefore routing each active row to the
specific VSA. The control logic receives in input the results of all the comparisons and
activates only the rows where an RRAM device should be switched during the device
SET step. As shown in previous works [19,31], the use of SIMPLY-based SIMD
architectures results in high computing efficiency and throughput.

Control Logic

VP

P Q

RG

VQ

VTH

VN +-
-+

VP

VQ

VREAD

VSET

time (a.u.)

Hi-Z

VREAD

P=Q=0 Otherwise
P IMPLY Q

VN
VTH

Hi-Z

Hi-Z

VQ
VREAD

time (a.u.)

VFALSE

Q=0 Q=1
FALSE Q

VN
VTH

Hi-Z

Hi-Z

CTRLIN

VDD

VIN

CLK
(from logic)

CTRLIN

VOUT
(to logic)

+- VTH

RD
(from logic)

RST
(from logic)

RST
(from logic)

ܴீ = ඨ ଵభೃಹೃೄಾಲ೉ା భೃಽೃೄಾಲ೉ ⋅ ܴಹೃೄಾ಺ಿమ , (1)

Figure 2. (a) Circuit implementation of the elementary IMPLY gate in the SIMPLY framework. (b) Driving voltage scheme
used to implement the P IMPLY Q operation. The control logic pulses VSET on Q only when the comparator detects P = Q = 0
(green lines) while the drivers are kept in high impedance (Hi-Z) in all other cases (dashed black lines). (c) Driving voltage
scheme used to implement the FALSE Q operation in the SIMPLY framework. The comparator detects when Q = 1 (black
lines) and pulses VFALSE accordingly. (d) Voltage sense amplifier implemented and simulated with a 45nm technology [30].
All FETs have minimum size (i.e., L = 50 nm W = 90 nm).

J. Low Power Electron. Appl. 2021, 11, 29 4 of 18

To further improve the energy efficiency, the same approach can be used for the FALSE
operation [19,20]. When a device is in HRS the high VFALSE voltage results in unnecessary
energy dissipation. This can be prevented by first reading the state of the device and then
applying the VFALSE only when the device is in LRS (see Figure 2c). The effectiveness in
reducing the energy per operation depends on the employed RRAM technology [19]. In
fact, the achieved energy reduction with RRAM technology characterized by very high
HRS is limited, while it is relevant for technologies with relatively low HRS.

The RM is the most important reliability metric, and enough RM must be ensured
even in presence of resistive state variability and random telegraph noise (RTN). While a
higher RM can be achieved by slightly increasing VREAD (see Figure 3a), a higher RM is
also obtained by using the optimal value for RG (see Figure 3b) that is determined using
equation (1) from [31], where RHRS,MAX and RHRS,MIN are the ±3σ values of the RHRS
distribution, while RLRS,MAX is the +3σ value of the RLRS distribution.

RG =

√√√√ 1
1

RHRSMAX
+ 1

RLRSMAX

· R HRSMIN
2

, (1)

The SIMPLY framework can be implemented also on crossbar arrays [19]. Specifically,
to implement SIMPLY on the 1T1R crossbar array the architecture shown in Figure 4 is
needed. Additional field effect transistor (FET) devices in the array periphery are used
to connect adjacent rows of the crossbar to perform IMPLY operations between devices
on the same column but different rows, and to select specific rows. Also, the degree of
parallelism in the SIMPLY architecture can be increased by adding more VSAs in the array
periphery, as shown in Figure 4. Using multiple VSAs enables the realization of single
instruction multiple data (SIMD) architectures, in which the IMPLY and FALSE operations
can be performed in parallel on data stored in different rows but aligned on the same
columns. For instance, to perform IMPLY operations in parallel, two columns are driven
with the read voltage, then only the FETs implementing RG and those enabling the selected
rows are enabled, therefore routing each active row to the specific VSA. The control logic
receives in input the results of all the comparisons and activates only the rows where
an RRAM device should be switched during the device SET step. As shown in previous
works [19,31], the use of SIMPLY-based SIMD architectures results in high computing
efficiency and throughput.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 5 of 19

(a) (b)

Figure 3. (a) Distribution of the comparator input voltage (VN) for increasing VREAD considering the TiN/HfOx/AlOx/Pt
RRAM devices from [26], when considering a suboptimal RG in (a) and the optimal RGopt in (b), which maximize the read
margin (RM). The distributions for P = Q = 0 (grey bands) and P ≠ Q (green bands) are reported together with the read
margins (RM—blue arrows) and associated threshold voltages (VTH—violet line) for the comparator. The effects of cycle-
to-cycle, device-to-device variability, and random telegraph noise (RTN) are considered by repeating the simulations 50.
The extreme points of the distributions are indicated with black whiskers, and outliers due to RTN with red crosses.

Figure 4. SIMPLY implementation on a 1T1R crossbar array. FET devices are used to implement RG, select specific rows, and to

connect adjacent columns.

2.2. Binarized Neural Networks (BNNs) Hardware Accelerator Architectures
2.2.1. Binarized Neural Networks with SIMPLY

BNNs are an effective solution that enables the implementation of neural networks
at a lower computational cost, while retaining sufficiently high accuracies [18], as
compared to full-precision neural networks. In fact, by using 1-bit weights and
activations only logic operations are required to perform an inference task. Thanks to
this simplification, previous works [19,20] showed how BNN inference can be
implemented in the SIMPLY computing framework. The network parameters are trained
offline using for example the DoReFa-Net algorithm [32] (see Section 4.2) and directly
mapped to the resistance of RRAM devices in the crossbar array, as shown in Figure 5b
where a single crossbar row is reported. In BNNs, the multiply and accumulate (MAC)
can be implemented with bitwise XNOR operations between each neuron weights and
input activations, the accumulation with the popcount operation, and each neuron
activation by performing a comparison with a trained threshold. Finally, the output class
is predicted by using the hardmax function, which selects the class corresponding to the
neuron with the highest output activation. By enabling the realization of SIMD
architectures, the resulting SIMPLY implementation exploits the intrinsic parallelism in
BNN computations, to efficiently compute in parallel the operations in each neural
network layer. Also, thanks to its reconfigurability, SIMPLY enables the possibility to

0.1 0.2 0.3
VREAD (V)

0

0.1

0.2

0.3

V N
(V

)

RG = 10kΩ

Read Margin
Threshold Voltage

P≠Q

P=Q=0

99
mV

≈

47
mV

≈
18
mV

≈

0.1 0.2 0.3
VREAD (V)

0

0.1

0.2

0.3

V N
(V

)

RGopt. = 32kΩ

Read Margin
Threshold Voltage P≠Q

P=Q=028
mV

≈
70
mV

≈
119
mV

≈

VSA

VTH

VSA

VTH

VSAVTH

Control Logic w/ Analog
Tri-State Buffers

Figure 3. (a) Distribution of the comparator input voltage (VN) for increasing VREAD considering the TiN/HfOx/AlOx/Pt
RRAM devices from [26], when considering a suboptimal RG in (a) and the optimal RGopt in (b), which maximize the
read margin (RM). The distributions for P = Q = 0 (grey bands) and P 6= Q (green bands) are reported together with the
read margins (RM—blue arrows) and associated threshold voltages (VTH—violet line) for the comparator. The effects of
cycle-to-cycle, device-to-device variability, and random telegraph noise (RTN) are considered by repeating the simulations
50. The extreme points of the distributions are indicated with black whiskers, and outliers due to RTN with red crosses.

J. Low Power Electron. Appl. 2021, 11, 29 5 of 18

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 5 of 19

(a) (b)

Figure 3. (a) Distribution of the comparator input voltage (VN) for increasing VREAD considering the TiN/HfOx/AlOx/Pt
RRAM devices from [26], when considering a suboptimal RG in (a) and the optimal RGopt in (b), which maximize the read
margin (RM). The distributions for P = Q = 0 (grey bands) and P ≠ Q (green bands) are reported together with the read
margins (RM—blue arrows) and associated threshold voltages (VTH—violet line) for the comparator. The effects of cycle-
to-cycle, device-to-device variability, and random telegraph noise (RTN) are considered by repeating the simulations 50.
The extreme points of the distributions are indicated with black whiskers, and outliers due to RTN with red crosses.

Figure 4. SIMPLY implementation on a 1T1R crossbar array. FET devices are used to implement RG, select specific rows, and to

connect adjacent columns.

2.2. Binarized Neural Networks (BNNs) Hardware Accelerator Architectures
2.2.1. Binarized Neural Networks with SIMPLY

BNNs are an effective solution that enables the implementation of neural networks
at a lower computational cost, while retaining sufficiently high accuracies [18], as
compared to full-precision neural networks. In fact, by using 1-bit weights and
activations only logic operations are required to perform an inference task. Thanks to
this simplification, previous works [19,20] showed how BNN inference can be
implemented in the SIMPLY computing framework. The network parameters are trained
offline using for example the DoReFa-Net algorithm [32] (see Section 4.2) and directly
mapped to the resistance of RRAM devices in the crossbar array, as shown in Figure 5b
where a single crossbar row is reported. In BNNs, the multiply and accumulate (MAC)
can be implemented with bitwise XNOR operations between each neuron weights and
input activations, the accumulation with the popcount operation, and each neuron
activation by performing a comparison with a trained threshold. Finally, the output class
is predicted by using the hardmax function, which selects the class corresponding to the
neuron with the highest output activation. By enabling the realization of SIMD
architectures, the resulting SIMPLY implementation exploits the intrinsic parallelism in
BNN computations, to efficiently compute in parallel the operations in each neural
network layer. Also, thanks to its reconfigurability, SIMPLY enables the possibility to

0.1 0.2 0.3
VREAD (V)

0

0.1

0.2

0.3

V N
(V

)

RG = 10kΩ

Read Margin
Threshold Voltage

P≠Q

P=Q=0

99
mV

≈

47
mV

≈
18
mV

≈

0.1 0.2 0.3
VREAD (V)

0

0.1

0.2

0.3

V N
(V

)

RGopt. = 32kΩ

Read Margin
Threshold Voltage P≠Q

P=Q=028
mV

≈
70
mV

≈
119
mV

≈

VSA

VTH

VSA

VTH

VSAVTH

Control Logic w/ Analog
Tri-State Buffers

Figure 4. SIMPLY implementation on a 1T1R crossbar array. FET devices are used to implement RG,
select specific rows, and to connect adjacent columns.

2.2. Binarized Neural Networks (BNNs) Hardware Accelerator Architectures
2.2.1. Binarized Neural Networks with SIMPLY

BNNs are an effective solution that enables the implementation of neural networks at
a lower computational cost, while retaining sufficiently high accuracies [18], as compared
to full-precision neural networks. In fact, by using 1-bit weights and activations only
logic operations are required to perform an inference task. Thanks to this simplification,
previous works [19,20] showed how BNN inference can be implemented in the SIMPLY
computing framework. The network parameters are trained offline using for example
the DoReFa-Net algorithm [32] (see Section 4.2) and directly mapped to the resistance
of RRAM devices in the crossbar array, as shown in Figure 5b where a single crossbar
row is reported. In BNNs, the multiply and accumulate (MAC) can be implemented
with bitwise XNOR operations between each neuron weights and input activations, the
accumulation with the popcount operation, and each neuron activation by performing a
comparison with a trained threshold. Finally, the output class is predicted by using the
hardmax function, which selects the class corresponding to the neuron with the highest
output activation. By enabling the realization of SIMD architectures, the resulting SIMPLY
implementation exploits the intrinsic parallelism in BNN computations, to efficiently
compute in parallel the operations in each neural network layer. Also, thanks to its
reconfigurability, SIMPLY enables the possibility to easily implement different neural
networks topologies. However, the high degree of reconfigurability comes at the price
of a high number of computing steps, which limits the latency performance. Specifically,
among the different operations, the computation of MAC operations is the main limitation
in SIMPLY-based BNN implementations, and accounts for almost all the computing steps
of a network layer when considering a layer with 1000 input activations, as shown in
Figure 5a. While each bitwise XNOR requires nine computing steps (see Figure 5c), the
number per accumulation operations for the implemented accumulator rapidly rises as
the number of inputs to a network layer increases. In fact, to implement the accumulator,
a chain of half-adders (HAs) is used where the first HA is fed its current output and
the bit to be accumulated, while the following HAs are fed their current output and
the carry-out from the previous HA in the chain [19,20], as shown in Figure 5e. Each
HA requires 13 computing steps to accumulate a single bit (see Figure 5d). Thus, the
whole accumulation operation is computed in ∑m

i=113i·2(i−1). This is because each HA is
activated only after a number of input bits equal to two to the power of their respective
bit position has been accumulated, since the carry-out bits from the preceding HA stage
is necessarily zero when fewer bits have been accumulated. Therefore, the latency for
computing the accumulation operation rises exponentially when the size of a neural

J. Low Power Electron. Appl. 2021, 11, 29 6 of 18

network layer increases, thus suggesting that BNN SIMPLY implementations are more
suitable for small neural network implementations, while the implementation of larger
networks would require more efficient MAC execution.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 6 of 19

easily implement different neural networks topologies. However, the high degree of
reconfigurability comes at the price of a high number of computing steps, which limits
the latency performance. Specifically, among the different operations, the computation
of MAC operations is the main limitation in SIMPLY-based BNN implementations, and
accounts for almost all the computing steps of a network layer when considering a layer
with 1000 input activations, as shown in Figure 5a. While each bitwise XNOR requires
nine computing steps (see Figure 5c), the number per accumulation operations for the
implemented accumulator rapidly rises as the number of inputs to a network layer
increases. In fact, to implement the accumulator, a chain of half-adders (HAs) is used
where the first HA is fed its current output and the bit to be accumulated, while the
following HAs are fed their current output and the carry-out from the previous HA in
the chain [19,20], as shown in Figure 5e. Each HA requires 13 computing steps to
accumulate a single bit (see Figure 5d). Thus, the whole accumulation operation is
computed in ∑௠௜ୀଵ13݅ ∙ 2(௜ିଵ). This is because each HA is activated only after a number
of input bits equal to two to the power of their respective bit position has been
accumulated, since the carry-out bits from the preceding HA stage is necessarily zero
when fewer bits have been accumulated. Therefore, the latency for computing the
accumulation operation rises exponentially when the size of a neural network layer
increases, thus suggesting that BNN SIMPLY implementations are more suitable for
small neural network implementations, while the implementation of larger networks
would require more efficient MAC execution.

(a) (b) (c)

(d) (e)

Figure 5. (a) Breakdown of the percentage number of computing steps performed in a binarized neural network (BNN)
layer with 1000 input activations. (b) Example of SIMPLY implementation of the multiply and accumulate (MAC)
operation for a single neuron. Devices storing the neural network weights (W), their complement (ഥܹ), the results of the
bitwise XNOR (O), the result of the accumulation (S), the carry-out (C0), and supporting intermediate computations (M1,
M2, M3) are reported. (c) Sequence of IMPLY and FALSE operations implementing a two input XNOR [19]. (d) SIMPLY-
based half-adder (HA) implementation. (e) SIMPLY-based accumulator operation implementing the popcount
operation.

2.2.2. Binarized Neural Networks with Analog Vector Matrix Multiplication

Control Logic

ܸܰܪܸܶ +-
-+

ଵଵܣ ௡ଵܣ ଵܯ ଶܯ ଵܹଶ ഥܹଵଶ ௡ܹଶ ഥܹ௡ଶ ଵܱ ௡ܱ
ܸீ

ଷܯ ଵܵ ܵ௠ ௢ܥ
Step

Numb. Operation

1-3 ,ࡻ) ࡱࡿࡸ࡭ࡲ ,૚ࡹ (૛ࡹ
4 ,࡭) ࢅࡸࡼࡹࡵ (૚ࡹ
5 ,૚ࡹ) ࢅࡸࡼࡹࡵ (૛ࡹ
6 ,ࢃ) ࢅࡸࡼࡹࡵ (૚ࡹ
7 ,ࢃ) ࢅࡸࡼࡹࡵ (૛ࡹ
8 ,૚ࡹ) ࢅࡸࡼࡹࡵ (ࡻ
9 ,૛ࡹ) ࢅࡸࡼࡹࡵ (ࡻ

XNOR(A, W)

S

Co
Ci

I
HALF

ADDER

1-bit Half Adder
Step

Numb. Operation

1-4 ,۱૙) ࡱࡿࡸ࡭ࡲ ,૚ࡹ ,૛ࡹ (૜ۻ
5 ,۷) ࢅࡸࡼࡹࡵ (૚ࡹ
6 ,۱ܑ) ࢅࡸࡼࡹࡵ (૛ࡹ
7 ,۱ܑ) ࢅࡸࡼࡹࡵ (૚ࡹ
8 ,૛ࡹ) ࢅࡸࡼࡹࡵ ۷)
9 ,૚ࡹ) ࢅࡸࡼࡹࡵ (૜ۻ

10 ,۷) ࢅࡸࡼࡹࡵ (૜ۻ
11 (ࡿ) ۳܁ۺۯ۴
12 ,૜ۻ) ࢅࡸࡼࡹࡵ (܁
13 ,૚ۻ) ࢅࡸࡼࡹࡵ (࢕࡯

HALF
ADDER

11000…1

S1

1xn݉ = logଶ ݊
C0

HALF
ADDER

S2

C1

HALF
ADDER

Sm

Cm

Accumulator

ݏ݌݁ݐܵ ݃݊݅ݐݑ݌݉݋ܥ# = ∑ 13݅ · 2௜ିଵ௠௜ୀଵ

Figure 5. (a) Breakdown of the percentage number of computing steps performed in a binarized neural network (BNN)
layer with 1000 input activations. (b) Example of SIMPLY implementation of the multiply and accumulate (MAC) operation
for a single neuron. Devices storing the neural network weights (W), their complement (W), the results of the bitwise XNOR
(O), the result of the accumulation (S), the carry-out (C0), and supporting intermediate computations (M1, M2, M3) are
reported. (c) Sequence of IMPLY and FALSE operations implementing a two input XNOR [19]. (d) SIMPLY-based half-adder
(HA) implementation. (e) SIMPLY-based accumulator operation implementing the popcount operation.

2.2.2. Binarized Neural Networks with Analog Vector Matrix Multiplication

The computation in the analog domain of the vector matrix multiplication with
resistive memory devices has been shown to be a promising solution for accelerating
in hardware the execution of deep neural networks. In this framework, the weights of
the neural network are mapped into the analog non-volatile resistance of RRAM devices
of a crossbar array [3], while the input activations to a neuron are mapped to voltage
pulses with amplitude or duration proportional to the input value. By applying such input
activations to the rows of the crossbar and by providing a virtual ground to the end of each
crossbar column, the current flowing in each crossbar column is linearly proportional to the
result of the vector matrix multiplication, that is computed in a single step thanks to Ohm’s
and Kirchhoff’s current laws. However, such architecture presents some challenges due to
resistive memory devices non-idealities such as the resistive state variability, which limits
the number of bits that can be reliably encoded into a single RRAM device. Furthermore,
providing a virtual ground at each crossbar column comes at the expense of a large chip
area occupied by the peripheral circuitry due to the need of operational amplifiers [33]
and analog to digital converters (ADCs) which limit the area efficiency especially when
many rows are read in parallel. Thus, the need for the virtual ground becomes the main
bottleneck for such architecture, introducing a tradeoff between crossbar density and

J. Low Power Electron. Appl. 2021, 11, 29 7 of 18

latency (i.e., the same operational amplifier and ADC pair can be shared among multiple
crossbar columns; however, reducing the maximum throughput). A more robust solution
to RRAM variability, which is also more efficient in terms of chip area occupancy, are
BNNs. In fact, binary weights can be reliably stored in a crossbar array using a pair of
RRAM devices in the same column, as shown in Figure 6b. To store a +1 weight, the
two RRAM devices are programmed into an LRS/HRS configuration, while to store a −1
the opposite configuration is used (see Figure 6b). When computing the binary vector
matrix multiplication, which is equivalent to the combined bitwise XNOR and popcount
operations, the two FETs in series with the RRAMs representing a single weight are driven
with complementary signals that encode the +1/-1 input activations so that only one FET is
active at time. As a result, the current flowing through each crossbar column is proportional
to the sum of all the positive results of the products between the input activations and each
neuron’s weights. Using this approach, the operational amplifier and ADC can be replaced
by a much more compact voltage sense amplifiers (VSAs) circuit [21,22], implementing the
architecture shown in Figure 6a, thus reducing the required chip area and improving the
throughput and the energy efficiency. Instead of voltage sensing, the same approach could
also be implemented by using current mode sense amplifiers [34], however resulting in
lower energy efficiency [35]. Nevertheless, when using a sense amplifier, no virtual ground
is available at the end of the crossbar columns. Thus, a FET implementing a pull-up or
pull-down resistor must be used, thereby realizing a voltage divider between the equivalent
parallel resistance of the active 1T1R devices in a column and the pull-up or pull-down
resistor. Due to the use of a voltage divider, the linear relation between the number of
active devices and the input to the VSA is lost. Nevertheless, He et al. [21] showed that the
method is robust and that the output activation can be reliably determined by comparing
the voltage from the voltage divider with an appropriate threshold using the VSA, retaining
high inference accuracy also when process variations are considered. However, the number
of devices that can be reliably read in parallel to compute the MAC operation is limited and
strictly dependent on RHRS, RLRS, the pull-down resistance (RPD) and the VSA threshold
voltage. As shown in Figure 7a, considering the case with 15 devices read in parallel during
each MAC, increasing RPD changes the required VSA threshold voltage. Ideally, a linear
relation between VN and the number of positive products is desirable. However, to achieve
such linearity very low RPD values should be used, resulting in a considerable reduction of
the dynamic range at the input of the comparator thus increasing the probability of errors
due to the effect of resistive state variability. On the other hand, a too high RPD value causes
the input voltage (i.e., VN) to the VSA to rapidly saturate to VREAD. While, considering a
fixed VTH and lowering RPD increases the number of devices that can be read in parallel
during each MAC operation, as shown in Figure 7b. However, too low RPD values would
require large FET devices and the effect of line parasitic resistances may affect the circuit
reliability making the circuit more susceptible to noise. Thus, in this framework, MAC
operations are split into multiple computing steps using the input split method [21,36], so
that partial MAC operations are computed using the maximum parallelism enabled by the
designed architecture. These partial results need to be accumulated and the result of the
accumulation is compared to a trained threshold to produce the neuron output activation.

Compared to the SIMPLY implementation of the BNN MAC operation, this approach
is considerably faster, as it requires fewer computing steps, and more energy efficient since
no RRAM device is switched during computations. However efficient, this approach is
specialized for BNNs and do not provide the reconfigurability of the kind of operations
computed in-memory enabled by SIMPLY. Thus, the crossbar array can only be used for
BNN inferencing and storage applications.

J. Low Power Electron. Appl. 2021, 11, 29 8 of 18

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 8 of 19

considering a fixed VTH and lowering RPD increases the number of devices that can be
read in parallel during each MAC operation, as shown in Figure 7b. However, too low
RPD values would require large FET devices and the effect of line parasitic resistances
may affect the circuit reliability making the circuit more susceptible to noise. Thus, in
this framework, MAC operations are split into multiple computing steps using the input
split method [21,36], so that partial MAC operations are computed using the maximum
parallelism enabled by the designed architecture. These partial results need to be
accumulated and the result of the accumulation is compared to a trained threshold to
produce the neuron output activation.

(a) (b)

Figure 6. (a) Example of an in-memory computing architecture based on a 1T1R crossbar array enabling the analog BNN
vector matrix multiplication acceleration using voltage sense amplifiers (VSAs). (b) Implemented binary multiplication
between the input activation and the neuron weight. A pair of 1T1R devices with complementary resistive states is used
to map the neuron weights. The input activation is realized with two complementary signals driving the two selector
transistors of each weight.

(a) (b)

Figure 7. (a) Qualitative trends of the voltage at the input of the comparator for different RPD values at increasing
number of +1 products results with a VREAD = 0.2V. The comparator commute when the #positive products greater or
equal than 8, thus the voltage threshold, the trend and slope change with RPD. (b) Optimal RPD values at increasing
number of devices read in parallel for a fixed threshold voltage VTH (i.e., the same used for SIMPLY). Increasing the
computation parallelism requires lowering RPD, thus leading to a tradeoff between area (i.e., lower RPD require a larger
FET area) and parallelism. In all cases, the nominal RHRS and RLRS for a TiN/HfOx/AlOx/Pt RRAM technology from the
literature [26], are considered.

VSA

VREF

o[0]

VSA

VREF

o[1]

VSA

VREF

o[2]

VSA

VREF

o[n]

Control Logic w/ Analog
Tri-State Buffers

0

1
VREAD

VREAD

ILRS

A = 0 W = 0

RHRS

RLRS

0

1
VREAD

VREAD

IHRS

A = 0 W = 1

RLRS

RHRS

1

0
VREAD

VREAD

IHRS

A = 1 W = 0

RHRS

RLRS

1

0
VREAD

VREAD

ILRS

A = 1 W = 1

RLRS

RHRS

0 2 4 6 8 101214
#Positive products

0
0.05
0.1

0.15
0.2

0.25

V N
(V

)

RPD

VREAD=0.2V

0 25 50 75 100125
#Positive products

102

103

104

R
PD

(
) VTH=0.11V

Figure 6. (a) Example of an in-memory computing architecture based on a 1T1R crossbar array
enabling the analog BNN vector matrix multiplication acceleration using voltage sense amplifiers
(VSAs). (b) Implemented binary multiplication between the input activation and the neuron weight.
A pair of 1T1R devices with complementary resistive states is used to map the neuron weights. The
input activation is realized with two complementary signals driving the two selector transistors of
each weight.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 8 of 19

considering a fixed VTH and lowering RPD increases the number of devices that can be
read in parallel during each MAC operation, as shown in Figure 7b. However, too low
RPD values would require large FET devices and the effect of line parasitic resistances
may affect the circuit reliability making the circuit more susceptible to noise. Thus, in
this framework, MAC operations are split into multiple computing steps using the input
split method [21,36], so that partial MAC operations are computed using the maximum
parallelism enabled by the designed architecture. These partial results need to be
accumulated and the result of the accumulation is compared to a trained threshold to
produce the neuron output activation.

(a) (b)

Figure 6. (a) Example of an in-memory computing architecture based on a 1T1R crossbar array enabling the analog BNN
vector matrix multiplication acceleration using voltage sense amplifiers (VSAs). (b) Implemented binary multiplication
between the input activation and the neuron weight. A pair of 1T1R devices with complementary resistive states is used
to map the neuron weights. The input activation is realized with two complementary signals driving the two selector
transistors of each weight.

(a) (b)

Figure 7. (a) Qualitative trends of the voltage at the input of the comparator for different RPD values at increasing
number of +1 products results with a VREAD = 0.2V. The comparator commute when the #positive products greater or
equal than 8, thus the voltage threshold, the trend and slope change with RPD. (b) Optimal RPD values at increasing
number of devices read in parallel for a fixed threshold voltage VTH (i.e., the same used for SIMPLY). Increasing the
computation parallelism requires lowering RPD, thus leading to a tradeoff between area (i.e., lower RPD require a larger
FET area) and parallelism. In all cases, the nominal RHRS and RLRS for a TiN/HfOx/AlOx/Pt RRAM technology from the
literature [26], are considered.

VSA

VREF

o[0]

VSA

VREF

o[1]

VSA

VREF

o[2]
VSA

VREF

o[n]

Control Logic w/ Analog
Tri-State Buffers

0

1
VREAD

VREAD

ILRS

A = 0 W = 0

RHRS

RLRS

0

1
VREAD

VREAD

IHRS

A = 0 W = 1

RLRS

RHRS

1

0
VREAD

VREAD

IHRS

A = 1 W = 0

RHRS

RLRS

1

0
VREAD

VREAD

ILRS

A = 1 W = 1

RLRS

RHRS

0 2 4 6 8 101214
#Positive products

0
0.05
0.1

0.15
0.2

0.25

V N
(V

)

RPD

VREAD=0.2V

0 25 50 75 100125
#Positive products

102

103

104

R
PD

(
) VTH=0.11V

Figure 7. (a) Qualitative trends of the voltage at the input of the comparator for different RPD

values at increasing number of +1 products results with a VREAD = 0.2V. The comparator commute
when the #positive products greater or equal than 8, thus the voltage threshold, the trend and slope
change with RPD. (b) Optimal RPD values at increasing number of devices read in parallel for a
fixed threshold voltage VTH (i.e., the same used for SIMPLY). Increasing the computation parallelism
requires lowering RPD, thus leading to a tradeoff between area (i.e., lower RPD require a larger FET
area) and parallelism. In all cases, the nominal RHRS and RLRS for a TiN/HfOx/AlOx/Pt RRAM
technology from the literature [26], are considered.

2.3. Merging SIMPLY and BNN Analog Vector Matrix Multiplication Accelerator

As discussed in the previous sections, both the SIMPLY computing paradigm and the
BNN analog vector matrix multiplication (AVMM) accelerator are promising solution for
IoT and edge computing devices and applications, as they provide considerable energy sav-
ings when computing different kinds of operations. While using multiple crossbar arrays
specialized for different applications would be a solution to implement both computing
paradigms on the same chip, it would result in an inefficient exploitation of the already
scarce resources available to low-power devices. A better solution would be introducing the

J. Low Power Electron. Appl. 2021, 11, 29 9 of 18

possibility to reconfigure the available resources to implement both computing paradigms
on the same crossbar, provided that the additional flexibility must not determine the need
for a much more complex, large, and inefficient peripheral circuitry. As it can be noted from
Figures 4 and 6a, the circuit architecture used to implement both computing paradigms
are indeed similar, relying on some FET devices used to implement RG in the SIMPLY
paradigm and RPD in the BNN AVMM acceleration, VSAs and corresponding voltage
thresholds. However, when considering the same 1T1R crossbar array, there are some dif-
ferences between the two architectures and in their respective control signals management.
Specifically, when performing a read step in the SIMPLY computing paradigm the select
line corresponding to the row where the devices are located is activated, the read voltages
are applied to the crossbar columns and the output is read from the appropriate crossbar
row by means of the VSA and of a threshold. This holds true both when performing an
IMPLY between devices located in the same row and when the devices are located in the
same column.

On the other hand, to execute a MAC operation in the analog BNN AVMM accelerator
the select lines encode the neurons input activations, and each select line must be shared
among the neuron in the same neural network layer. Thus, read voltages need to be applied
to the crossbar rows while the voltages encoding the result of the MAC operations are read
out from the crossbar columns using VSAs with appropriate thresholds.

Therefore, to merge the two approaches the peripheral circuitry comprising the VSAs
and pull-down resistance needs to be repeated both at the columns and the rows of the
crossbar with limited additional complexity, resulting in the architecture shown in Figure 8.
While the need of additional VSAs increases the chip area, it enables the coexistence of the
two in-memory computing paradigms on the same crossbar. In addition, it improves the
SIMPLY architecture by increasing achievable parallelism when performing operations
on devices on the same columns but different rows, thus accelerating the copy of data
between the rows of the crossbar array. In fact, only one IMPLY operation between devices
on the same column using the SIMPLY architecture in Figure 4 can be executed in one
computing step due to the lack of SA at the crossbar columns. Instead, the addition of SAs
at each crossbar column enables the parallel execution of IMPLY operation on multiple
columns, by applying VREAD to the crossbar rows and comparing the VN voltage with the
appropriate threshold at each column. Since IMPLY operations can be performed both on
devices on the same row or column by applying VREAD at the crossbar columns and rows,
respectively, the selector transistor in series with each RRAM device is subject to different
source-bulk voltages. Nevertheless, since VREAD is small, the influence of the body effect
can be minimized by driving these transistors with sufficiently high gate voltages. Also,
using the same VSA threshold voltage for the two computing paradigms translates to
different optimal RG and RPD values, requiring appropriate control of the gate voltage of
the FET devices implementing such resistances. In fact, RPD is much lower than RG since
more devices are read in parallel compared to SIMPLY. A too high RPD would let the input
of the VSA saturate at VREAD with only a few active devices in LRS, thus hindering the
correct circuit operation.

A specific advantage of the proposed architecture is the possibility to exploit both
the SIMPLY and BNN AVMM computing paradigms on the same crossbar array, which is
particularly useful for some applications. For instance, when implementing a complete
BNN exploiting the AVMM in-memory acceleration the MAC operations are computed
in multiple steps, using the input split strategy [21]. Thus, the computation of logic
operations is required to determine each neuron output activation, and consist in the
accumulation of the intermediate MAC results and a comparison with a trained threshold.
While as discussed in Section 2.2.1 the cost for performing accumulations with SIMPLY
rapidly increases with the number of bits to be added, the use of the BNN AVMM for
computing intermediate MAC results drastically reduces the number of bits that needs
to be accumulated with SIMPLY. Thus, while intermediate computations could also be
executed on task-specific CMOS digital circuits, merging the two computing approaches

J. Low Power Electron. Appl. 2021, 11, 29 10 of 18

enables achieving high performance by exploiting the intrinsic high degree of parallelism
in the computation, without requiring additional circuits complexity. Also, this approach
is particularly advantageous for large neural network implementations that require storing
the network parameters over multiple chips thus incurring in the inter-chip communication
penalty that can exceed the RRAM programming time and energy. Overall, the proposed
architecture is an extremely flexible solution for ultra low-power applications.

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 10 of 19

threshold voltage for the two computing paradigms translates to different optimal RG
and RPD values, requiring appropriate control of the gate voltage of the FET devices
implementing such resistances. In fact, RPD is much lower than RG since more devices are
read in parallel compared to SIMPLY. A too high RPD would let the input of the VSA
saturate at VREAD with only a few active devices in LRS, thus hindering the correct circuit
operation.

Figure 8. Proposed architecture, enabling the coexistence of the SIMPLY and BNN analog vector matrix multiplication
computing paradigms on the same 1T1R crossbar array.

A specific advantage of the proposed architecture is the possibility to exploit both
the SIMPLY and BNN AVMM computing paradigms on the same crossbar array, which
is particularly useful for some applications. For instance, when implementing a complete
BNN exploiting the AVMM in-memory acceleration the MAC operations are computed
in multiple steps, using the input split strategy [21]. Thus, the computation of logic
operations is required to determine each neuron output activation, and consist in the
accumulation of the intermediate MAC results and a comparison with a trained
threshold. While as discussed in section 2.2.1 the cost for performing accumulations with
SIMPLY rapidly increases with the number of bits to be added, the use of the BNN
AVMM for computing intermediate MAC results drastically reduces the number of bits
that needs to be accumulated with SIMPLY. Thus, while intermediate computations
could also be executed on task-specific CMOS digital circuits, merging the two
computing approaches enables achieving high performance by exploiting the intrinsic
high degree of parallelism in the computation, without requiring additional circuits
complexity. Also, this approach is particularly advantageous for large neural network
implementations that require storing the network parameters over multiple chips thus
incurring in the inter-chip communication penalty that can exceed the RRAM
programming time and energy. Overall, the proposed architecture is an extremely
flexible solution for ultra low-power applications.

2.4. Circuit Design Tradeoffs for Performance and Reliability
The circuit design of the proposed architecture is directly connected to the specific

requirements of possible use case applications [3,10], which may require the use of
different resistive memory technologies to meet specific requirements. Thus, the correct
selection of the most appropriate resistive memory technology becomes very important
and is governed by the existing design tradeoffs that are aimed at providing low

VSA

VTH

VSA

VTH

VSAVTH

VSA

VREF

o[0]

VSA

VREF

o[1]

VSA

VREF

o[2]

VSA

VREF

o[n]

Control Logic w/ Analog
Tri-State Buffers

Figure 8. Proposed architecture, enabling the coexistence of the SIMPLY and BNN analog vector
matrix multiplication computing paradigms on the same 1T1R crossbar array.

2.4. Circuit Design Tradeoffs for Performance and Reliability

The circuit design of the proposed architecture is directly connected to the specific
requirements of possible use case applications [3,10], which may require the use of different
resistive memory technologies to meet specific requirements. Thus, the correct selection
of the most appropriate resistive memory technology becomes very important and is
governed by the existing design tradeoffs that are aimed at providing low operation energy,
fast speed, high integration density, and high reliability, as discussed in this section.

Specifically, to minimize the energy consumption different approaches are possible.
The most effective solution is to employ resistive memory technologies with low current
compliance (IC), and therefore higher RLRS. Firstly, the use of lower IC leads to lower energy
dissipation when programming a device, thus tackling the main energy limitation associ-
ated to the SIMPLY paradigm, largely improving the energy efficiency. Secondly, higher
RLRS values also lower the energy required for each parallel read both when computing
an IMPLY in the SIMPLY paradigm and when implementing the BNN AVMM. Further-
more, this strategy results in additional advantages on the overall area consumption and
speed. By lowering IC, the required size of the FET devices used as selector devices and
in the array periphery is reduced, thus reducing the chip area. Also, using higher RLRS
increases the parallelism of the BNN AVMM implementation, since more rows can be
read in parallel when using the same RPD resistance. However, cycle-to-cycle (C2C) and
device-to-device (D2D) variability is inversely proportional to IC [31,37], thus too low IC
values may affect the circuit reliability depending on the memory technology employed.
The energy efficiency is also improved by reducing VREAD, which in turns reduces the
energy consumption during the read operations performed both in the SIMPLY and in the
BNN AVMM computing paradigms. Also, in this case the reliability issue may arise, since
too low read voltages would reduce the RM and the SNR at the input of the VSAs.

J. Low Power Electron. Appl. 2021, 11, 29 11 of 18

Limiting the overall chip area is indeed very important to reduce the fabrication costs.
Thus, higher crossbar array densities are beneficial. To this end, two main technology
features are prominently relevant, namely the memory cell feature size and the possibility
to implement dense 3D structures. While the use of a selector transistor effectively solves
the sneak-path problem, it increases the chip area, due to the larger feature size of the
1T1R device (i.e., 8F2) with respect to a passive 1R device [38] (i.e., 4F2), and requires a
higher number of control signals and interconnections. Other passive selector devices could
introduce the required high non-linearity to solve the sneak-path issue while retaining
the 4F2 [39] device feature size and could be also used with the proposed architecture by
changing the driving voltage scheme. Also, the equivalent number of memory devices per
chip area can be increased by fabricating 3D array structures. These can be implemented
by stacking horizontal crossbars arrays, and even more efficiently by realizing a 3D vertical
structure that would lead to the highest densities and costs reduction [40].

Also, crossbar line parasitic effects, such as line resistance and coupling capacitance,
influence the maximum attainable computing speed. In fact, these effects together with
the resistance of RRAM devices introduce propagation delays that grow as the size of the
crossbar arrays is increased [41], therefore introducing a tradeoff between computing speed
and maximum array size.

Finally, to ensure high circuit reliability, in addition to providing a sufficient RM at
the input of the VSA, memory technologies with high endurance and retention should be
preferred. In particular, endurance is a key parameter for the SIMPLY paradigm. In fact,
while the analog BNN VMM only requires reading the state of RRAM devices, the SIMPLY
principle of operations relies on the conditional programming of RRAM devices to perform
computation. Long retention, on the other hand, is required to prevent periodic memory
refresh cycles that would degrade the architecture’s efficiency.

3. Discussion

While SIMPLY was shown in previous works to be an effective solution for the in-
memory computation of logic operations (e.g., XNOR [19], full adders [31]), its effectiveness
for the computation of the set of logic operations required to implement a BNN inference
task was limited due to the large number of computing steps required to implement the
multiply and accumulate (MAC) operation. In fact, as previously mentioned, the number
of computing steps needed for a MAC operation grows exponentially with the number of
inputs to a BNN layer [19] making SIMPLY suitable only for smaller networks. As shown
in Table 1, the energy reduction (i.e., ≈400 times lower) with respect to a conventional
embedded system implementation reported in a previous work [19] is much larger than the
latency improvement (i.e., ≈26 times lower), which would further reduce as the network
size increases. By enabling the coexistence on the same crossbar array of both the SIMPLY
and AVMM computing paradigms at the cost of a limited complexity increase, the proposed
in-memory computing architecture achieves substantial performance improvements when
considering a BNN inference task, while retaining the hardware reconfigurability feature
that is required by edge computing devices and applications. This is clearly reported in
Table 1, where we show, considering the ideal case both for SIMPLY and the proposed
architectures where all the network parameters and computing devices are stored in a
single crossbar, that also in the worst-case the proposed architecture drastically reduces the
latency and energy consumption compared to the SIMPLY architecture when computing
the same inference task, achieving an energy delay product (EDP) improvement larger
than 103.

J. Low Power Electron. Appl. 2021, 11, 29 12 of 18

Table 1. Benchmark of the performance of the proposed architecture on a classification task of black and white 20 × 20
pixels images from the MNIST dataset performed with a shallow multilayer perceptron neural network with 1 hidden layer
of 1000 neurons and 10 output neurons.

Implementation 1 Average Energy Latency Average EDP EDP Improvement

Embedded system [42] 5.37 mJ 17.35 ms 9.3 × 10−5 Js 1
SIMPLY parallel 1, 2 [19] 11.4 µJ 663 µs 7.6 × 10−9 Js 1.2 × 104

SIMPLY parallel 1 w RG, Opt 78.9 µJ 663 µs 5.2 × 10−9 Js 1.8 × 104

This work 1 w RG, Opt 231 nJ 31.6 µs 7.3 × 10−12 Js 1.3 × 107

1 Estimates were determined considering the RRAM technology from [26], and the ideal case where all the network parameters can be
stored in a single crossbar. Only the worst-case estimates for RRAM variability are reported. The energy estimates do not include the
decoder and driver energy overhead. 2 In [19], a suboptimal RG = 10 kΩ was used.

As discussed in Section 2.4, the performance, reliability, and target application for the
proposed computing architecture strongly depend on the resistive memory technology
employed. While the device endurance does not impact on the AVMM implementation, it
is a very important discriminant for SIMPLY. Applications performing intensive compu-
tations require very high endurance (i.e., >1014). Thus, for this application spin-transfer
torque magnetic RAM (STT-MRAM) devices are more suitable candidate, thanks to their
high retention (>10 years), endurance (>1014) and switching speed (~ns) [43]. However,
STT-MRAM devices have usually small tunnel magneto resistance (TMR) which leads to a
very small memory window that can affect the circuit reliability if not address properly,
especially when implementing the AVMM. For instance, Gao et al. [44] showed that STT-
MRAM can indeed be used to accelerate the AVMM for BNNs, however at the cost of
additional in-hardware calibration steps and more complex peripheral circuitry, which in-
clude operational amplifiers to implement the virtual ground, thus limiting the throughput,
energy efficiency, and chip density. Conversely, devices characterized by lower endurance
are better suited for applications requiring less frequent burst operations, such as smart
sensors. For instance, to provide a reliable device operation over a 10-year period with
a memory technology providing a 108 endurance would limit the computing speed to
20 inferences per minute without introducing mitigation strategies, such as periodically
changing devices used for computations. Currently, several emerging non-volatile memory
(NVM) technologies were shown to achieve endurance >108

. Among these technologies,
phase change memory (PCM) devices are the most mature and offer long retention, high en-
durance (>1012) [45–47], but require higher switching currents compared to other ENVMs,
therefore limiting the integration density. Also, ferroelectric tunnel junction (FTJ) devices
are a promising candidate for the development of ultra-low-power in-memory computing
architectures thanks to low programming energy and fast speed. However, high endurance,
retention, and scalability still need to be fully demonstrated [45,47]. At the state of the
art, RRAM technologies provide the best overall characteristics. Depending on the used
stack of materials, RRAMs can achieve endurance up to 1010 [48], long retention, large
memory window (≈10), and can be used to realize vertical 3D structures similar to flash
memory technology, leading to ultra-dense arrays. However, two main technology-related
challenges remain to be solved. Specifically, C2C and D2D variability lead to random
resistance distributions which spread when lowering IC [31,37] thus introducing a tradeoff
between energy efficiency, reliability, and throughput when performing the AVMM. Also,
to achieve ultra-dense vertical 3D arrays while preventing the sneak path issue, a particular
research focus must be directed to the development of compatible selector devices with a
strongly non-linear conduction behavior [39,49].

4. Materials and Methods
4.1. Circuit Simulations
4.1.1. RRAM Physics-Based Compact Model

The performance of the proposed architecture was estimated by means of circuit simu-
lation performed on Cadence Virtuoso® software, using the RRAM physics-based compact

J. Low Power Electron. Appl. 2021, 11, 29 13 of 18

model from [50] available on nanoHub, that was calibrated on a TiN/HfOx/AlOx/Pt
RRAM technology from [26] that is programmed with an IC of 100 µA. A sketch of the
compact model is reported in Figure 9a,b. While other general-purpose memristors [51–54]
and physics-based RRAM compact models [55–60] exist in the literature, the used RRAM
physics-based compact model is particularly suited for estimating the circuit performance
and reliability, as it includes all the relevant RRAM devices’ characteristics and non-
idealities (e.g., dynamic temperature modelling, resistive state variability, and RTN) which
only a few other physics-based compact models [56,57] consider, as discussed in [28].
Specifically, the compact model approximates the device resistance as the sum of a con-
ductive filament (CF) and a dielectric barrier component (see Figure 9a,b). Differential
equations model the field-activated and temperature-accelerated bond breaking during set,
and the field-driven oxygen ions’ drift and recombination during reset, thus reproducing
the dielectric barrier thickness dynamics. Thermal effects are also modeled with differential
equation, leading to accurate results also when ultra-fast pulses are considered. As shown
in Figure 9c,d, the compact model well reproduces with a single set of parameters both
the DC IV and the response to fast reset pulses. Additionally, the compact model includes
all the RRAM non-idealities that are relevant to accurately estimate circuit performance
and reliability, specifically RTN and variability [28,50]. The complete list of calibrated
parameters is available in [20].

J. Low Power Electron. Appl. 2021, 11, x FOR PEER REVIEW 14 of 19

(a) (b)

(c) (d)

Figure 9. Sketch of an RRAM device in (a) high-resistive state (HRS) and in (b) low-resistive state (LRS) as represented in
the compact model. (c) Experimental (square symbols) and simulated (dotted line) IV characteristic of the RRAM
technology from [26]. (d) Experimental (boxes) and simulated (lines) response to 50 ns reset voltage pulses at different
reset voltages (VRESET) data from [26].

4.1.2. SIMPLY Simulations
The performance of the proposed architecture when operating as SIMPLY were

estimated considering 1ns read and write pulses which result in a 4 ns execution time of
a single IMPLY or FALSE operation. The RG resistors were simulated using planar
NMOS devices in a 45 nm technology [30] with a channel width of 250 nm and a channel
length of 50 nm. Also, the energy contribution of the SA is considered by simulating the
circuit shown in Figure 4b in the same 45 nm technology, which results in an average
energy consumption of 8 fJ when operated with a 2V VDD over a temperature range from
0 °C to 85 °C, as reported in [20]. The device SET and RESET operations are achieved
using 1 ns voltage pulses with amplitudes 3 V and –2.9 V, respectively. The SET and
RESET amplitudes were determined using the physics-based compact model to ensure
that a memory window larger than 10 is achieved also for very short voltage pulses, as
discussed in [19]. The read margin (RM) and performance for both IMPLY and FALSE
operations reported in Tables 2 and 3 were estimated including the effect of variability
and RTN during the read operation by repeating the simulations (i.e., 50 trials) and
reseeding the random sources. Additional information regarding SIMPLY circuit
simulations and the list of variability and RTN model parameters are available in [20]
and [50], respectively.

Table 2. Performance estimates of the IMPLY operation implemented on the SIMPLY architecture using RG,opt.

Input Configuration
Energy 1

(min-avg-max)
0 0 139 - 429 – 509 fJ
0 1 6.18 – 6.183 – 6.185 fJ
1 0 6.18 – 6.183 – 6.185 fJ

-3 -2 -1 0 1 2 3
V (V)

10-9
10-8
10-7
10-6
10-5
10-4

0 10 20 30 40 50
time (ns)

104

105

106

107
VRESET = -2.9V VRESET = -2.6V VRESET = -2.3V

Figure 9. Sketch of an RRAM device in (a) high-resistive state (HRS) and in (b) low-resistive state (LRS) as represented in the
compact model. (c) Experimental (square symbols) and simulated (dotted line) IV characteristic of the RRAM technology
from [26]. (d) Experimental (boxes) and simulated (lines) response to 50 ns reset voltage pulses at different reset voltages
(VRESET) data from [26].

4.1.2. SIMPLY Simulations

The performance of the proposed architecture when operating as SIMPLY were es-
timated considering 1ns read and write pulses which result in a 4 ns execution time of a
single IMPLY or FALSE operation. The RG resistors were simulated using planar NMOS
devices in a 45 nm technology [30] with a channel width of 250 nm and a channel length

J. Low Power Electron. Appl. 2021, 11, 29 14 of 18

of 50 nm. Also, the energy contribution of the SA is considered by simulating the circuit
shown in Figure 4 in the same 45 nm technology, which results in an average energy
consumption of 8 fJ when operated with a 2 V VDD over a temperature range from 0 ◦C
to 85 ◦C, as reported in [20]. The device SET and RESET operations are achieved using
1 ns voltage pulses with amplitudes 3 V and –2.9 V, respectively. The SET and RESET
amplitudes were determined using the physics-based compact model to ensure that a
memory window larger than 10 is achieved also for very short voltage pulses, as discussed
in [19]. The read margin (RM) and performance for both IMPLY and FALSE operations
reported in Tables 2 and 3 were estimated including the effect of variability and RTN
during the read operation by repeating the simulations (i.e., 50 trials) and reseeding the
random sources. Additional information regarding SIMPLY circuit simulations and the list
of variability and RTN model parameters are available in [20,50], respectively.

Table 2. Performance estimates of the IMPLY operation implemented on the SIMPLY architecture
using RG,opt.

Input Configuration Energy 1

(min-avg-max)

0 0 139 – 429 – 509 fJ
0 1 6.18 – 6.183 – 6.185 fJ
1 0 6.18 – 6.183 – 6.185 fJ
1 1 6.184 – 6.184 – 6.185 fJ

1 Device-to-device (D2D) and cycle-to-cycle (C2C) variability are included by repeating the circuit simulations
with different seed for the random noise sources (50 trials).

Table 3. Performance estimates of the FALSE operation implemented on the SIMPLY architecture
using RG,opt.

Input Configuration Energy 1

(min-avg-max)

0 9.6 – 11.2 – 12 fJ
1 100 – 145 – 190 fJ

1 D2D and C2C variability are included by repeating the circuit simulations with different seed for the random
noise sources (50 trials).

4.2. Implemented Neural Network

To benchmark the performance of the proposed architecture against the SIMPLY
implementation, the same BNN from [19,42] was implemented. The network consists
of a single hidden layer with 1000 neurons, and classify the digits 0–9 from the MNIST
handwritten digits dataset [61]. The 20 × 20 pixels images are binarized to black and white
images before training. The training was performed on 9500 images using the DoReFa-Net
algorithm [32] considering one bit for weights and activations and 32 bits for the gradients.
2500 and 2000 images were used for validation and testing, respectively. The trained
network achieves an accuracy of 91.4% [19].

4.3. BNN Performance Estimates

The trained network parameters were mapped to RRAM devices’ resistance values
including the effect of resistive state variability. The performance of the proposed architec-
ture was estimated on an inference task by means of circuit simulation, where the AVMM
is used to compute intermediate results of the MAC operations while SIMPLY is used to
accumulate intermediate results and to compute each layer output activations. Intermedi-
ate MAC operations are needed to preserve the same NMOS size for implementing both
RPD and RG by just adjusting VGS (i.e., VGS is 1.48 V and 2.9 V when operating the crossbar
array as SIMPLY or BNN AVMM accelerator, respectively). With the considered RRAM
technology, a maximum of 15 crossbar rows can be reliably read in parallel during the

J. Low Power Electron. Appl. 2021, 11, 29 15 of 18

AVMM. Thus, as an example, 27 (i.e., 400/15) computing steps are needed to compute all
the intermediate MAC operations in the first layer. After each parallel read operation, the
intermediate MAC results are stored in RRAM devices in the crossbar array and accumu-
lated using the SIMPLY accumulator implementation shown in Figure 5e [20]. The results of
the accumulations are compared with a threshold to produce each layer output activations
using the SIMPLY comparator implementation from [19], which requires 9 ·m + m(m+1)

2
where m is the number of compared bits. Finally, the output layer computes the predicted
class using the hardmax SIMPLY implementation reported in [19] which accounts for 1457
computing steps on the proposed architecture and determines the predicted class as the
class with the highest activation value. Thus, a total of 7902 computing steps are required
for each inference, resulting in a 31.6 µs inference latency when 1 ns voltage pulses are
used, as reported in Table 1. The worst-case energy for an inference task reported in Table 1
is estimated by running the neural network on the complete test set and considering only
the worst-case energy for each IMPLY, SET, and FALSE operations for each specific input
combination. The VSA energy contribution is included when performing both SIMPLY and
BNN MAC operations. By considering the worst-case energy for each SIMPLY operation,
which is the main contribution to the overall energy consumption, the energy assessments
are indeed slightly overestimated, and roughly account for additional energy contributions
possibly introduced by the peripheral circuitry. Nevertheless, even when increasing by 20%
the energy consumption to account for the decoders and drivers considering the power
breakdown reported by He at al. [21], the results (see Table 1) underline the remarkable
energy efficiency in comparison with conventional embedded system implementations.

5. Conclusions

In this work, we proposed a novel in-memory computing architecture that enables
the coexistence on the same crossbar array of the SIMPLY logic-in-memory computing ap-
proach and of the BNN AVMM. Design tradeoffs and requirements for circuit performance
and reliability were analyzed in depth. The performance of the proposed architecture on an
inference task were benchmarked against a pure SIMPLY implementation by means of cir-
cuit simulations enabled by a calibrated RRAM physics-based compact model. The results
show that the proposed approach drastically improves the EDP by a factor >103, indicating
that the proposed architecture is a viable solution for the realization of reconfigurable
ultra-low-power hardware accelerators for edge computing applications.

Author Contributions: Conceptualization, T.Z. and F.M.P.; methodology, T.Z.; software, T.Z., F.M.P.
and P.P.; validation, T.Z.; writing—original draft preparation, T.Z.; writing—review and editing, T.Z.,
F.M.P. and P.P.; supervision, F.M.P. and P.P. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available within the article.

Conflicts of Interest: The authors declare no conflict of interests.

References
1. Zhang, W.; Gao, B.; Tang, J.; Yao, P.; Yu, S.; Chang, M.-F.; Yoo, H.-J.; Qian, H.; Wu, H. Neuro-Inspired Computing Chips. Nat.

Electron. 2020, 3, 371–382. [CrossRef]
2. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and

Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469. [CrossRef]
3. Pedretti, G.; Ielmini, D. In-Memory Computing with Resistive Memory Circuits: Status and Outlook. Electronics 2021, 10, 1063.

[CrossRef]
4. Kvatinsky, S.; Belousov, D.; Liman, S.; Satat, G.; Wald, N.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. MAGIC—Memristor-Aided

Logic. IEEE Trans. Circuits Syst. II: Express Briefs 2014, 61, 895–899. [CrossRef]
5. Ziegler, T.; Waser, R.; Wouters, D.J.; Menzel, S. In-Memory Binary Vector–Matrix Multiplication Based on Complementary

Resistive Switches. Adv. Intell. Syst. 2020, 2, 2000134. [CrossRef]

http://doi.org/10.1038/s41928-020-0435-7
http://doi.org/10.1109/JIOT.2020.2984887
http://doi.org/10.3390/electronics10091063
http://doi.org/10.1109/TCSII.2014.2357292
http://doi.org/10.1002/aisy.202000134

J. Low Power Electron. Appl. 2021, 11, 29 16 of 18

6. Kingra, S.K.; Parmar, V.; Chang, C.-C.; Hudec, B.; Hou, T.-H.; Suri, M. SLIM: Simultaneous Logic-in-Memory Computing
Exploiting Bilayer Analog OxRAM Devices. Sci. Rep. 2020, 10. [CrossRef]

7. Pei, J.; Deng, L.; Song, S.; Zhao, M.; Zhang, Y.; Wu, S.; Wang, G.; Zou, Z.; Wu, Z.; He, W.; et al. Towards Artificial General
Intelligence with Hybrid Tianjic Chip Architecture. Nature 2019, 572, 106–111. [CrossRef] [PubMed]

8. Xiao, T.P.; Bennett, C.H.; Feinberg, B.; Agarwal, S.; Marinella, M.J. Analog Architectures for Neural Network Acceleration Based
on Non-Volatile Memory. Appl. Phys. Rev. 2020, 7, 031301. [CrossRef]

9. Saxena, V. Neuromorphic Computing: From Devices to Integrated Circuits. J. Vac. Sci. Technol. B 2021, 39, 010801. [CrossRef]
10. Berggren, K.; Xia, Q.; Likharev, K.K.; Strukov, D.B.; Jiang, H.; Mikolajick, T.; Querlioz, D.; Salinga, M.; Erickson, J.R.; Pi, S.; et al.

Roadmap on Emerging Hardware and Technology for Machine Learning. Nanotechnology 2020, 32, 012002. [CrossRef]
11. Benoit, P.; Dalmasso, L.; Patrigeon, G.; Gil, T.; Bruguier, F.; Torres, L. Edge-Computing Perspectives with Reconfigurable Hardware.

In Proceedings of the 2019 14th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC);
York, UK, 1–3 July 2019; pp. 51–58.

12. Yu, J.; Du Nguyen, H.A.; Abu Lebdeh, M.; Taouil, M.; Hamdioui, S. Enhanced Scouting Logic: A Robust Memristive Logic Design
Scheme. In Proceedings of the 2019 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), Qingdao,
China, 17−19 July 2019; pp. 1–6.

13. Borghetti, J.; Snider, G.S.; Kuekes, P.J.; Yang, J.J.; Stewart, D.R.; Williams, R.S. ‘Memristive’ Switches Enable ‘Stateful’ Logic
Operations via Material Implication. Nature 2010, 464, 873–876. [CrossRef]

14. Siemon, A.; Menzel, S.; Waser, R.; Linn, E. A Complementary Resistive Switch-Based Crossbar Array Adder. IEEE J. Emerg. Sel.
Top. Circuits Syst. 2015, 5, 64–74. [CrossRef]

15. Siemon, A.; Drabinski, R.; Schultis, M.J.; Hu, X.; Linn, E.; Heittmann, A.; Waser, R.; Querlioz, D.; Menzel, S.; Friedman, J.S. Stateful
Three-Input Logic with Memristive Switches. Sci. Rep. 2019, 9, 1–13. [CrossRef] [PubMed]

16. Hu, S.-Y.; Li, Y.; Cheng, L.; Wang, Z.-R.; Chang, T.-C.; Sze, S.M.; Miao, X. Reconfigurable Boolean Logic in Memristive Crossbar:
The Principle and Implementation. IEEE Electron Device Lett. 2019, 40, 200–203. [CrossRef]

17. Puglisi, F.M.; Zanotti, T.; Pavan, P. SIMPLY: Design of a RRAM-Based Smart Logic-in-Memory Architecture Using RRAM
Compact Model. In Proceedings of the ESSDERC 2019—49th European Solid-State Device Research Conference (ESSDERC),
Krakow, Poland, 23−26 September 2019; pp. 130–133.

18. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks: Training Deep Neural Networks
with Weights and Activations Constrained To+ 1 or-1. arXiv 2016, arXiv:1602.02830.

19. Zanotti, T.; Puglisi, F.M.; Pavan, P. Reliability and Performance Analysis of Logic-in-Memory Based Binarized Neural Networks.
IEEE Trans. Device Mater. Reliab. 2021, 1. [CrossRef]

20. Zanotti, T.; Puglisi, F.M.; Pavan, P. Reconfigurable Smart In-Memory Computing Platform Supporting Logic and Binarized Neural
Networks for Low-Power Edge Devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 1. [CrossRef]

21. He, W.; Yin, S.; Kim, Y.; Sun, X.; Kim, J.-J.; Yu, S.; Seo, J.-S. 2-Bit-Per-Cell RRAM-Based In-Memory Computing for Area-/Energy-
Efficient Deep Learning. IEEE Solid State Circuits Lett. 2020, 3, 194–197. [CrossRef]

22. Sun, X.; Peng, X.; Chen, P.; Liu, R.; Seo, J.; Yu, S. Fully Parallel RRAM Synaptic Array for Implementing Binary Neural Network
with (+1,−1) Weights and (+1, 0) Neurons. In Proceedings of the 2018 23rd Asia and South Pacific Design Automation Conference
(ASP-DAC), Jeju, Korea, 22−25 January 2018; pp. 574–579.

23. Vieira, J.; Giacomin, E.; Qureshi, Y.; Zapater, M.; Tang, X.; Kvatinsky, S.; Atienza, D.; Gaillardon, P.-E. A Product Engine for
Energy-Efficient Execution of Binary Neural Networks Using Resistive Memories. In Proceedings of the 2019 IFIP/IEEE 27th
International Conference on Very Large Scale Integration (VLSI-SoC), Cuzco, Peru, 6−9 October 2019; pp. 160–165.

24. Yi, W.; Kim, Y.; Kim, J.-J. Effect of Device Variation on Mapping Binary Neural Network to Memristor Crossbar Array. In
Proceedings of the 2019 Design, Automation Test in Europe Conference Exhibition (DATE), Florence, Italy, 25−29 March 2019; pp.
320–323.

25. Qin, Y.-F.; Kuang, R.; Huang, X.-D.; Li, Y.; Chen, J.; Miao, X.-S. Design of High Robustness BNN Inference Accelerator Based on
Binary Memristors. IEEE Trans. Electron Devices 2020, 67, 3435–3441. [CrossRef]

26. Yu, S.; Wu, Y.; Chai, Y.; Provine, J.; Wong, H.-S.P. Characterization of Switching Parameters and Multilevel Capability in
HfOx/AlOx Bi-Layer RRAM Devices. In Proceedings of the 2011 International Symposium on VLSI Technology, Systems and
Applications, Hsinchu, Taiwan, 25−27 April 2011; pp. 1–2.

27. Lehtonen, E.; Poikonen, J.H.; Laiho, M. Two Memristors Suffice to Compute All Boolean Functions. Electron. Lett. 2010, 46,
239–240. [CrossRef]

28. Zanotti, T.; Puglisi, F.M.; Pavan, P. Reliability-Aware Design Strategies for Stateful Logic-in-Memory Architectures. IEEE Trans.
Device Mater. Reliab. 2020, 20, 278–285. [CrossRef]

29. Kvatinsky, S.; Satat, G.; Wald, N.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. Memristor-Based Material Implication (IMPLY) Logic:
Design Principles and Methodologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 22, 2054–2066. [CrossRef]

30. Stine, J.E.; Castellanos, I.; Wood, M.; Henson, J.; Love, F.; Davis, W.R.; Franzon, P.D.; Bucher, M.; Basavarajaiah, S.; Oh, J.;
et al. FreePDK: An Open-Source Variation-Aware Design Kit. In Proceedings of the 2007 IEEE International Conference on
Microelectronic Systems Education (MSE’07), San Diego, CA, USA, 3−4 June 2007; pp. 173–174.

31. Zanotti, T.; Zambelli, C.; Puglisi, F.M.; Milo, V.; Pérez, E.; Mahadevaiah, M.K.; Ossorio, O.G.; Wenger, C.; Pavan, P.; Olivo, P.; et al.
Reliability of Logic-in-Memory Circuits in Resistive Memory Arrays. IEEE Trans. Electron Devices 2020, 67, 4611–4615. [CrossRef]

http://doi.org/10.1038/s41598-020-59121-0
http://doi.org/10.1038/s41586-019-1424-8
http://www.ncbi.nlm.nih.gov/pubmed/31367028
http://doi.org/10.1063/1.5143815
http://doi.org/10.1116/6.0000591
http://doi.org/10.1088/1361-6528/aba70f
http://doi.org/10.1038/nature08940
http://doi.org/10.1109/JETCAS.2015.2398217
http://doi.org/10.1038/s41598-019-51039-6
http://www.ncbi.nlm.nih.gov/pubmed/31602003
http://doi.org/10.1109/LED.2018.2886364
http://doi.org/10.1109/TDMR.2021.3075200
http://doi.org/10.1109/JETCAS.2020.3030542
http://doi.org/10.1109/LSSC.2020.3010795
http://doi.org/10.1109/TED.2020.2998457
http://doi.org/10.1049/el.2010.3407
http://doi.org/10.1109/TDMR.2020.2981205
http://doi.org/10.1109/TVLSI.2013.2282132
http://doi.org/10.1109/TED.2020.3025271

J. Low Power Electron. Appl. 2021, 11, 29 17 of 18

32. Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; Zou, Y. DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with
Low Bitwidth Gradients. arXiv 2018, arXiv:1606.06160.

33. Krestinskaya, O.; Otaniyozov, O.; James, A.P. Binarized Neural Network with Stochastic Memristors. In Proceedings of the 2019
IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Hsinchu, Taiwan, 18−20 March 2019; pp.
274–275.

34. Chen, W.-H.; Dou, C.; Li, K.-X.; Lin, W.-Y.; Li, P.-Y.; Huang, J.-H.; Wang, J.-H.; Wei, W.-C.; Xue, C.-X.; Chiu, Y.-C.; et al.
CMOS-Integrated Memristive Non-Volatile Computing-in-Memory for AI Edge Processors. Nat. Electron 2019, 2, 420–428.
[CrossRef]

35. Wan, W.; Kubendran, R.; Gao, B.; Joshi, S.; Raina, P.; Wu, H.; Cauwenberghs, G.; Wong, H.S.P. A Voltage-Mode Sensing Scheme
with Differential-Row Weight Mapping for Energy-Efficient RRAM-Based In-Memory Computing. In Proceedings of the 2020
IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 16–19 June 2020; pp. 1–2.

36. Yin, S.; Kim, Y.; Han, X.; Barnaby, H.; Yu, S.; Luo, Y.; He, W.; Sun, X.; Kim, J.-J.; Seo, J. Monolithically Integrated RRAM- and
CMOS-Based In-Memory Computing Optimizations for Efficient Deep Learning. IEEE Micro. 2019, 39, 54–63. [CrossRef]

37. Grossi, A.; Nowak, E.; Zambelli, C.; Pellissier, C.; Bernasconi, S.; Cibrario, G.; El Hajjam, K.; Crochemore, R.; Nodin, J.F.; Olivo, P.;
et al. Fundamental Variability Limits of Filament-Based RRAM. In Proceedings of the 2016 IEEE International Electron Devices
Meeting (IEDM), San Francisco, CA, USA, 3−7 December 2016.

38. Mahmoodi, M.R.; Vincent, A.F.; Nili, H.; Strukov, D.B. Intrinsic Bounds for Computing Precision in Memristor-Based Vector-by-
Matrix Multipliers. IEEE Trans. Nanotechnol. 2020, 19, 429–435. [CrossRef]

39. Xia, Q.; Yang, J.J. Memristive Crossbar Arrays for Brain-Inspired Computing. Nat. Mater. 2019, 18, 309–323. [CrossRef]
40. Yu, M.; Cai, Y.; Wang, Z.; Fang, Y.; Liu, Y.; Yu, Z.; Pan, Y.; Zhang, Z.; Tan, J.; Yang, X.; et al. Novel Vertical 3D Structure of

TaOx-Based RRAM with Self-Localized Switching Region by Sidewall Electrode Oxidation. Sci. Rep. 2016, 6, 21020. [CrossRef]
41. Fouda, M.E.; Eltawil, A.M.; Kurdahi, F. Modeling and Analysis of Passive Switching Crossbar Arrays. IEEE Trans. Circuits Syst. I:

Regul. Pap. 2018, 65, 270–282. [CrossRef]
42. McDanel, B.; Teerapittayanon, S.; Kung, H.T. Embedded Binarized Neural Networks. In Proceedings of the 2017 International

Conference on Embedded Wireless Systems and Networks, Uppsala, Sweden, 20−22 February 2017; pp. 168–173.
43. Kim, C.-H.; Lim, S.; Woo, S.Y.; Kang, W.-M.; Seo, Y.-T.; Lee, S.-T.; Lee, S.; Kwon, D.; Oh, S.; Noh, Y.; et al. Emerging Memory

Technologies for Neuromorphic Computing. Nanotechnology 2019, 30, 032001. [CrossRef]
44. Gao, S.; Chen, B.; Qu, Y.; Zhao, Y. MRAM Acceleration Core for Vector Matrix Multiplication and XNOR-Binarized Neural

Network Inference. In Proceedings of the 2020 International Symposium on VLSI Technology, Systems and Applications
(VLSI-TSA), Hsinchu, Taiwan, 10−13 August 2020; pp. 153–154.

45. Slesazeck, S.; Mikolajick, T. Nanoscale Resistive Switching Memory Devices: A Review. Nanotechnology 2019, 30, 352003.
[CrossRef] [PubMed]

46. Ielmini, D.; Wong, H.-S.P. In-Memory Computing with Resistive Switching Devices. Nat. Electron. 2018, 1, 333–343. [CrossRef]
47. Chen, A. A Review of Emerging Non-Volatile Memory (NVM) Technologies and Applications. Solid State Electron. 2016, 125,

25–38. [CrossRef]
48. Nail, C.; Molas, G.; Blaise, P.; Piccolboni, G.; Sklenard, B.; Cagli, C.; Bernard, M.; Roule, A.; Azzaz, M.; Vianello, E.; et al.

Understanding RRAM Endurance, Retention and Window Margin Trade-off Using Experimental Results and Simulations. In
Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3−7 December 2016.

49. Shi, L.; Zheng, G.; Tian, B.; Dkhil, B.; Duan, C. Research Progress on Solutions to the Sneak Path Issue in Memristor Crossbar
Arrays. Nanoscale Adv. 2020, 2, 1811–1827. [CrossRef]

50. Puglisi, F.M.; Zanotti, T.; Pavan, P. Unimore Resistive Random Access Memory (RRAM) Verilog-A Model. nanoHUB 2019.
[CrossRef]

51. Yakopcic, C.; Taha, T.M.; Subramanyam, G.; Pino, R.E.; Rogers, S. A Memristor Device Model. IEEE Electron Device Lett. 2011, 32,
1436–1438. [CrossRef]

52. Kvatinsky, S.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. TEAM: ThrEshold Adaptive Memristor Model. IEEE Trans. Circuits Syst.
I: Regul. Pap. 2013, 60, 211–221. [CrossRef]

53. Kvatinsky, S.; Ramadan, M.; Friedman, E.G.; Kolodny, A. VTEAM: A General Model for Voltage-Controlled Memristors. IEEE
Trans. Circuits Syst. II: Express Briefs 2015, 62, 786–790. [CrossRef]

54. Messaris, I.; Serb, A.; Stathopoulos, S.; Khiat, A.; Nikolaidis, S.; Prodromakis, T. A Data-Driven Verilog-A ReRAM Model. IEEE
Trans. Comput-Aided Des. Integr. Circuits Syst. 2018, 37, 3151–3162. [CrossRef]

55. La Torre, C.; Zurhelle, A.F.; Breuer, T.; Waser, R.; Menzel, S. Compact Modeling of Complementary Switching in Oxide-Based
ReRAM Devices. IEEE Trans. Electron Devices 2019, 66, 1268–1275. [CrossRef]

56. Wiefels, S.; Bengel, C.; Kopperberg, N.; Zhang, K.; Waser, R.; Menzel, S. HRS Instability in Oxide-Based Bipolar Resistive
Switching Cells. IEEE Trans. Electron Devices 2020, 67, 4208–4215. [CrossRef]

57. González-Cordero, G.; González, M.B.; Campabadal, F.; Jiménez-Molinos, F.; Roldán, J.B. A Physically Based SPICE Model for
RRAMs Including RTN. In Proceedings of the 2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS),
Segovia, Spain, 18−20 November 2020; pp. 1–6.

http://doi.org/10.1038/s41928-019-0288-0
http://doi.org/10.1109/MM.2019.2943047
http://doi.org/10.1109/TNANO.2020.2992493
http://doi.org/10.1038/s41563-019-0291-x
http://doi.org/10.1038/srep21020
http://doi.org/10.1109/TCSI.2017.2714101
http://doi.org/10.1088/1361-6528/aae975
http://doi.org/10.1088/1361-6528/ab2084
http://www.ncbi.nlm.nih.gov/pubmed/31071689
http://doi.org/10.1038/s41928-018-0092-2
http://doi.org/10.1016/j.sse.2016.07.006
http://doi.org/10.1039/D0NA00100G
http://doi.org/10.21981/15GF-KX29
http://doi.org/10.1109/LED.2011.2163292
http://doi.org/10.1109/TCSI.2012.2215714
http://doi.org/10.1109/TCSII.2015.2433536
http://doi.org/10.1109/TCAD.2018.2791468
http://doi.org/10.1109/TED.2019.2892997
http://doi.org/10.1109/TED.2020.3018096

J. Low Power Electron. Appl. 2021, 11, 29 18 of 18

58. Yu, S.; Gao, B.; Fang, Z.; Yu, H.; Kang, J.; Wong, H.-P. A Neuromorphic Visual System Using RRAM Synaptic Devices with
Sub-PJ Energy and Tolerance to Variability: Experimental Characterization and Large-Scale Modeling. In Proceedings of the 2012
International Electron Devices Meeting, San Francisco, CA, USA, 10−13 December 2012.

59. Jiang, Z.; Yu, S.; Wu, Y.; Engel, J.H.; Guan, X.; Wong, H.-P. Verilog-A Compact Model for Oxide-Based Resistive Random Access
Memory (RRAM). In Proceedings of the 2014 International Conference on Simulation of Semiconductor Processes and Devices
(SISPAD), Yokohama, Japan, 9−11 September 2014; pp. 41–44.

60. Li, H.; Jiang, Z.; Huang, P.; Wu, Y.; Chen, H.-; Gao, B.; Liu, X.Y.; Kang, J.F.; Wong, H.-P. Variation-Aware, Reliability-Emphasized
Design and Optimization of RRAM Using SPICE Model. In Proceedings of the 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), Grenoble, France, 9−13 March 2015; pp. 1425–1430.

61. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

http://doi.org/10.1109/5.726791

	Introduction
	Results
	Logic-in-Memory and the SIMPLY Architecture
	Material Implication Logic
	SIMPLY

	Binarized Neural Networks (BNNs) Hardware Accelerator Architectures
	Binarized Neural Networks with SIMPLY
	Binarized Neural Networks with Analog Vector Matrix Multiplication

	Merging SIMPLY and BNN Analog Vector Matrix Multiplication Accelerator
	Circuit Design Tradeoffs for Performance and Reliability

	Discussion
	Materials and Methods
	Circuit Simulations
	RRAM Physics-Based Compact Model
	SIMPLY Simulations

	Implemented Neural Network
	BNN Performance Estimates

	Conclusions
	References

