
Journal of

Low Power Electronics
and Applications

Article

Physical Computing: Unifying Real Number Computation to
Enable Energy Efficient Computing

Jennifer Hasler * and Eric Black

����������
�������

Citation: Hasler, J.; Black, E. Physical

Computing: Unifying Real Number

Computation Enabling Energy

Efficient Computing. J. Low Power

Electron. Appl. 2021, 11, 14. https://

doi.org/10.3390/jlpea11020014

Academic Editor: Andrea Acquaviva

Received: 18 February 2021

Accepted: 22 March 2021

Published: 26 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Electrical and Computer Engineering (ECE), Georgia Institute of Technology, Atlanta, GA 30332-250, USA;
3ric.black@gmail.com
* Correspondence: jennifer.hasler@ece.gatech.edu; Tel.: +1-404-894-2944; Fax: +1-404-894-4641

Abstract: Physical computing unifies real value computing including analog, neuromorphic, optical,
and quantum computing. Many real-valued techniques show improvements in energy efficiency,
enable smaller area per computation, and potentially improve algorithm scaling. These physical
computing techniques suffer from not having a strong computational theory to guide application
development in contrast to digital computation’s deep theoretical grounding in application develop-
ment. We consider the possibility of a real-valued Turing machine model, the potential computational
and algorithmic opportunities of these techniques, the implications for implementation applications,
and the computational complexity space arising from this model. These techniques have shown
promise in increasing energy efficiency, enabling smaller area per computation, and potentially
improving algorithm scaling.

Keywords: physical computing; analog computing; complexity theory

1. Introducing Physical Computing and Physical Turing Machine Modeling

The rapid progress in today’s ubiquitous programmable digital infrastructure relies
as much on digital Turing machine theory [1] as it has on Moore’s law scaling [2–4]
and VLSI [5] in providing a framework to use these hardware capabilities. A roadmap
of future directions was in place as new technologies were available. Turing Machine
theory (Figure 1) provides a core digital computation, computes over discrete, integer
values, and was based upon bookkeeping businesses at the time [6]. The mathematical
framework is central to abstracting digital computations, central to computer architectures
and algorithms, as well as is central to numerical computation and analysis (Figure 1).

Not all computation operates over discrete, integer values, computational approaches
that have used various physical phenomena for potentially lower power/energy and smaller
area applications. Mead’s original hypothesis (1990) [7] predicted analog processor area will
decrease at least 100× in size compared to digital computation, and energy consumed will
decrease at least 1000× compared to digital computation. These techniques were experimen-
tally demonstrated through Vector-Matrix Multiplication (VMM) in custom (2004) [8] and
in configurable large-scale Field Programmable Analog Arrays (FPAA) (2012) [9] as well
as in many later systems and configurations. Following the analog computing efficiencies
over digital techniques, neuromorphic computing formulated and achieved significant
efficiencies over digital computing (2013) [10]. Recently, quantum computing has advo-
cates claiming its supremacy over digital computing, stating there exists experimental
problems where quantum computing is demonstrably more capable than digital com-
puting (2019) [11]. Some debate these claims (e.g., [12]). This computationally efficient
quantum-computing noise generator has direct parallels to an analog noise generator and
computing [13], illustrating a relationship between these real-valued computations. Any
real-valued computations will show computational efficiencies over digital ones. We de-
fine Physical Computing as computing using real-valued quantities, quantities that can be
amplitude, space, or time, Physical computing includes Analog, Quantum, Neuromorphic,

J. Low Power Electron. Appl. 2021, 11, 14. https://doi.org/10.3390/jlpea11020014 https://www.mdpi.com/journal/jlpea

https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://doi.org/10.3390/jlpea11020014
https://doi.org/10.3390/jlpea11020014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jlpea11020014
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/2079-9268/11/2/14?type=check_update&version=1

J. Low Power Electron. Appl. 2021, 11, 14 2 of 21

and Optical techniques. This work both defines and further identifies the relationships
between forms of Physical Computation.

Analog Computing Model

Analog Computation

A

miracle

occurs

? ? ? ?

Digital Computation

Digital Turing Machine

Z
()

Computer

µP
ROM

RAM

Sync Digital Blocks

Numerics

Ax = b

(LU) x = b

x = A-1 b
x5 -5x + 1 = 0

sort: O(n log2 n)

Algorithm Order

NP: Traveling

 Salesman

Config Analog Computation

Numerics
dV

dt
= f(W, M, V)

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

SoC FPAA IC

Computer
R

()

Real-Valued Turing Machine

D
ig

ital C
o
m

p
u
tatio

n
 +

 T
o
o
ls

CT Analog Blocks

Analog

Algorithm

Theory

 Algorithm Sub

band

V
M

M
+

W
T

A

HMM

Figure 1. Digital Computation builds from the framework of Turing Machines, setting up capability of
computer architectures, computer algorithms, and resulting numerical analysis, being the basis for our
day to day digital computing. Classical Analog Computation is perceived to have little computational
modeling, as well as architectures and algorithms, seeming to be bottom-up artwork rather than top-
down digital computing design. Configurable Analog Computation, a Physical Computing real-valued
computing technique originally FPAA enabled, builds on recent framework in architectures, algorithms,
abstraction, and numerical analysis. This approach enables a Physical Turing Machine model unifying
real-value computation.

Energy efficiency, as well as other computational metrics, are often described using
order notation such as O(·). Typically physical computing techniques typically focus on
improving the coefficient for the O(·) metric. As mentioned above, the coefficient for
computational energy efficiency, the energy or power required per operation, decreases
by typically 1000× an equivalent digital computation, while the scaling metric in O(·)
remains unchanged. Some aspects might improve the polynomial or similar function
inside of O(·) say by architectural improvements in the physical computing structure
(e.g., [14]). This effort affirms these improvements in energy efficiency, and builds upon
these opportunities in energy efficiency by discussing the possibility to significantly change
the scaling dependency characterized by O(·) for physical computing systems because
of the different computing capabilities enabled by providing a model and framework to
explore these opportunities.

For Analog computing, more carefully known as analog electronic computing and the
most experimentally developed of Physical techniques, has lacked a theoretical framework
and high-level computing model. Classical Analog computation is widely perceived as a
bottom-up design approach practiced by a few artistic masters (Figure 1). The goal was to
formulate a problem in a few Ordinary Differential Equations (ODE), and have a circuit
master design the system. Once this miracle occurs, the one particular system becomes
functional [15]. These design techniques do not scale to a wide user capability as they do
for digital computation. There are no classic textbooks explaining analog system synthesis.
The classical situation is less optimistic for neuromorphic, quantum, or optical computing.

Recently, analog computation has developed a framework (Figure 1) that includes
analog numerical analysis techniques [16], analog algorithm complexity theory [14], and

J. Low Power Electron. Appl. 2021, 11, 14 3 of 21

analog algorithm abstraction theory [17]. Current programmable Analog design is no
longer seen as numerically inferior to digital computation [16], or seen as too complex
to have levels of abstraction like digital computation [17], or seen to be governed by
digital processor techniques where it rather now pushes the questions for both analog and
digital architecture questions [14]. Analog computation becomes relevant with the advent
of programmable and configurable FPAA devices [18,19] and the associated design and
synthesis tools [20,21] incorporating parts of this framework.

The recently developing analog frameworks achieve a level where one can ask realistic
questions, as well as realistically propose, an analog computing model. This work proposes
a Physical Turing machine as a machine operating over real-valued quantities as well
as operating over real-valued sequences over real-valued timesteps. Physical computing
utilizes one or more representations and internal variables encoded as real values, including
amplitude, voltage, current, time, or space. This work connects all Physical computing
techniques (e.g., analog, neuromorphic, optical, and quantum) through a single computing
framework, enabling one, or a mixture, of these techniques as well as provides a bridge to
use the results from one technique towards another technique. This Physical Computing
model builds from experimental techniques and measurements as well as frameworks for
their effective implementation, rather than hypothesizing unverifiable theoretical concepts.

This paper addresses Physical Computing and its associated Turing machine model ad-
dressing the capability of real-valued computation, as in physical computation, as compared
with integer-valued computation, as in digital computation. The discussion starts by address-
ing the algorithmic complexity of real-valued and integer valued computation (Section 2).
The discussion then establishes that the physical computing substrate is real-valued even in
the presence of noise (Section 3), a necessary condition for real-valued physical computing.
The discussion shows the connection and translation between quantum qubit computation
and an analog system modeling that computation (Section 4). The discussion generalizes
physical computing, and the equivalence between approaches (Section 5), finally discussing
the the implications and opportunities of Physical computing (Section 6) and summarizing
this discussion (Section 7).

2. Algorithmic Complexity of Real-Valued Computation

Physical computing techniques compute over real-valued variables (R), representa-
tions, and timescales. Analog computing can compute over continuous-valued voltage
or current state variables (e.g., 1 V to 3 V) as well as computing over continuous-valued
timesteps. Neuromorphic computing, which includes neuromorphic biological or elec-
tronic computing, involves similar capabilities to analog computing, at least over limited
regions, as well as continuous-spatial regions at least over limited regions (e.g., dendritic
cables). Optical computing also involves continuous amplitudes operating over continuous-
valued timesteps with two-dimensional (2D) and three-dimensional (3D) continuous spatial
dimensions. Quantum computing operates using a continuous probabilities modeling
continuous-time and continuous 3D space, as well as continuous superposition mixtures
of two or more states. All of these techniques compute effectively utilizing at least one
real-valued dimension.

Real valued functions in multiple dimensions have the same complexity as a real-
valued function in one dimension. The size of the set of all real numbers ((R) between
0 and 1 is infinitely larger than all integers (Z) between 0 and ∞. The size of Z between
0 and ∞ is represented as ℵ0, and the size bf R between 0 and 1 is represented at ℵ1.
Two R dimensions can fit into a single R dimension. Working along the diagonals of
a 2D R map, one can recount the 2D space into a single one-dimensionsal (1D) space
(Figure 2) as the same order of infinity (ℵ1). More available dimensions opens up additional
implementation opportunities and resulting efficiencies, although these dimensions do not
affect the system complexity.

A real-valued Physical Turing Machine models computing over R values and timesteps, sim-
ilar to a Digital Turing Machine models computing over Z values and timesteps (Figures 1 and 3).

J. Low Power Electron. Appl. 2021, 11, 14 4 of 21

A Digital Turing machine computes over a Z set of input and output alphabets with Z
internal variables and Z size tape operating over Z timesteps. The theoretical Turing Ma-
chine model does not require the computation follows the same approach, and yet, digital
computing often resembles parts of the Turing Machine techniques. To fully model the
continuous-time (CT) computation over R values, a Physical Turing Machine Model com-
putes over a R set of input and output alphabets with R internal variables and R size tape
(internal memory) operating over R timesteps. Utilizing Z size input and output alphabets
for a Physical Computation is still modeled by the Physical Turing Machine. Physical
computing operates over ℵ1 (∞ for R) as opposed to synchronous digital computing oper-
ating over ℵ0 (∞ for Z). Model allows directly extending known properties and theorems
for Z-valued Turing machines to these R-valued Turing machines. Although one could
consider a physical implementation specific model (e.g., [22,23]), it likely misses the wider
computational space and becomes harder to generalize across all R-valued computing, as
well as requiring to build an entirely new theoretical infrastructure.

Figure 2. One can map a two dimensional infinity, whether countable or real, to a one-dimensional
infinity of the same order (countable or real, respectively) by projecting the successive diagonals of
the two-dimensional space into the one-dimensional space. Each box is as small a region possible
(real or countable), and they project into small regions into the one-dimensional space. The difference
between real or countable is the size of these regions.

Deutsch began to develop an understanding of physical computing models as part of
their wrestling to understand the nature of quantum computing [24]. These discussions
strengthen and generalize Deutsch’s wrestling with opportunities in quantum computing.
Deutsch attempts to generalize Turing’s classical definition [1] towards physical approaches

“Every finitely realizible physical system can be perfectly simulated by a univer-
sal model computing machine operating by finite means” (p. 99) [24].

where he states a Z-valued Turing machine cannot perfectly simulate a classical dynamical
system, as well as he recognizes the impact of non-decreasing entropy (e.g., loss) impacts
these computations. Deutsch only imagines Z-valued input and output alphabets, while he
opens the possibility of computing over a continuum of values, which is more concretely
defined as computation over R-values, and then moves that a quantum dynamics provides
a means towards reaching these opportunities, while mostly missing this opportunity
in R-valued systems. He mathematically attempts to show non-dynamical quantum
operations could be operating over a continuum, inspired by the introduction of quantum
computing by Feynman [25,26]. A model that computes with R-valued alphabets also
simplifies to computing with Z-valued input and output alphabets. The approach in this
discussion generalizes R-valued computation for the continuum of classical and quantum
physics, heavily based in decades of physical (e.g., analog, neuromorphic) computing.

Deutsch moves to extend the Church-Turing principle to be related to a quantum phys-
ical system. This discussion also moves to effectively extend the Church-Turing principle,

“Every ‘function which would naturally be regarded as computable’ can be
computed by the universal (Z-valued) Turing machine”—Turing [1]

with the explicit restatement of the Church-Turing thesis for-R-valued computation:

J. Low Power Electron. Appl. 2021, 11, 14 5 of 21

“Every finitely realizible ‘function which would naturally be regarded as com-
putable’ can be computed by the universal (R-valued) Turing machine”

where the Z-valued Turing machine ⊂ R-valued Turing machine. Finite means, which includes
finite resources as well as finite amount of time, is essential to any practical physical computation.

Algorithmic complexity between Synchronous Digital Computation and Physical
computation is the comparison between R versus Z Turing capabilities (Figure 3). Al-
gorithm complexity (Figure 3) considers whether a particular computing structure can
compute certain algorithms in Polynomial (P) time, or scales by some other function, such
as exponential time (EXPTIME). One can consider the class of polynomial-time physical
(PA) and digital (PD) algorithms, the class of digital NP problems (NPD) and similar class
of NP problems for analog computation (NPA), as well as the class of exponential-time
analog (EXPTIMEA) and digital (EXPTIMED) algorithms (Figure 3). One must consider a
product of time and resources, although if one considers only polynomial resources, time
complexity is sufficient. PA completely overlaps with PD as one can make digital gates
from analog blocks (Figure 3).

Algorithmic Complexity

Z

Z

Ax = b

(LU) x = b

RAlphabet () # of

Operations
R

Physical

 Computing

?

C
o

m
p

u
ter

R

()

Physical Turing Machine

?
PA

PD

NPD

NPA

EXPTIMED

EXPTIMEA

Numerical Analysis Ax
 Numerical Analysis

Ax

dV
dt = f(V)

Example: Analog

Abstraction

Architecture / Algorithms

Tape
Input

Output

Digital Turing Machine

Alphabet () # of

Operations
Z

C
o

m
p

u
ter ()

Tape
Input

Output

logic Abstraction µP

Arch / Algorithms

Digital

 Computing

Figure 3. Physical (Real-Valued, R) and Digital (Integer-Valued, Z) computation comparison. Physical
computing includes quantum, optical, analog and neuromorphic approaches. Polynomial time (P)
digital algorithms are part of P physical algorithm space. Non-polynomial time (NP, EXPTIME)
digital algorithms might be part of P physical algorithm space.

The open question is how does NPD and EXPTIMED overlap with PA, NPA and
EXPTIMEA (Figure 3)? Does PA have any overlap with NPD or even EXPTIMED? If part of
NPD ⊂ PA, then a Physical computing system would solve at least one NPD application in P.
Does PA extend into uncomputable spaces by digital Turing machines (e.g., halting problem)?
This framework will unify previous physical computing techniques and algorithms. Hopfield’s
work solving the Traveling Salesman Problem (TSP) [27] opens one’s imagination that eventu-
ally NPD could be in solved in PA through recurrent networks modeling optimization problems
minimizing energy surfaces [27–31], Hava Siegelmann created a number of useful theoretical
discussions for analog computing, arguing analog PA has computational capabilities beyond
PD by minimizing energy surfaces (ARNN model) [23,32]. Multiple coupled ODEs systems
have been theoretically proposed to solve NPD (e.g., 3-SAT [33,34]) in PA that could be imple-
mented on a continuous-time analog platform. Quantum computing (e.g., Shor and Grover’s
algorithms) has theoretically shown PA is larger than PD [35,36]. Often the Church-Turing
conjecture is interpreted to mean that physical computing techniques (Figure 3) are equivalent
to a single machine processing a memory tape, which requires countable (Z) input and output
alphabets. This interpretation is far too restrictive of physical computing approaches.

A unified analog computing framework (Figure 3) equates transformations between
techniques, allowing a solution in one space could be translated to another (Figure 4).
For example, a quantum computation could be transformed to room temperature analog
computation. The transformations allow all technologies to be utilized in spaces and
applications where they naturally have physics advantages.

Transformations between physical computing and digital computing illustrate the
differences between these computing mediums, showing significant differences between

J. Low Power Electron. Appl. 2021, 11, 14 6 of 21

R verses Z computation. Transformations from Z to R are straight-forward, and one expects
a physical system to implement computations over integer (e.g., digital) values. Transfor-
mations from R to Z computation require interpolations to, or numeric approximations
from R to Z (Figure 4). Synchronous digital simulation results of physical computation
must always be approached cautiously, as digital computation is more limited than the
resulting physical substrate (Figure 4). Physical ODEs are solved in ℵ1, with R-valued
timesteps compared to Z-valued timesteps by digital emulation. Multiple-timescale nonlin-
ear ODEs (Figure 4) inherently utilize R-valued timesteps to directly handle exponentially
fast moving nonlinear physical system dynamics. Analog WTA physical system uses two
(or more) competitively strong nonlinearities, resulting in consistent analog solutions while
creating a difficult ODEs to solve numerically (e.g., [37]). The error of digital ODE solutions
are limited as O(fk+1(·)) for a kth order solver (RK45 is 4th order) [38], so high derivatives,
like exponential functions destroy the accuracy and convergence of digital ODE solutions.
Attempting to validate physical computing systems (e.g., systems of ODEs) through digital
numerical approximations creates the unnecessary concern over having exponentially fast
moving nonlinear results for a physical system that are very real for synchronous digital
computation. Physical algorithms must be developed and verified only through physical
hardware, and discrete simulation or analysis of physical algorithms cannot invalidate
potential results.J. Low Power Electron. Appl. 2020, 7, x 6 of 24

Quantum
Computing

PDE & ODE

Physical Computing: continuous in > 1 variable

?

Numerical
ODE & PDE
Computation
 possible for
 some cases
 only represent
 part of
 continuous

Neuromorphic
Computing

Analog
Computing

Optical
Computing

Transformations through Physical
Transformations (PDE & ODE)

Real, Continuous

Digital Computing: Countable in > 1 variable
 No continuous variable

Turing Machine

Integer, Countable

Z
()

Computer

µP
ROM

RAM

Digital Computing

Figure 4. Equivalences between physical computing techniques (real variables) and the challenges equating
these approaches digital (integer variables). An integer-valued computational framework can approximate a real
valued computation, and may work within reasonable bounds for a range of cases, but will not be successful
within a reasonable amount of time (e.g. exponential algorithm scaling) in other cases.

(e.g. Shor and Grover’s algorithms) has theoretically shown PA is larger than PD [35,36]. Often
the Church-Turing conjecture is interpreted to mean that physical computing techniques (Fig. 3) are
equivalent to a single machine processing a memory tape, which requires countable (Z) input and
output alphabets. This interpretation is far too restrictive of physical computing approaches.

A unified analog computing framework (Fig. 3) equates transformations between techniques,
allowing a solution in one space could be translated to another (Fig. 4). For example, a quantum
computation could be transformed to room temperature analog computation. The transformations
allow all technologies to be utilized in spaces and applications where they naturally have physics
advantages.

Transformations between physical computing and digital computing illustrate the differences
between these computing mediums, showing significant differences between R verses Z computation.
Transformations from Z to R are straight-forward, and one expects a physical system to implement
computations over integer (e.g. digital) values. Transformations from R to Z computation require
interpolations to, or numeric approximations from R to Z (Fig. 4). Synchronous digital simulation
results of physical computation must always be approached cautiously, as digital computation
is more limited than the resulting physical substrate (Fig. 4). Physical ODEs are solved in ℵ1,
with R-valued timesteps compared to Z-valued timesteps by digital emulation. Multiple-timescale
nonlinear ODEs (Fig. 4) inherently utilize R-valued timesteps to directly handle exponentially fast
moving nonlinear physical system dynamics. Analog WTA physical system uses two (or more)
competitively strong nonlinearities, resulting in consistent analog solutions while creating a difficult
ODEs to solve numerically (e.g. [37]). The error of digital ODE solutions are limited as O(fk+1(
·)) for a kth order solver (RK45 is 4th order) [38], so high derivatives, like exponential functions
destroy the accuracy and convergence of digital ODE solutions. Attempting to validate physical
computing systems (e.g. systems of ODEs) through digital numerical approximations creates the
unnecessary concern over having exponentially fast moving nonlinear results for a physical system
that are very real for synchronous digital computation. Physical algorithms must be developed and
verified only through physical hardware, and discrete simulation or analysis of physical algorithms
cannot invalidate potential results.

Figure 4. Equivalences between physical computing techniques (real variables) and the challenges
equating these approaches digital (integer variables). An integer-valued computational framework
can approximate a real valued computation, and may work within reasonable bounds for a range
of cases, but will not be successful within a reasonable amount of time (e.g., exponential algorithm
scaling) in other cases.

Competing exponentially increasing and decreasing functions converge effectively
using physical computing to solve the ODE functions, tasks that are extremely difficult for
Z-based computing. For example, a Winner-take-all (WTA) circuit (Figure 5) operating with
subthreshold currents utilizes competing exponential functions modeled by the transistor
current-voltage relationships:

C dV1
dt = I1 − Is01eκ∆V/UT eσ∆V1/UT

C dV2
dt = I2 − Is01eκ∆V/UT eσ∆V2/UT

C dV
dt = Is0

(
eκ∆V1/UT + eκ∆V2/UT

)
e−∆V/UT − Ibias

=⇒

τ1

dy1
dt = x1 − eκyeσy1

τ1
dy2
dt = x2 − eκyeσy2

τ
dy
dt = (eκy1 + eκy2)e−y − 1.

(1)

by scaling the input signals by the bias currents, I1 = x1 Is01, I2 = x2 Is01, Is0 = Ibias,
and scaling the voltages by UT, ∆V1 = y1UT, ∆V2 = y2UT, V = yUT, and defining

J. Low Power Electron. Appl. 2021, 11, 14 7 of 21

τ1 = CUT
Is01

, τ = CUT
Is0

, κ as the gate to surface potential coupling for the MOSFET tran-
sistor, & σ is the coupling of the drain voltage into the source-side surface potential (assume
0.01 for this example). Ibias is the current source current set by Vτ on the gate of Mτ. Transis-
tors M3 and M4, that have the corresponding output currents of Iout1 and Iout2, have their
drains at the upper power supply for this example, resulting in both transistors (M3, M4) op-
erating in saturation with subthreshold currents. The capacitors, C, could be either parasitic
or explicit capacitances; for clarity of this discussion, all capacitors are considered equal to
C. The difference between τ1 and τ results in a stiff ODE, resulting in higher sampling for
stable performance in Z-based computation, resulting in a significant computational issue
(e.g., [16]), as the Ibias and input currents I1, I2 can be orders of magnitude different from
each other.

Even beyond the significant issue of widely different timeconstants creating a stiff
ODE system, these ODEs have competing exponential functions that converge in the
physical system but cause tremendous stress on Z-based simulation. To eliminate the stiff
ODE computation, Is0 = Is01 resulting in τ1 = τ. The resulting ODE system where time is
normalized by τ (time becomes unitless):

ẏ1 = x1 − eyeσy1

ẏ2 = x2 − eyeσy2

ẏ = (ey1 + ey2)e−y − 1

→ x1 = x2 = 2, Steady State :

y1 = 0
y2 = 0
y = ln 2

(2)

assuming κ = 1 for ease of the discussion. One could transform (2) for better numerics,
and yet, in generally such a transformation is not possible, so we want to illustrate com-
putational issues with this system The dynamics for (2) for an input step from an initial
condition to x1 = x2 = 2 are analytically globally stable, while a numerical simulation
(e.g., RK45) will not always converge to the correct steady-state, including some unstable
trajectories (Figure 5).

V2V1

I1

GNDGND

GND

V
τ

GND

GND

Ibias

I2

V GNDGND

CC

t

y(t)

h

infinite

real numbers

-40

-20

0

y
1

Case II

Case I

-40

-20

0

y
2 Case II

Case I

0 5 10 15 20 25 30
-10

-5

0

5

Time (normalized)

y

Case II

Case I

0 (steady state)

0 (steady state)

ln 2 (steady state)

y1(t)

y(t)

y2(t)

Iout1 Iout2

M1 M2

M4M3

Mτ

Figure 5. Two-input Winner-Take-All (WTA) circuit dynamics are set through competing nonlinear
functions described by y1, y2, and y. Time is normalized by τ that is a function of the bias current
(Ibias) and C. When simulating ODEs using Z-valued computation, these competing exponential
functions result in large derivatives, resulting in significant errors in the computation, in addition
to linear timeconstants that are potentially a different order of magnitude. R-valued computation
benefits from the R-valued timesteps verses Z-valued timesteps available for Z-valued simulation, as
well as R-valued computation does not have accumulation errors typical of Z-valued integration [16].
In a Z-valued timesteps (h) are an ∞ of R-valued points. The numerical solution (e.g., RK45) of this
two-input WTA circuit results in different stability for a small change in starting conditions. ODE
numerical solution for a step from an initial starting condition to x1 = x2 = 2 for two initial condition
cases (Case I: [y1 y2 y] = [−4 −3 2], Case II: [y1 y2 y] = [−8 −6 4]). Case I converged, while Case II
was numerically unstable.

J. Low Power Electron. Appl. 2021, 11, 14 8 of 21

3. The Continuous-Valued Physical World

The physical world potentially has many opportunities for utilizing continuous-valued
functions, including time, space, and amplitude. Computation would be moving from a
continuous set of variables, say between 0 and 1, to another function, f(·), say to another
continuous set of variables, say between 0 and 1. Analog computation might represent
this 0 and 1 as voltages between 0.8 V and 2.2 V, or some other voltage range. On the
other hand, the lore in some scientific disciplines strongly states the discrete nature of the
physical world. Some authors have strongly endorsed this position (e.g., [39]), although
no physical or mathematical foundation is given for these beliefs. Aspects of mathematics
are formulated to build continuous functions (e.g., derivatives) to have some validity in a
discrete space. Before developing theory for computing over real variables arising from
continuous-valued physical representations, these misconceptions about the discrete nature
of the physical world needs to be addressed.

3.1. Noise Does Not Negate R-Valued Computation

Resolution (Figure 6) is a useful abstraction to represent continuous-valued functions
with uncertainty and noise, and yet, the abstraction does not constrain the continuous-
valued reality. Noise and uncertainty are aspects of the underlying numerical analysis and
the resulting computation errors (whether they grow or decrease), but the computation
model still operates over real values. The view that real world always has to be interpreted
at a finite resolution, through an Analog-to-Digital Converter (ADC) of a finite number
of bits, misses the richness of the underlying capability. ADC is a classification between a
real-valued world and a discrete-valued world.

Real Space

ADC

Real Space

noise

Discrete Space

Conversion from

Real to Discrete Space

Interpretation

of

Noise on Real

to

Resolution

Continuous

Values

Continuous

Values with Noise

Discrete

Values

Figure 6. Do physical systems operate over continuous or discrete spaces? Difference between
continuous-values with noise versus resolution. One abstraction for real variables with noise and
uncertainty is to quantize the number of levels to the extent of that uncertainty. Resolution is this
abstraction. In analog systems, this abstraction is computed using an Analog-to-Digital Converter
(ADC). This abstraction, while useful for some engineering systems, only approximates the real world,
and in no way precludes the continuous-value nature of the resulting computation. The uncertainty
would be part of the resulting numerical analysis of the physical computation.

3.2. The Physical World Is R-Valued in Space and Time

Particles are a useful abstraction to represent continuous-valued physical phenomena,
and yet, the abstraction does not constrain the continuous-valued reality. Our abstraction

J. Low Power Electron. Appl. 2021, 11, 14 9 of 21

of physical particles does not preclude the reality of continuous-values in the physical
world (Figure 7a). A misconception is that electrons are finite, like marbles, and therefore,
in the end, everything is discrete and countable, like a digital Turing machine. Quantum
mechanics understands the dual particle and wave nature of reality, although the particle
formulation tends to dominate academic thinking in this space [40]. Electron particles
can be considered eigenfunctions of the resulting waveform [40]. Furthermore, even if
particles were discrete, their position at a particular moment in space and time is a real
quantity. Sometimes considering an uncertainty principle, ∆x∆p > h̄, which is similar
to time–frequency behavior in signals, as well as ∆E∆t > h̄, might give the sense that
the physical world is discrete. The formulation does not constrain the physical world to
be discrete, as opposed to continuous, but rather the specificity one gets from a single
signal in both areas (x, p) is bounded. Quantum mechanics can restrict or confine a
particle based on a particular potential wavefunction, but this confinement, typically over
only a couple of variables in a restricted space, is the solution of continuous-functions
in amplitude, space, and time. Even if energy is quantitized, position or momentum
is not quantitized in all dimensions. Finite measurement capability does not limit the
continuous-variable computation.

Particle (Discrete)

 Center (1st moment)

 Size (2nd moment)

Ψ(x,y,t)
Continuous

 Space

 Time

(a)

∆t
Z

t

Discrete

World

∆t
R

t

Real-value

World

∆t
R

∆t
Z

∆x
Z

x

Discrete

World

∆x
R

x

Real-value

World

∆x
R

∆x
Z

(b)

Figure 7. Do particles indicate nature operates over discrete quantities? (a) The abstraction of a particle,
rather than a wave, effectively takes a first and second moment (mean and approximate extent) of the
resulting wave and resulting wavefunction. The position of the particle in space and its position in
time are continuous values. (b) The computational implication of operating in a R-valued world over
a Z-valued world allows an infinitely more time, space, and amplitude R-valued steps between the
minimum Z-valued step.

Although there is considerable debate between the wave and particle nature of quan-
tum physics (e.g., [40]), the wave nature of quantum mechanics is hard to dispute, and its

J. Low Power Electron. Appl. 2021, 11, 14 10 of 21

resulting continuous variable formulation. Considerable connections have been made to
Heisenberg’s uncertainty principle and the uncertainty of time and frequency in signal
processing [41–43], providing signal processing intuition towards these directions and
creating natural bridges between other physical forms of computation. Nothing in this
formulation indicates we have a world operating at countable positions in space and time;
where discrete particles exist from eigenfunctions of the wave equation, they still live in real
valued space and time. R-valued space and time gives infinitely more steps, and therefore
resources, between each Z-value (Figure 7b).

4. Connecting Quantum Computing and Analog Computing Applications

This section shows an example bridging quantum and analog computing in showing
an analog circuit model for quantum qubit computation (Figure 8). Quantum comput-
ing has been argued that could be performed through analog computing [44–46], have
hypothesized parallels with op-amp circuits [47], that Z-valued algorithms cannot fully
simulate a quantum computer [48], and an initial demonstration through a discrete bench-
top analog circuit for a small quantum system (q-bits) utilizing sinusoidal input and output
signals [49–51]. Typical quantum computing tends to be performed using fixed devices,
such as qubits, and assume that the computation is instantaneous, effectively reaching its
steady-state rapidly in the measurement timescales. Therefore, the transformation between
Z-valued inputs to the measured outputs through these fixed-position qubits, R-valued
computation described through a Unitary matrix and nonlinear measurement operations.
With increased CMOS scaling, analog integrated circuit techniques use more quantum
concepts in their fundamental devices, providing another bridge between these techniques.

|1>

|0>

P(1): Real-Valued Function

P(0) = 1 - P(1)

|0>
H

Mixture of

|0> & |1>
(real value)

or

|1>

0 or 1

0V or Vdd

y = f(y)
y

(real value)

H

Mixture2 of

|0> & |1>
(real value)

y = g(y,x)
y

(real value)

Mixture1 of

|0> & |1>
(real value)

H

y = h(y,x)
x

(real value)

Mixture of
|0> & |1>
(real value)

0 or 1

0V or Vdd

Measure

Compare

|1>

or

|0>

(a) (c)

(b) (d)

x
(real value)

Figure 8. Translation between Qubit-based quantum computation and analog computation. Both
Physical computing approaches are computations over real values. (a) Although one starts with
individual states (<0 or <1), typically one has simultaneous probability of <0 and a probability of <1
(superposition). (b) Discrete valued inputs, represented as two quantum or voltage states, through a
transformation (c) Real-valued inputs, represented as a mixture of two quantum states or an analog
voltage, moves through a transformation to another mixture of two quantum states or an analog
voltage. (d) Real-valued inputs, represented as a mixture of two quantum states or an analog voltage,
moves through a transformation and then moves to a discrete value through measurement. For
quantum computation, this measure operation typically is the basic nonlinear operation element. This
measurement operation for analog computation is a comparison operation of some form.

Quantum computing is primarily a linear computation over the probability wave-
function (Ψ). A typical Quantum computation shows the comparisons between the two
physical computations. Although a quantum computation has a single input state (e.g.,
|1 > or |0 >), the computation involves the combination of these states (Figure 8)

|Ψ > = a |1 > +b |0 >,

J. Low Power Electron. Appl. 2021, 11, 14 11 of 21

where a, b are complex numbers (=2 real numbers) representing the probability of each
state (|a|2 + |b|2 = 1). The input could also be a combination of these states (Figure 8). The
superposition of these two states effectively creates a real-valued representation between 0
and 1, a similar representation having a voltage between 0 V and 1 V.

Multiple quantum operations result in multiple layers of linear operations over com-
plex values. Multiple linear operations can be consolidated to a single linear operation.
A single qubit is performing a linear algebraic operation over complex values (Figure 9)
that is described through a unitary transformation. A network of qubit operations without
measurement results in a single linear algebraic operation that is equivalent to a complex
VMM operation described by a unitary matrix. A unitary linear transformation means the
total output solution signal power is the same as the total input signal power. The inputs
representing the input wavefunction for each initial qubit input. If the input signal power
is normalized (to 1) as expected for complex probabilities, then the output signal power
is a normalized (to 1) set of complex probabilities. A DFT or DCT or DST or Hadamard
transform are all unitary matrix transformations over real or complex values.

n qubits =

Complex Matrix

(n x n)

VMM

Binary Comparison

Output Symbols

Input SymbolsH

α |1> + β |0> δ |1> + γ |0>

a b

c d

|α|2 + |β|2 = 1 |δ|2 + |γ|2 = 1

VMM

Inputs

O
u
tp

u
ts

1 qubit: Linear, complex, algebraic

n qubit: Linear, complex, algebraic array

Complex

Valued

Perceptron

Figure 9. The operation of one or several qubits is a linear operation over complex numbers.
Measurement provides a non-linear operation effectively thresholding the resulting probability. A
combination of linear, non-time dependent measurements results in a complex VMM where the
measurement operation looks like a threshold or a noisy threshold operation. This structure is related
to a one-layer Perceptron network, directly implementable by analog computation, with complex
weights and real or complex inputs.

An analog VMM (e.g., [8,9]) using complex inputs and complex weights directly
computes this formulation (Figures 10 and 11) The rectangular-coordinate complex multi-
plication of a complex input (R + j I) and complex weight (WR + j W I) is

(R + jI)(WR + jWI) = RWR − IWI + j(IWR + RWI) (3)

resulting in four real-valued multiplications (Figure 10), but otherwise resulting in a typical
VMM operation. The time-evolution of a qubit array of qubits is typically not considered as
the solution is thought to happen instantaneously, often as one sees an analog computation
occurs instantaneously. Even so, one can model the linear complex wavefunction dynamics
(e.g., Schrodinger’s equation) of these devices converging to their steady-state solution
through element time-constants (τ) similarly to modeling an analog VMM converging
to its linear dynamics through element time-constants (τ). A time domain model could
include either feedforward or feedback where the steady-state solution would still simplify
to a single complex VMM operation. Using sinusoids of a single frequency with different
amplitude and phase (a phasor) provides a second method of implementing the complex
operations. The phasor approach computes Hilbert spaces by analog circuits [50,52],
theoretically that can be extended to transformations with classical cochlear modeling
(e.g., [53,54]), with no difference in overall computational capability.

J. Low Power Electron. Appl. 2021, 11, 14 12 of 21

Vdd

VRin

Vtun Vdd
Vtun

VRin

Vdd
Vtun Vdd

Vtun

Vdd
Vtun Vdd

Vtun

Vdd
Vtun Vdd

Vtun

Vdd
Vtun Vdd

Vtun

Vdd
Vtun Vdd

Vtun

Vdd
Vtun Vdd

Vtun

Vdd
Vtun Vdd

Vtun

VIin VIin

(WR-WR)(VRin-VRin)
+ - + -

(WR-WR)(VIin-VIin)
+ - + -

(WI-WI)(VIin-VIin)
+- + -

(WI -WI)(VRin-VRin)
+ - + -

WI VRin

WR VRin

IBias + Is0 (WR - WR) (VRin - VRin)

 + Is0 (WI - WI) (VIin - VIin)

+ - + -

WR VIin

-WI VIin

+ - + -

IBias - Is0 (WR - WR) (VRin - VRin)

 - Is0 (WI - WI) (VIin - VIin)

+ - + -

+ - + -

IBias + Is0 (WR - WR) (VIin - VIin)

 + Is0 (WI - WI) (VRin - VRin)

+ - + -

+ - + -

IBias - Is0 (WR - WR) (VIin - VIin)

 - Is0 (WI - WI) (VRin - VRin)

+ - + -

+ - + -

R
eal O

u
tp

u
t C

o
m

p
o
n
en

t
Im

ag
in

ary
 O

u
tp

u
t C

o
m

p
o
n
en

t

(Real) (Imaginary)
+ - + -

Figure 10. Floating-Gate (FG) based circuit for a complex signal (VinR + j VinI) multiplied by a complex
weight (WR + j WI). The differential complex input terms (V+

inR, V−inR, V+
inI , V−inI) to differential complex

output terms (Real and Imaginary Output Components), require several partial products to compute the
full four-quadrant complex multiplication. Vtun is used to erase the FG elements through the tunneling
capacitors, and otherwise is held at a fixed potential through this operation.

Superposition is a property of all linear systems (R or Z) that allows for a number
of signals or waveforms to simultaneously exist in an overlapping space. Superposition
is taught from the first analog circuit analysis class. Superposition enables simultanious
quantum wavefunctions or analog states including for these examples.

Quantum Measurement provides a nonlinear operation to the otherwise linear quan-
tum operations. A measurement makes the wavefunction around that point have a certain
value for the duration of the confident measurement. This nonlinearity is a comparison
threshold, or a multilevel comparison threshold, with a probability directly related to the
magnitude or signal power magnitude of that region’s wavefunction. Adding the square
of the real and imaginary complex VMM outputs gives this signal power magnitude.
The magnitude function operating around a bias current (Is0), uses the differential VMM
outputs signals (Figure 10)

real : I+R1 = Is0(1 + XR)/2, I−R1 = Is0(1− XR)/2)

imaginary : II1 + Is0(1 + XI)/2, I−I1 = Is0(1− Xi)/2)

through translinear relationships for transistors with gate voltage changes (e.g., ∆V1)
around the bias current (Is0): [55,56]

I1 = Isoeκ∆V1/2UT , I2 = Isoeκ∆V2/2UT

Iout = Is0

(
eκV1/UT + eκV2/UT

)
=

I2
1 + I2

2
Is0

|Ψ|2 = Is0

(
((1 + XR)/2)2 + (1− XR)/2)2 + ((1 + XI)/2)2 + (1− XI)/2)2

)
= Is0

(
2 + (XR/2)2(XR/2)2

)
(4)

J. Low Power Electron. Appl. 2021, 11, 14 13 of 21

to create the wavefunction (Ψ) signal power magnitude (Figure 11).

GND
GND

M1

GND
GND

M2

Vout1

IR1

II1

IR2

II2

IR,m

II,m

Vout2

Vout,m

VinR,1 VinI,1 VinR,2 VinI,2 VinR,n VinI,n

Vout

I1 I2

Vdd
Vtun

GND

+

-

+

-

Iout

Icompare

Inoise

()2

()2
IR1

II1

IR1

II1

Figure 11. Potential Continuous-Time Computation Architecture for Qubit computation. Source of
M1, M2 might be biased higher to keep everything in subthreshold. The complex VMM operation
could be either gate or source coupled structure.

The nonlinear measurement operation is a noisy comparison operation to an integer
value (e.g., 0 or 1) based on the signal power magnitude of the local wavefunction (e.g., [57]).
The square root normalization is not required when passing through a threshold operation
or a noisy threshold operation. Thresholds can be set by programming a Floating-Gate
(FG) transistor at the threshold current. An analog noise generator (e.g., [13]) before the
comparison gives the probabilistic output related to the local wavefunction magnitude,
as needed, beyond the comparator circuit noise. Some algorithms may not benefit from
additional noise before the comparison. The probability may be represented by a dithering
of the output, similar to rate-encoded values seen in integrate and fire neurons, effectively
looking like a noise source. Noisy dithered outputs for Quantum computing enables
Quantum systems to be efficient noise generators (e.g., [11]), and likely was the reason
the first demonstration of physical supremacy (called Quantum supremacy) for Quantum
computing was a complicated noise source.

As a result of these properties, quantum computing is a form of perceptron compu-
tation over complex-valued quantities, where the input and output results are discrete
elements (Figure 9). This structure is analogous to an analog implementation (Figure 11)
of a one-layer Perceptron network with complex weights and real or complex inputs
(Figure 9). Multivalued symbol output can be abstracted where the equivalent of more
outputs states is encoded into having a factor of more qubit outputs (e.g., 4 symbols→
two outputs, 8 symbols→ three outputs). Note that quantum entanglement is not part of
these computations, as entanglement is about quantum error correction and not primary
computations. Shor’s algorithm [35] directly solved through this analog, room-temperature
equivalent circuit that is similar to analog Fourier transforms (e.g., [58]). An engineer could
still choose either method for solution depending on other engineering constraints.

5. Relationships between Physical Computing Approaches

Every form of R-valued computing has equivalents to other R-valued techniques.
These concepts build on the existence and properties of a continuous-valued environment.
Optical, Neuromorphic, Quantum, and Analog computing compute over R amplitude and
R time with various spatial forms (Figure 12). All four physical systems described show
properties of superposition within their linear operating region, allowing for a number
of signals or waveforms to simultaneously exist in the same representation. Optical
communication systems extensively make use of superposition to have multiple frequency
or wavelength carriers communicate on the same fiber. All four physical systems may
have infinite time and/or spatial responses. Optimization problems are routinely solved in

J. Low Power Electron. Appl. 2021, 11, 14 14 of 21

analog, quantum and neuromorphic techniques, resulting from coupled ODEs or PDEs
propagating energy down the established energy surfaces, either to a global minimum or
local minimas. Quantum computing relaxation and annealing as in Grover’s algorithm [36],
find similar concepts within as well as analog energy relaxation techniques (e.g., [59]) and
neuromorphic L1 norm minimization [60]. A good recent review shows the different
physical computing techniques for similar energy and power surface minimization [61].

Detector
Lens: Nonlinear

Spatial TransformIn
p

u
t

L
ig

h
t

(L
E

D
s,

 M
o

d
u

la
to

r,
 e

tc
.)

O
u

tp
u

t M
easu

rem
en

t

Optical Computing

c2
(

∂2 I
dx2 +

∂2 I
dy2

)
+ f (x, y)I(x, y) = ∂2 I

dt2

In
pu

t S
ig

na
ls
 (C

ar
rie

rs
, P

ot
en

tia
ls
)

O
ut

pu
t:

Sta
te

 M
ea

su
re

m
en

t

Quantum Computing

(
∂2Ψ
dx2 + ∂2Ψ

dy2

)
+V(x, y)Ψ(x, y) = jh̄ ∂Ψ

dt
(a) (b)

Neuromorphic Computing

x

axondendrite

τ ∂V
dt + V = ∂2V

dx2

+ fsyn(x, y, V(x, y))
+ fchannel(x, y, V(x, y))

Analog Computing

GND GND GND GND

GND GND GND GND

D
(

∂2V
dx2 + ∂2V

dy2

)
+ f (x, y, V(x, y, t)) = τ2 ∂2V

dt2

(c) (d)

Figure 12. Example computational medium for Physical Computing. All cases are described by linear
or nonlinear PDEs capable of diffusion and wave propagation, where they operate over space as well
as one continuous variable as well as continuous time. We show representative PDEs for potential
computations for each case; the diagrams do not capture all possible phenomena. (a) Optical
Computing: Highly efficient and linear computation using light in multiple spatial dimensions,
described through second-order wave equations. (b) Quantum Computing: Wave-based physics
coupling particles to all other particles. Typical implementations tend to use multiple quantum
wells, energy barriers (modeled by V), and connected states implementing computation through
the resulting wavefunctions (Ψ). (c) Neuromorphic Computing: Physical computing inspired by
computing in animal nervous systems. Looking along a single axis of a single neuron, the physics
of the membrane voltage (V) is a combination of diffusion and waveguiding behavior. (d) Analog
Computing: An example utilizing analog devices computing in voltage (V) a temporal-spatial PDE
including second-order space and time dynamics. These systems have some continuous spatial
behavior through the spatial dynamics in individual dynamics, whether or not those intermediate
results are used.

Second-Order Partial Differential Equations (PDE) provide a translatable framework
between these different R-valued computational mediums (Figure 12) computing over
R-valued amplitude, space, and time (Table 1). Optical computing utilizes waves, described
through a second-order time and space PDE formulation of Maxwell’s equations, comput-
ing through continuous time, amplitude, and 1- to 3-dimensional space utilizing a number
of spatial filters, lenses, and a variety of tunable light modulators & mirrors can modify
an input optical signal. Quantum computing uses complex probability wavefunctions (Ψ)

J. Low Power Electron. Appl. 2021, 11, 14 15 of 21

governed through PDEs (Schrodinger’s equation) computing through continuous time,
amplitude, and 1- to 3-dimensional space. Typical implementations compute multiple
quantum wells, potential energy barriers, and connected states governed by these PDEs.
Neuromorphic computing (e.g., [10,62]), including Neural Networks (e.g., [30,31]), uses
physical computing devices, typically of an analog nature in Si or hybrid system, modeling
part of a neurobiological computations (e.g., neurons) using continuous amplitude, time,
with at least 1-dimensional space PDEs in neuron computation (e.g., dendritic systems) [63].
Neurons are spatio-temporal computing elements with hundreds if not thousands of inputs,
modeling voltages governed by diffusing and wave-propagating PDEs (Figure 12). Analog
neuron implementations have demonstrated hundreds of inputs (e.g., [64]) as well as
wave-propagating PDEs (e.g., [63]). The dendritic PDEs have a significant linear operating
range within the overall biological structure.

Table 1. Comparison between R-valued computing techniques.

R Core
Time Amplitude Space Values PDEs

Quantum 1 1 1–3 >=3 1st/2nd-Order Hyperbolic
Analog 1 1 0–3? >=2 1st & 2nd-Order Space & Time
Neuromorphic 1 1 1 >=3 2nd-Order Parabolic
Optical 1 1 1–3 <=3 2nd-Order Hyperbolic

Analog computing operates in continuous-time and amplitude within a spatially
coupled environment and described by multiple coupled differential equations, including
coupled linear or nonlinear PDEs utilizing first and second order space and time dynam-
ics (e.g., [65]). The physical system is R-value in space, but practically the parameters
change in particular points with a finite granularity of parameter resolution setting, as well
as output measurement capability. The PDE could be coupled transistors (e.g., resistive
networks [59]) or transistor circuits (e.g., ladder filters [65]). Inputs, outputs and bound-
ary conditions are set through additional analog circuitry. Analog techniques provide
the mode advanced physical implementation capabilities, including programmable and
reconfigurable techniques in standard CMOS processes [18].

A bridge between computing capabilities results in a win-win silicoation (Figure 4),
where results developed from one physical system can be translated to a second physical
system. Although one medium is more efficient than another for particular problems, one
can transform between the two mediums through polynomial-size transformations. For
example, analog, optical, quantum, and neuromorphic computing can compute VMM oper-
ations. Lenses, programmable modulators, and programmed micromirrors enable optical
VMM computations. Analog and Quantum operations were discussed in the previous
section. Neuromorphic operations are likely the most nonlinear of these approaches.

The paths between these systems starts by translating the core PDEs between each
system (Figure 12), although the process might be simplier when computing concepts
use only a part of the physical medium’s capability (e.g., Section 4). An earlier example
showed moving between a quantum system (qubits) and an analog computing system,
one of the more challanging R-valued translations (Section 4). The translation between
optical and quantum computing goes through their similar hyperbolic wave-propagating
PDEs and similar mathematical formulations, where both heavily utilize the temporal and
spatial duality between real values and Fourier transformed values. Analog techniques
involve a wide range of ODE and PDE techniques that include the range of linear and
nonlinear PDE systems. Analog techniques can compute the same PDEs for Maxwell’s
equations as optical systems (e.g., [65]), although with a polynomially larger complexity in
many cases. Neuromorphic systems utilize parabolic PDEs (e.g., diffusion), and yet these
networks can be approximate waveguiding systems by altering spatial parameters [63]
as well as through local (e.g., active channels) or active network (e.g., synfire chain [66])
properties. The translation between analog and neuromorphic is straight-forward as most

J. Low Power Electron. Appl. 2021, 11, 14 16 of 21

neurormophic models are built with some analog circuit modeling (e.g., [10,62]). The
spatial steady-state solutions typically form elliptic PDE problems (Poison’s equation).
Each approach has a linear region, although nonlinear operations are harder in some
domains (e.g., Optical), possible in some cases (e.g., Quantum), and easy or too easy in
other cases (e.g., Analog or Neuromorphic). In each case, even and odd nonlinearities are
possible and a linear region are possible where some systems are more optimal in some
places than others. One expects translations between other physical systems not identified,
all systems computing with multiple R-valued operations and representations.

6. Computing Opportunities for Physical Computation

After defining physical computing, describing its properties (R versus Z), as well as
showing the transformations between these techniques, the discussion moves to consider-
ing the opportunities for physical computing. At one level, physical computing approaches
often have far higher computational efficiency and lower computational area [7–9,18,19], as
mentioned for analog systems (1000×, 100×) at the beginning of this discussion. Neuromor-
phic approaches have demonstrated even greater computational efficiencies with roadmaps
possible for both improved analog and neuromorphic cases [10]. These opportunities alone
are sufficient to explore these techniques, particularly in an ever energy-constrained envi-
ronment. The availability of large-scale programmable and configurable analog techniques
has enabled a realistic analysis of physical computing techniques.

Some examples in PA improve PD algorithms, although remain in PA (Figure 13).
Spaghetti sort [67] solved using analog WTA networks [14] in O(M) time rather than
greater than O(Mlog M) time for physical digital implementations. Grover’s quantum
computing algorithm also improved the O(·) time for the related algorithms [36].

Sometimes these physical computing discussions involve energy relaxation down an
energy surface to a minimum level; a good review of these physical computing techniques
can be found elsewhere [61]. These approaches map well to physical computing approaches,
and with just the right formulation or resulting energy surface, one could have a single
global minimum, resulting in an optimal solution. In general, there are local minimas that
might represent good solutions, and therefore these physical computing techniques do
not result in a PA solution for NPD problems (Figure 13), although they might provide
good solutions for many different cases. Analog resistive networks can create parabolic
PDE with elliptical PDE steady states to create energy surfaces, energy surfaces similar to
soap bubbles around fixed boundary conditions. These systems provide good solutions,
but local minimas tend to limit the extent of optimality, typical of these approaches in any
medium. For example, using resistive networks often achieve 96% correct for optimal path
planning, but not full optimality [59]. Very good solutions have been seen using energy
surface relaxations for NPD problems (e.g., TSP) using physical techniques [68,69]. All well
designed energy surface relaxation or related methods implemented in physical systems
show similar results. These perspectives often lead individuals to believe that physical
computing will not solve NPD problems (e.g., Quantum [48]). Unless just the right surface
is found and implemented, simple relaxation does not indicate whether NPD problems can
be solved in PA time.

At another level, computing over R versus Z likely has additional benefits including
addressing the relationship between NPD and EXPTIMED to PA and NPA (Figure 13).
Some examples in PA appear to be beyond PD. such as Shor’s quantum factorization
algorithm [35]. Multiple coupled ODEs systems have been proposed to solve NP problems,
such at the 3-SAT problem [33,34,70–72], that could be implemented on a configurable
continuous-time platform [19], although to date it has not been verified through physical
computing approaches. The potential overlap of EXPTIMED (e.g., Shor Factorization)
with PA and NPA gives motivation for deeper explorations. Throughout this process,
synchronous digital simulation results of physical computation must always be approached
cautiously, as digital computation is more limited than the resulting physical substrate
(Figure 4).

J. Low Power Electron. Appl. 2021, 11, 14 17 of 21

Algorithmic ComplexityPhysical

Computing

?

?

PA

PD

NPD
NPA

EXPTIMEDEXPTIMEA

Digital

ComputingOptimization

by Energy

Relaxation

ODE:

3-SAT?

?
?

Optimal

Path Planning

/ TSP?

Shor

Factorization

Figure 13. Mapping the transformation between Z computations and R computations remains an
open question. Some algorithms that solve in PD, such as energy surface relaxation applications,
directly translate to algorithms in PA, even if they sometimes give good enough solutions for NPD,
NPA. Some algorithms might provide an opportunity to bridge between NPD and PA.

Optimal path planning is computed in a polynomial size array of neurons in poly-
nomial time [66], providing one approach to connect NPD and PA (Figure 13). Physically
based wave-propagation computation using neural events is proven analytically and exper-
imentally to give an optimal solution [66], while energy surface relaxation nearly, but not
always (96% correct [59]) reaches the optimal solution. These solutions enable an optimal
solution by using wave propagation, rather than diffusive solutions falling down energy
surfaces. The optimal solution is analogous to timing of optical waves through a set of
barriers along the path. The first path that arrives is the winning path, typical of optical
systems. Algorithm intuition sometimes arises by equating one physical solution to another
physical solution. The principle of least time optimization [61] is the closest connection
to this physical optimal path planning through active propagation [66]. This physical
implementation is related to Dijkystra’s graph optimization algorithm, but with strong
physical optimality results. Dijkstra’s algorithm computes an optimal path over a graph
that may have been abstracted from a physical map within the timestep resolution.

Optimal path computation over a graph within the parameters set for the Dijkystra
algorithm is optimal, and that particular problem is not an NP computation. Sometimes
multiple paths are considered equal within the graph step timing resolution, even though
one path is shorter. Continuous-time physical computation eliminates that ambiguity, only
limiting the output computation to the final output readout resolution, creating a stronger
definition of optimality. The class of problems for this stronger definition of optimality
is unclear, requiring arbitrary smaller and smaller timesteps. The continuous variable
allows for arbitrary timing resolution because the resulting computation is over continuous
variables. If NPD is demonstrated part of PA in one physical computing platform, then it
is true in all fully-capable R-valued computing platforms. It remains an open question to
connect the Traveling salesman Problem (TSP) or Max cut problem to this R-valued optimal
path planning. This discussion sits at a place where we have the framework to explore if
NPD is part of PA, looking for a constructive approach based on some potential examples.

7. Summary and Discussion: Implications and Opportunities of Physical Computation

We presented a computing model for physical computing, computing over real values
including analog, neuormorphic, optical, and quantum computing. These techniques build
upon recent innovations in analog/mixed-signal computation as well as analog modeling,
architectures and algorithms. This approach shows a potential physical computing model,
enabling similar capabilities to digital computation with its deep theoretical grounding
starting from Turing Machines. This paper addressed the possibility of a real-valued
or analog Turing machine model, and the potential computational and algorithmic op-
portunities. These techniques have shown promise to increase energy efficiency, enable

J. Low Power Electron. Appl. 2021, 11, 14 18 of 21

smaller area per computation, and potentially improve algorithm scaling. This effort
describes opportunities beyond coefficient or minor polynomial scaling improvements in
computational energy efficiency, but rather could significantly improve the computational
energy efficiency scaling, O(·), resulting from fundamental algorithmic improvements
from computing over R-values as compared to traditional digital computing over Z-values.

Although there is a starting theory of R-valued computation and its R-valued Tur-
ing Machine, and there is starting theory of R-valued numerical analysis, architectures,
and abstraction primarily coming from analog implementations, one still requires a con-
structive framework for engineers to design physical computing systems for an application.
Although there are significant guideposts for physical computation so we no longer re-
quire a miracle to occur (Figure 1) for such implementations, one still does not find the
well-traveled paths typical of linear digital design.

A constructive framework for physical computing design requires a constructive
design approach using nonlinear dynamics. Engineers are well versed in designing signal
processing and control systems using linear dynamical systems and differential equations.
If any part of the system is nonlinear, or perceived as nonlinear, the design effort, risk,
and stress becomes almost unmanagable as there are few tools for designing nonlinear sys-
tems. Although theoretical analytical tools for nonlinear dynamics is extensive (e.g., [73]),
engineers have nearly no resources to design with nonlinear systems, resulting in another
a miracle to occur gap.

As an example in analog circuits, silicon nonlinearities are tanh(·), sinh(·), e(·) − 1 as
well as their inverses, providing the even (x2) and odd (x3) normal forms [73,74]. Handling
these nonlinearities requires the right current (I) and voltage (V) relationships. For example,
the output of a VMM is a current, so a compressive odd nonlinearity following this
operation would not be a tanh(·) (I = tanh(V)), but could be a sinh−1(·) (I = sinh(V)).
Frameworks for solving linear equations [75] adapted to allow for the natural nonlinearities
could generate fairly general sets of coupled differential equations with even and odd
nonlinearities. The analog form of L1 minimization is similar to these circuit structures [60].

A constructive framework for physical computing design requires a constructive
design approach for applying physical algorithms towards an application. Often several
energy-space algorithms with the hope they will provide a a good to optimal solution for
a particular application. Most of the theory for choosing these algorithms is hueristic in
nature, effectively resulting from the artistry of the expert designer. Other algorithmic
approaches are also possible, and yet further development in physical computing platforms
is essential. For example, can neural path planning algorithm [66] be modified to solve
NP-class applications (e.g., TSP, Max-Cut, or 3-SAT)? As many transformative problems
will experience chaotic dynamics in their solution (e.g., [33,34]), and as a result will become
unfeasible to solve in PD, understanding chaotic analog dynamics, as well as implementing
these dynamics in a physical system (e.g., FPAA) provides a guide for algorithm develop-
ment. Because of the lack of such structures, nonlinear dynamics has hitherto not exploited
these larger opportunities (e.g., [33,34]).

These remaining open questions of constructive frameworks for designing with non-
linear dynamics, choosing the right algorithms as well as choosing the right physical
medium for a particular application, are significant challenges going forward. Further-
more, yet, now being able to define these challenges carefully within a clear framework,
working through these challenges creates the opportunity of well-traveled paths through
physical computing. Educating and creating a community of engineers with these new
tools becomes essential towards solving and utilizing these spaces.

Author Contributions: J.H.: Formal analysis, writing original draft, figures. E.B.: writing original
draft. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable for studies not involving human or animals.

J. Low Power Electron. Appl. 2021, 11, 14 19 of 21

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Turing, R. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 1937, 2, 230–265.
2. Moore, G.E. Cramming more components onto integrated circuits. Electronics 1965, 38, 114–117.
3. Moore, G.E. Progress in Digital Integrated Electronics. IEEE IEDM Electron Devices Meet. 1975, 21, 11–13.
4. Hoeneisen, B.; Mead, C.A. Fundamental Limitations in Microelectronics—I. MOS Technology. Solid State Electron. 1972, 15, 819–829.
5. Mead, C.; Conway, L. Introduction to VLSI System Design; Addison-Wesley: Boston, MA, USA, 1980; ISBN 0-201-04358-0.
6. Grier, D.A. When Computers Were Human; Princeton University Press: Princeton, NJ, USA; Oxford, UK, 2005.
7. Mead, C. Neuromorphic electronic systems. Proc. IEEE 1990, 78, 1629–1636.
8. Chawla, R.; Bandyopadhyay, A.; Srinivasan, V.; Hasler, P. A 531 nW/MHz, 128 × 32 current-mode programmable analog vector-

matrix multiplier with over two decades of linearity. In Proceedings of the IEEE 2004 Custom Integrated Circuits Conference,
Orlando, FL, USA, 6 October 2004; pp. 651–654.

9. Schlottmann, R.C.; Hasler, P.E. A highly dense, low power, programmable analog vector-matrix multiplier: The FPAA implemen-
tation. IEEE J. Emerg. Sel. Top. Circuits Syst. 2012, 1, 403–411.

10. Hasler, J.; Marr, H.B. Finding a roadmap to achieve large neuromorphic hardware systems. Front. Neurosci. 2013, 7, 118.
11. Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.; Buell, D.A.; et al.

Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510.
12. Koetsier, J. IBM: Google’s ‘Quantum Supremacy’ Claim Is Wrong—150 Million Percent Wrong. Forbes, 23 October 2019.
13. Marr, B.; Hasler, J. Compiling Probabilistic, Bio-Inspired Circuits on a Field Programmable Analog Array. Neuromorphic Eng. Syst.

Appl. 2015, 88–96, doi:10.3389/fnins.2014.00086.
14. Hasler, J. Analog Architecture and Complexity Theory to Empowering Ultra-Low Power Configurable Analog and Mixed Mode

SoC Systems. J. Low Power Electron. Appl. 2019, 9, 4.
15. Hasler, J. Opportunities in Physical Computing driven by Analog Realization. In Proceedings of the 2016 IEEE International

Conference on Rebooting Computing (ICRC), San Diego, CA, USA, 17–19 October 2016.
16. Hasler, J. Starting Framework for Analog Numerical Analysis for Energy Efficient Computing. J. Low Power Electron. Appl. 2017,

7, 17.
17. Hasler, J.; Kim, S.; Natarajan, A. Enabling Energy-Efficient Physical Computing through Analog Abstraction and IP Reuse. J. Low

Power Electron. Appl. 2018, 8, 47.
18. Hasler, J. Large-Scale Field Programmable Analog Arrays. IEEE Proc. 2020, 108, 1283–1302.
19. George, S.; Kim, S.; Shah, S.; Hasler, J.; Collins, M.; Adil, F.; Wunderlich, R.; Nease, S.; Ramakrishnan, S. A Programmable and

Configurable Mixed-Mode FPAA SoC. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 24, 2253–2261.
20. Collins, M.; Hasler, J.; George, S. An Open-Source Toolset Enabling Analog–Digital Software Codesign. J. Low Power Electron.

Appl. 2016, 6, 3.
21. Hasler, J.; Natarajan, A. An Open-Source ToolSet for FPAA Design. In Proceedings of the WOSET, 2020. Available online:

http://hasler.ece.gatech.edu/SoCFPAA/WOSET2020SoCFPAATools.pdf (accessed on 25 March 2021).
22. Siegelmann, H.T.; Fishman, S. Analog computation with dynamical systems. Physica D 1998, 120, 214–235.
23. Cabessa, J.; Siegelmann, H.T. The Super-Turing Computational Power of Plastic Recurrent Neural Networks. Int. J. Neural Syst.

2014, 24, 1450029-1–1450029-22.
24. Deutsch, D. Quantum Theory, the Church-Turning Principle and the Universal Quantum Computer. Proc. R. Soc. Lond. Ser. A

Math. Phys. Sci. 1985, 400, 97–117.
25. Feynman, R.P. Simulating Physics with Computers. Int. J. Theor. Phys. 1982, 21, 467–488.
26. Feynman, R.P. Quantum Mechanical Computers. Found. Phys. 1986, 16, 507–531.
27. Hopfield, J.J.; Tank, D.W. Neural computation of decisions in optimization problems, Biol. Cybern. 1985, 52, 141–152.
28. Atiya, A.E.; Abu-Mostafa, Y.S. An analog feedback associative memory. IEEE Trans. Neural Netw. 1993, 4, 117–126.
29. Abu-Mostafa, Y.S. Information theory, complexity, and neural networks. IEEE Commun. Mag. 1989, 27, 25–28.
30. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA

1982, 79, 2554–2558.
31. Hopfield, J.J. Neurons with graded responses have collective computational properties like those of two- state neurons. Proc.

Natl. Acad. Sci. USA 1984, 81, 3088–3092.
32. Siegelmann, H.T. Turing on Super-Turing and Adaptivity. Prog. Biophys Mol. Biol. 2013, 113, 117–126.
33. Ercsey-Ravasz, M.; Toroczkai, Z. Optimization hardness as transient chaos in an analog approach to constraint satisfaction. Nat.

Phys 2011, 7, 966–970.
34. Yin, X.; Sedighi, B.; Varga, M.; Ercsey-Ravasz, M.; Toroczkai, Z.; Hu, X.S. Efficient Analog Circuits for Boolean Satisfiability. IEEE

Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 26, 155–167.
35. Shor, P. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. In Proceedings

of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994.

http://hasler.ece.gatech.edu/SoCFPAA/WOSET2020SoCFPAATools.pdf

J. Low Power Electron. Appl. 2021, 11, 14 20 of 21

36. Grover, L.K. A Fast Quantum Mechanical Algorithm For Database Search. In Proceedings of the 28th Annual ACM Symposium
on the Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996.

37. Hasler, J.; Shah, S. SoC FPAA Hardware Implementation of a VMM+WTA Embedded Learning Classifier. IEEE J. Emerg. Sel. Top.
Circuits Syst. 2018, 8, 28–37.

38. Butcher, J.C. Numerical Analysis of Ordinary Differential Equations: Runga Kutta and General Linear Methods; Wiley: New York, NY,
USA, 1987.

39. Wheeler, J.A. Information, Physics, Quantum: The Search for Links. Inf. Phys. 1989, 19, 309–336.
40. Mead, C.A. Collective Electrodynamics: Quantum Foundations of Electromagnetism; MIT Press: Cambridge, MA, USA, 2000.
41. Daugman, J.G. Complete Discrete 2-D Gabor Transform by Neural Networks for Image Analysis and Compression. IEEE Trans.

Acoust. Speech Signal Process. 1988, 36, 1169–1179.
42. Daugman, J.G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional

visual cortical filters. J. Opt. Soc. Am. A 1985, 2, 1160–1169.
43. Gabor, D. Theory of communication. J. IEE 1946, 93, 429–457.
44. Ferry, D.K.; Akis, R.; Harris, J. Quantum wave processing. Superlattices Microstruct. 2001, 30, 81–94.
45. Ferry, D.K.; Akis, R.; Knezevic, I. Quantum waves:the proper basis for low dissipation quantum computing. Microelectron. Eng.

2002, 63, 17–21.
46. Ferry, D.K.; Akis, R.; Gilbert, M.J.; Knezevic, I. Do we need quantum for quantum computing? In Proceedings of the SPIE

5115—Noise and Information in Nanoelectronics, Sensors, and Standards, Santa Fe, NM, USA, 9 May 2003.
47. Dyson, C.P.P. Implementing Quantum Algorithms Using Classical Electrical Circuits: Deutsch, Deutsch-Jozsa, and Grover.

Master’s Thesis, University of York, York, UK, 2011.
48. Preskill, J. Quantum Computing in the NISQ era and beyond. arXiv 2018, arXiv:1801.00862v3.
49. La Cour, B.R.; Sudarshan, E.C.G. Classical model for measurements of an entanglement witness. Phys. Rev. A 2015, 92, 032302-1–032302-7.
50. La Cour, B.R.; Ott, G.E. Signal-based classical emulation of a universal quantum computer. New J. Phys. 2015, 17, 053017.

doi:10.1088/1367-2630/17/5/053017.
51. La Cour, B.R.; Ostrove, C.I.; Ott, G.E.; Starkey, M.J.; Wilson, G.R. Classical emulation of a quantum computer. Inter. J. Quantum Inf.

2016, 14, 1640004-1–1640004-12.
52. Kish, L.B. Hilbert Space Computing by Analog Circuits. In Proceedings of the SPIE 5115—Noise and Information in Nanoelec-

tronics, Sensors, and Standards, Santa Fe, NM, USA, 9 May 2003.
53. Sarpeshkar, R. Emulation of Quantum and Quantum-Inspired Spectrum Analysis and Superposition with Classical

Transconnductor-Capacitor Circuits. U.S. Patent US 10,204,199, 12 February 2019.
54. Sarpeshkar, R. Emulation of Quantum and Quantum-Inspired Discrete-State Systems with Classical Transconductor-Capacitor

Circuits. U.S. Patent US 10,275,556 B2, 30 April 2019.
55. Minch, B.A.; Diorio, C.; Hasler, P.; Mead, C. Translinear circuits using subthreshold floating-gate MOS transistors. Analog Integr.

Circuits Signal Process. 1996, 9, 167–179.
56. Minch, B.; Hasler, P.; Diorio, C. Multiple-input translinear element networks. IEEE Trans. Circuits Syst. II Analog Digit. Signal

Process. 2001, 48, 20–28.
57. Lanham, S.A.; La Cour, B.R. Detection-Based Measurements for Quantum Emulation Devices. In Proceedings of the 2020 IEEE

International Conference on Quantum Computing and Engineering (QCE), Denver, CO, USA, 12–16 October 2020; pp. 37–46.
58. Suh, S.; Basu, A.; Schlottmann, C.; Hasler, P.; Barry, J. Low-power discrete Fourier transform for OFDM: A programmable analog

approach. IEEE Trans. Circuits Syst. I 2011, 58, 290–298.
59. Koziol, S.; Wunderlich, R.; Hasler, J.; Stilman, M. Single-Objective Path Planning for Autonomous Robots Using Reconfigurable

Analog VLSI. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 1301–1314.
60. Shapero, S.; Charles, A.S.; Rozell, C.J.; Hasler, P. Low power sparse approximation on reconfigurable analog hardware. IEEE J.

Emerg. Sel. Top. Circuits Syst. 2012, 2, 530–541.
61. Vadlamania, S.K.; Xiaob, T.P.; Yablonovitch, E. Physics successfully implements Lagrange multiplier optimization. Proc. Natl.

Acad. Sci. USA 2020, 117, 26639–26650.
62. Mead, C. Analog VLSI and Neural Systems; Addison Wesley: Reading, MA, USA, 1989.
63. George, S.; Hasler, J.; Koziol, S.; Nease, S.; Ramakrishnan, S. Low-power dendritic computation for wordspotting. J. Low Power

Electron. Appl. 2013, 3, 78–98.
64. Brink, S.; Nease, S.; Hasler, P.; Ramakrishnan, S.; Wunderlich, R.; Basu, A.; Degnan, B. A learning-enabled neuron array IC based

upon transistor channel models of biological phenomena. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 71–81.
65. Hasler, J.; Shah, S. Reconfigurable Analog PDE computation for Baseband and RF Computation. In Proceedings of the GOMAC,

Reno, NV, USA, 20–23 March 2017.
66. Koziol, S.; Brink, S.; Hasler, J. A neuromorphic approach to path planning using a reconfigurable neuron array IC. IEEE Trans.

Very Large Scale Integr. (VLSI) Syst. 2014, 22, 2724–2737.
67. Dewdney, A.K. On the spaghetti computer and other analog gadgets for problem solving. Sci. Am. 1984, 250, 19–26.
68. Feng, G.; Douligeris, C. Using Hopfield Networks to Solve Traveling Salesman Problems Based on Stable State Analysis Technique.

In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, Neural Computing:
New Challenges and Perspectives for the New Millennium, Como, Italy, 27 July 2000; Volume 6.

J. Low Power Electron. Appl. 2021, 11, 14 21 of 21

69. Mandziuk, J. Solving the traveling salesman problem with a Hopfield-type neural network. Demonstr. Math. 1996, 29, 219–231.
70. Vergis, A.; Steiglitz, K.; Dickinson, B. The Complexity of Analog Computation. ACM J. Math. Comput. Simul. 1986, 28, 91–113.
71. Cocco, S.; Monasson, R. Analysis of the computational complexity of solving random satisfiability problems using branch and

bound search algorithms. Eur. Phys. J. B 2001, 22, 505.
72. Sumi, R.; Varga, M.; Toroczkai, Z.; Ercsey-Ravasz, M. Order-to-chaos transition in the hardness of random Boolean satisfiability

problems. Phys. Rev. E 2016, 93, 052211.
73. Strogatz, S.H. Nonlinear Dynamics and Chaos; John Wiley & Sons: New York, NY, USA, 2015.
74. Ott, E. Chaos in Dynamical Systems, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002.
75. Hasler, J.; Natarajan, A. Continuous-time, Configurable Analog Linear System Solutions with Transconductance Amplifiers. IEEE

Trans. Circuits Syst. I 2021, 68, 765–775.

	Introducing Physical Computing and Physical Turing Machine Modeling
	Algorithmic Complexity of Real-Valued Computation
	The Continuous-Valued Physical World
	Noise Does Not Negate R-Valued Computation
	The Physical World Is R-Valued in Space and Time

	Connecting Quantum Computing and Analog Computing Applications
	Relationships between Physical Computing Approaches
	Computing Opportunities for Physical Computation
	Summary and Discussion: Implications and Opportunities of Physical Computation
	References

