
Journal of

Low Power Electronics
and Applications

Article

Continuous-Time Programming of Floating-Gate Transistors for
Nonvolatile Analog Memory Arrays †

Brandon Rumberg, Spencer Clites, Haifa Abulaiha, Alexander DiLello and David Graham *

����������
�������

Citation: Rumberg, B.; Clites, S.;

Abulaiha, H.; Dilello, A.; Graham, D.

Continuous-Time Programming of

Floating-Gate Transistors for

Nonvolatile Analog Memory Arrays.

J. Low Power Electron. Appl. 2021, 11,

4. https://doi.org/

10.3390/jlpea11010004

Received: 13 November 2020

Accepted: 11 January 2021

Published: 13 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Lane Department of Computer Science and Electrical Engineering, West Virginia University,
Morgantown, WV 26506, USA; brandon@aspinity.com (B.R.); sclites@mix.wvu.edu (S.C.);
hmabulaiha@mix.wvu.edu (H.A.); adilello@mix.wvu.edu (A.D.)
* Correspondence: david.graham@mail.wvu.edu; Tel.: +1-304-293-9692
† This paper is an extended version of our paper published in Rumberg, B.; Graham, D. A floating-gate memory

cell for continuous-time programming. In Proceedings of the IEEE Midwest Symposium on Circuits and
Systems, Boise, ID, USA, 5–8 August 2012; pp. 214–217.

Abstract: Floating-gate (FG) transistors are a primary means of providing nonvolatile digital memory
in standard CMOS processes, but they are also key enablers for large-scale programmable analog
systems, as well. Such programmable analog systems are often designed for battery-powered and
resource-constrained applications, which require the memory cells to program quickly and with
low infrastructural overhead. To meet these needs, we present a four-transistor analog floating-gate
memory cell that offers both voltage and current outputs and has linear programming characteristics.
Furthermore, we present a simple programming circuit that forces the memory cell to converge to
targets with 13.0 bit resolution. Finally, we demonstrate how to use the FG memory cell and the
programmer circuit in array configurations. We show how to program an array in either a serial or
parallel fashion and demonstrate the effectiveness of the array programming with an application of a
bandpass filter array.

Keywords: floating-gate transistor; nonvolatile memory; continuous-time programming; floating-
gate memory array; FPAA; reconfigurable

1. Introduction

In an effort to reduce the power consumption of battery-powered devices, analog sig-
nal processing is being reinvestigated to supplement and/or replace digital systems for
making early decisions regarding incoming sensor information. However, analog systems
are extremely sensitive to biasing conditions and, thus, need accurate control over their pa-
rameters to achieve the desired performance. Particularly in systems consisting of arrays of
analog elements, such as field-programmable analog arrays [1–3] and other programmable
analog arrays [4–6], a large number of analog parameters must be precisely established to
achieve the desired performance.

Floating-gate (FG) transistors can serve as key enabling devices for such low-power
analog systems. An FG transistor is a MOSFET that has no resistive connection to its gate;
instead, a “control gate” couples capacitively onto the transistor’s “floating gate.” As a
result, the charge on the FG is held fixed under nominal conditions but can be modified
via Fowler-Nordheim tunneling and hot-electron injection, which both require elevated
voltages. Because of its nonvolatile memory characteristics, FG transistors are ubiquitous
in digital systems in the form of EEPROM and Flash memory. However, the ability to
finely tune the amount of programmed charge on the FG allows these devices to be used
as nonvolatile analog memory elements, as well. Consequently, FG transistors have found
applications as variable threshold-voltage devices, programmable voltage/current sources,
analog trimming for device matching, and within adaptive/learning circuits [7].

J. Low Power Electron. Appl. 2021, 11, 4. https://doi.org/10.3390/jlpea11010004 https://www.mdpi.com/journal/jlpea

https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0003-3450-4867
https://doi.org/10.3390/jlpea11010004
https://doi.org/10.3390/jlpea11010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jlpea11010004
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/2079-9268/11/1/4?type=check_update&version=1

J. Low Power Electron. Appl. 2021, 11, 4 2 of 21

Modifying the stored charge on an FG transistor, which is often referred to as “pro-
gramming” the FG, requires large voltages (typically 2–3 times greater than the rated
Vdd of the process) to be applied to the FG transistor terminals in a controlled manner.
Figure 1 depicts the two primary methods for programming an FG transistor—pulsed and
continuous methods. Pulsed methods operate by iteratively applying short, high-voltage
pulses to modify the charge and then measuring the FG after each pulse, repeating until
a desired target is reached. Continuous methods, on the other hand, apply a constant
high voltage and leverage feedback to ensure that the FG charge converges to the desired
value. Pulse-based methods have dominated analog applications (e.g., [8]) because of the
simplicity of design and high accuracy that has been demonstrated. However, continuous
programming promises to be faster and require less peripheral circuitry than pulse-based
programming, which are critical features in resource-constrained systems that need to save
power and area.

-A
Is

Vs

Vd
Vd

Vs

Vtun

Vtun

Vfg
Vfg

Vcg
Vcg

Pulsed
Programming

Continuous
Programming

Read

Program

Vsd

Is

(a) (b)
Figure 1. Pulsed programming and continuous programming. (a) In pulsed programming, the source-
to-drain potential is alternately pulsed high for injection, and then placed at a nominal value to
measure the floating gate’s performance. (b) In continuous programming, injection occurs constantly,
and a terminal (in this case the source current) is adjusted to decrease—and eventually shut off—
injection as the target is approached.

In this paper, we describe a compact FG cell for continuous programming, which
when combined with our simple programmer circuit, converges to target voltages with
13.0 bit resolution. This FG cell/programmer combination is primarily designed to work
with battery-powered applications. This work is an extension of our early results in [9]
in which the circuit was constructed using custom discrete elements and achieved far
lower accuracy. Here, we present a fully integrated solution with far better programming
accuracy and resolution. We also extend the results of a single memory cell in [9] to array
applications. We describe how to build and program FG arrays in a serial (i.e., one at
a time) fashion as well as present a method for parallelizing the programming of FG
cells in an FG memory array to improve overall programming speed (first described in
Masters Thesis [10]). This paper serves to provide a description on how to build easy-to-use
programmable arrays of analog non-volatile memory for low-power applications.

Our basic memory cell uses an FG transistor in a source-follower configuration and
linearizes injection via negative feedback to the control gate, as shown in Figure 1b. Such lin-
ear source-feedback injection has been used previously in [11], but we accomplish the same
characteristics with the smaller current conveyor circuit. In addition to being smaller,

J. Low Power Electron. Appl. 2021, 11, 4 3 of 21

this current conveyor memory cell also offers more flexible control over the injection rate
since the FG source voltage, Vs, can be modified using either a voltage or a current input.

We describe the development of this system in the remainder of this paper.
Section 2 provides an overview of FG programming. Section 3 describes various methods
of continuous-time FG programming. Section 4 discusses our current-conveyor-based
memory cell. Section 5 then describes the programmer circuit that is used to achieve
specific target values. Section 6 discusses the two major methodologies to program an FG
array—serial and parallel programming. Section 7 demonstrates the use of an FG array to
precisely establish the corner frequencies of a programmable bandpass filter bank. Finally,
Section 8 provides concluding remarks.

2. Overview of Floating-Gate Programming

Two phenomena are typically used to program FG transistors: hot-electron injection
and Fowler-Nordheim tunneling. Injection occurs when a large source-to-drain potential
(typically Vsd > Vdd) is applied to a PMOS FG transistor, thus causing high-energy carriers
to impact-ionize at the drain. A fraction of the resulting ionized electrons disperse toward
the surface with enough energy to overcome the oxide barrier and inject onto the FG. In the
subthreshold region, which is our target operational region for low-power applications
and high injection efficiency, the injection current from Vf g to Vd can be approximated as

Iinj ≈ βIs
αeVsd/Vinj (1)

where β, α, and Vinj are device-dependent fits [12]. Tunneling, on the other hand, requires
high voltages (typically Vox > 2Vdd). To avoid write disturbs during tunneling, unselected
array elements must either be disconnected from the tunneling voltage using high-voltage
switches or the FGs of the unselected elements must be raised to a sufficient voltage that
tunneling does not occur. Due to this difficulty in isolating tunneling within an array,
tunneling is typically used only for global erasure in analog memory arrays, while injection
is used to write to individual elements. Consequently, we focus mainly on injection in
this paper.

Due to their ability to provide dense, low-power, analog biases, FGs are elemen-
tal in large-scale programmable analog systems—such as filter banks [4], classifiers [5],
and field-programmable analog arrays [1,13]. In these systems, circuit parameters (e.g.,
corner frequencies) are controlled by the charge on the FGs; as a result, system performance
depends strongly on the programming accuracy. Prior pulse-based programming tech-
niques have achieved high accuracy [8,11]. One advantage that pulse-based techniques
have in terms of accuracy is that the FG is measured in a state that is similar to run-mode:
with no high programming voltages applied to the cell, and with the same current levels
that will be used in run-mode. Unfortunately, pulsing is inherently slow due to the time
spent reading, during which the high programming voltages are stepped down and the FG
is allowed to settle before the measurement is taken; if measuring low currents, which is
necessary in low-power applications, then the read time further increases due to the long
integration time that is necessary for accurate measurement. Methods to increase the pro-
gramming speed with pulse-based programming rely on precise knowledge of each FG’s
characteristics, so that each pulse can move more aggressively toward the target [8], but this
adds to the complexity. Additionally, pulsing techniques require high-precision data con-
version and pulse timing, and possibly large-range current measurement [14], all of which
complicate the inclusion of analog FG memory in simple, resource-constrained systems.
Thus, there is a need for fast, compact, low-overhead, and accurate programming: we posit
that continuous-time programming is more appropriate for resource-constrained systems.

3. Continuous-Time Floating Gate Programming

Continuous-time FG programming is accomplished by using feedback to stop pro-
gramming when the memory cell reaches its target value. A variety of continuous pro-
gramming circuits have been presented, ranging from a single-transistor circuit [12] that

J. Low Power Electron. Appl. 2021, 11, 4 4 of 21

self-converges due to the negative feedback of injection current from the FG to the drain,
to more complex circuits with improved speed and accuracy. Figure 2 shows the two
primary types of FG cells for self-converging, continuous programming that use the inher-
ent feedback in MOSFETs undergoing hot-electron injection to converge to a final value.
For both the circuits, as electrons are injected onto the FG, the FG voltage, Vf g, decreases.
As a result, the source-to-drain potential also decreases, and, according to Equation (1),
the injection current decreases and will eventually shut off. The circuit in Figure 2a, which
was presented in [12], provides repeatable results and can be programmed to different
targets either by using different values of I1 for a constant Vcg, or by using different values
of Vcg for a constant I1. However, the convergence time depends on the initial conditions;
if the initial charge on the FG is too high, then the device cannot initially produce I1. As
a result, injection starts very slowly, and the total time to converge can be long (even
though the final stages of convergence occur quickly). While the circuit of Figure 2b will
typically start injecting quickly, it will slowly converge to its final value, often on the order
of minutes to converge. Whereas the circuit of Figure 2a starts slow and finishes quickly,
the circuit of Figure 2b starts quickly and finishes slowly. Both circuits suffer from potential
long convergence times because they only rely on internal feedback to converge.

Vfg

Vd

Mfg

I1

Vcg

Vtun

(a)

Vtun

Vfg
Mfg

Vcg

Vs

I1

(b)

Figure 2. Programming cells without explicit feedback to keep all of the terminals of M f g constant,
thereby resulting in situations that have slow injection. (a) Programming cell with constant current
applied to the drain. (b) Programming cell with constant current applied to the source.

External feedback, on the other hand, can be used to linearize the injection and
tunneling processes to ensure that the FG charge is programmed to the desired value in
a reasonable and predictable amount of time. External feedback can be used to keep the
drain, source, and floating-gate potentials at constant values during the programming
process so that injection and/or tunneling occur at a constant rate. As a result, the external
feedback can prevent the FG cell from entering a region in which its conditions are not
amenable to programming, which would lengthen the programming duration. However,
linearizing the programming process means that the FG cell no longer self converges.
Instead, systems that linearize the programming rates require additional external circuitry
to stop the injection and/or tunneling at the appropriate time.

Several previous circuits were presented that use feedback to linearize the program-
ming process, including memory cells that use a comparator to terminate programming
when a target has been reached [15,16], memory cells that use differential amplifiers to
linearize programming [17], and a system that uses both hot-electron and hot-hole injection
to bidirectionally converge on a target [18]. In each of these systems, the programming rate
is held constant until the target value is reached, and then the programming is abruptly
stopped. Such programming faces a severe tradeoff between programming speed and

J. Low Power Electron. Appl. 2021, 11, 4 5 of 21

accuracy [16]. In contrast, the programming circuitry that we present in this work adjusts
the FG transistor’s channel current in order to reduce the programming rate as the target
value is approached; this adaptation of the current in the FG transistor allows our pro-
grammer and FG memory cell to achieve a better tradeoff between programming speed
and accuracy.

Figure 3 depicts the two primary concepts behind using negative feedback to Vcg to
keep all the terminals of M f g constant through the programming process, and thus keep
injection and/or tunneling rates constant. However, as previously mentioned, these mem-
ory cells no longer converge on their own, but require additional programming circuitry.
In both of these circuits, Vf g is constant and Vcg ramps linearly up during injection, or down
during tunneling, to compensate for the change in charge on the FG—see Figure 4. Vcg
thus provides our measure of the charge on the FG. We found the high gain around the
loop of the circuit in Figure 3a to cause stability problems, and so we will not consider it
any further. The source follower circuit in Figure 3b is the same configuration that has been
used in pulse-based source-feedback injection to achieve 13-bit precision with program
times on the order of 50 s/200 mV [11]. This circuit has good stability and offers good
control over injection and tunneling through the manipulation of both VsT (which sets Vs)
and I1. Our memory cell has the same basic characteristics as this circuit, but is smaller,
which is important for large array applications.

Vtun

MfgVfg

VdT I1

Vd

Vcg

(a)

Vtun

VsT

Vcg

I1

Vs

Mfg

Vfg

(b)

Figure 3. Programming cells that employ negative feedback to the gate to hold the terminals and
current of M f g constant, thus resulting in linear injection and tunneling. (a) Programming cell
with constant current applied to the drain. (b) Programming cell with constant current applied to
the source.

J. Low Power Electron. Appl. 2021, 11, 4 6 of 21

Tunneling

Injection

Time (s)

V c
g

0 0.04 0.08 0.12 0.16 0.2

0 0.04 0.08 0.12 0.16 0.2

0

0.5

1.5

1

V c
g

4.5

5

6

5.5

Time (s)

(V
)

(V
)

Figure 4. Demonstration of the linear programming characteristics of the circuit in Figure 3b.

4. Current-Conveyor-Based Memory Cell

To achieve the good characteristics of the circuit of Figure 3b but reduce the size, we
developed the circuit in Figure 5. For simplicity, current sources are shown for I1 and I2,
but in the actual implementation, each current source is implemented by a single transistor.
In this memory cell, the inverting amplifier M1–I2 replaces the op-amp in Figure 3b. The
resulting circuit structure is the current-controlled current conveyor, the details of which
can be found in [19]. In this circuit, the negative feedback adjusts Vcg in order to force both
Vf g and Vs to fixed voltages. The equilibrium point for Vs is controlled by both the voltage
VX and the current I2. The equilibrium point of Vf g depends on both Vs and I1. Thus, we
maintain independent control of the source current and drain-to-source potential (the two
main injection parameters) with this four-transistor circuit.

V

Vfg

Vs

Mfg

I1

Vcg

I2

Vx

M1

tun

Figure 5. Our floating-gate memory cell, which is based on the current-controlled current conveyor
circuit.

This memory cell offers three control terminals for modifying injection: two currents
(I1 and I2) and one voltage (VX). Using the subthreshold injection approximation in

J. Low Power Electron. Appl. 2021, 11, 4 7 of 21

Equation (1), we can solve for the injection current as a function of the control terminals in
subthreshold operation as

Iinj ≈ βI1
α

(
I2

I0

)− UT
κVinj

e
Vx−(1−κ)Vdd

κVinj (2)

where I0 is the pre-exponential current scaler for M1, κ is related to the subthreshold
slope for M1, and UT = kT/q is the thermal voltage. Figure 6 shows measured injection
rates as a function of each of these control terminals. The injection rate was measured by
determining the slope of Vcg during injection experiments that were similar to the injection
pane in Figure 4; this slope is equal to the injection current normalized by the control-
gate capacitance. When not being swept, VX, I1, and I2 were held fixed at 5 V, 860 nA,
and 2 nA, respectively. Additionally, since the feedback holds Vf g constant, this cell has
linear tunneling characteristics. Figure 7 shows the dependence of the tunneling current on
VX while all other terminals were held fixed.

The experiments shown in Figures 6 and 7 demonstrate the ability to adjust the cell’s
programming rate over a large range using either voltage or current inputs. Additionally,
the weak dependence on I2—approximately an inverse fifth root dependence—makes I2
appropriate for fine rate adjustment. Furthermore, the cell works well in the subthreshold
region, where power consumption is low and Equation (2) holds true.

4.4 4.5 4.6 4.7 4.8

(a)

10
0

10

10

I in
j
/

C
g

Vx Current
(b)

Sweeping I1
Sweeping I2

10
1

10
0

10

10

I in
j
/

C
g

10 10 10 10

Figure 6. Measured dependence of the injection current on the three control terminals of the circuit: (a) VX , (b) I1, and I2.

1.8 2 2.2 2.4 2.6 2.8 3
Vx

I t
u
n
/
C
g

10
1

10
0

10

Figure 7. Measured dependence of tunneling current on terminal VX .

5. Programmer Circuit

The combination of control terminals makes the memory cell very flexible in terms
of creating a “programming circuit” to inject the memory cell to a desired value. Figure 8
illustrates one possible programming circuit that uses I1 as the control terminal, and

J. Low Power Electron. Appl. 2021, 11, 4 8 of 21

we will use this programmer circuit throughout the rest of this work. This programmer
circuit consists of an operational transconductance amplifier (OTA) and a current mirror.
In program mode, the programmer circuit is connected to the FG memory cell in the
configuration shown in Figure 8. The OTA converts the difference between Vcg and a target
value, Vtarg, into a current. This current is rectified by the current mirror M2–M3 and is
forced into the source terminal of the FG transistor. Accordingly, this current is able to
precisely control the programming of the FG memory cell.

Vtun

Vfg

Vs

Mfg

I1

Vcg

I2

M1

Vtarg

M2 M3

FG Memory Cell Programmer

Figure 8. Our memory cell programming circuit.

Figure 9 illustrates the programming procedure with measured data from an inte-
grated circuit fabricated in a standard 0.5 µm CMOS process. Prior to “writing” a value
to the FG memory cell, the memory cell is erased by tunneling the FG transistor—a large
voltage is applied to Vtun until the control-gate voltage, Vcg, of the FG memory cell drops
to a voltage near ground. With Vtun reduced to its run-time voltage and with Vdd held at
the nominal supply voltage, the value of Vcg maintains a low (near-ground) voltage. This is
the “erased” state of the FG memory cell.

Vtarg

Vcg

Figure 9. Timing diagram of the FG cell and programmer circuit. While Vtarg > Vcg, injection takes
place, and Vcg rises linearly.

To initiate injection, the supply voltage is ramped up to an elevated value, Vdd, f g,
which pulls Vcg up to a non-zero value. The exact value of Vdd, f g necessary for injection is

J. Low Power Electron. Appl. 2021, 11, 4 9 of 21

process-dependent, and [20] provides details on how this voltage changes with technology
nodes. While Vcg is well below the target value, the OTA output current is saturated,
and the injection rate is constant because the current through the FG transistor is constant,
while also maintaining constant voltages on the source, drain, and floating gate. As Vcg
approaches Vtarg, the OTA enters its linear input range, and the current in the FG transistor
becomes proportional to the difference between Vcg and Vtarg. Consequently, as the target
is approached, the injection rate is reduced, and eventually stopped, by the reducing I1.
When I1 shuts off, the current conveyor structure stops operating, and Vcg is pulled high.
At this point, injection no longer occurs. The FG memory cell and programmer have their
supply voltage lowered to the nominal Vdd, and programming of the FG memory cell has
been completed.

After injecting the FG memory cell, it is placed in read mode by disconnecting it
from the programmer OTA and current mirror—i.e., it is configured as Figure 5. The cell’s
voltage output is read from Vcg while constant currents are applied to I1 and 12.

Alternatively, the FG transistor can be disconnected from the rest of the memory cell
for current readout mode. In current readout mode, Vcg is connected to a fixed potential,
the source of M f g is connected to Vdd, and the drain is connected directly to the circuit that
it biases. In short, M f g is configured as a current source, with the exact value of current
dependent on the charge programmed on the FG.

The combination of this programmer circuit and the FG memory cell is able to provide
a linear mapping between the target voltages (Vtarg) and the output voltages (Vcg) of
the memory cell after being programmed. Figure 10 shows the measured relationship
between the target voltages and the corresponding output voltages after the FG memory
cell has been disconnected from the programmer and the supply voltage has returned to
the nominal Vdd. These measurements were taken from an integrated circuit fabricated in a
standard 0.35 µm CMOS process. As can be seen, linearly spaced target voltages result in
linearly spaced output voltages. The bottom pane shows the deviation from a straight line
with a slope of 1.0025 (the linear fit to the data). Over a target range of 0.9 V–2.1 V (1.2 V
total), the worst-case deviation from the straight line was only 0.49 mV.

1.1 1.3 1.5 1.7 1.9 2.1
0

1

2

0

1

V
d
d
,r
un

V
cg

1.1 1.3 1.5 1.7 1.9 2.1

V
dd,prog targD

e
v
ia
ti
o
n
fr
o
m

L
in
e
(m

V
) V

dd,prog targ

Figure 10. Measured programming accuracy.

The programmer/memory-cell combination is capable of programming to a larger
range of voltages, but the relationship begins to deviate slightly from a straight line with
a larger Vtarg range. Figure 11 shows the Vtarg to Vcg relationship for a voltage range of
2.2 V. The Vcg values deviate as much as 7 mV from the ideal straight line. However,
a simple calibration step can be used to correct for these deviations from the straight line.

J. Low Power Electron. Appl. 2021, 11, 4 10 of 21

The curvature of the output Vcg values has an approximately third-order relationship.
Therefore, using a third-order polynomial to calibrate the Vtarg to Vcg relationship results in
a worst-case deviation of 0.9 mV from a straight line, as is shown in Figure 11.

1.5 2 2.5 3

V
dd,prog targ

0

0.5

1

1.5

2

2.5

0

2

V
d

d
,r

u
n

c
g

Before Calibration

1.5 2 2.5 3

V
dd,prog targ

0

0.5

1

1.5

2

2.5

0

2

V
d

d
,r

u
n

c
g

After Calibration

1.5 2 2.5 3

V
dd,prog targ

D
e

v
ia

ti
o

n
 f

ro
m

 L
in

e
 (

m
V

)

1.5 2 2.5 3

V
dd,prog targ

D
e

v
ia

ti
o

n
 f

ro
m

 L
in

e
 (

m
V

)

Figure 11. Measured programming accuracy before and after calibration.

To verify the repeatability and precision of the programming process, the memory cell
was programmed using the programmer circuit for linearly spaced values of Vtarg. The FG
memory cell was programmed 100 times to each target value ranging from 1.24 V−3.56 V
(2.32 V total range), with a full erasure after each write/measurement. Each program-
ming cycle was 100 ms in duration and used Vdd, f g = 6 V. Figure 12 shows the standard
deviation of the 100 measurements of Vcg for each Vtarg, which had a worst-case value of
280 µV. Using the worst-case standard deviation of the repeatability measurements as the
minimum detectable change that can be distinguished over the 2.32 V range, then this FG
cell/programmer combination is capable of 13.0 bits of resolution when programming.

J. Low Power Electron. Appl. 2021, 11, 4 11 of 21

1.5 2 2.5 3 3.5

V
dd,prog targ

160

180

200

220

240

260

280

300

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 o

f
V

c
g
 (

V
)

Figure 12. Measured programming precision.

Previous work in similar technology nodes has shown that charge retention after pro-
gramming is very good (e.g., [21–23]), with results indicating that 10-year lifespans can
be achieved from FG memory for analog applications with little charge loss. For example,
ref. [23] has shown drift of less than 0.5 µV over 10 years at room temperature, which is suffi-
cient for maintaining the 13.0 bit resolution in our system. One item that should be pointed
out is that high fields through the oxide due to tunneling and injection can cause some
damage to the oxide and also result in charge trapped in the oxide. However, in contrast
to digital systems in which nonvolatile memory undergoes frequent write/erase cycles,
nonvolatile analog memory write/erase cycling is often quite sporadic in comparison—
with nonvolatile analog memory having a spectrum of needs in terms of the frequency of
write/erase cycles. At one end of the spectrum of nonvolatile analog memory applications,
the FG device only needs to be programmed once to account for process variations, bias-
ing conditions, and/or mismatch compensation. In these cases, the nonvolatile memory
does not need to undergo any extra write/erase cycles, so damage to the oxide will be
inconsequential. Even at the other end of the spectrum where applications require more
write/erase cycles, the frequency of write/erase cycling is still likely dramatically less than
in digital systems, so it is likely that these systems will not undergo significant stresses
either. However, if they do suffer some effects of oxide degradation and/or charge trapping,
then the calibration curve from Figure 11 can be retaken periodically to reassess the target
values needed to achieve the desired accuracy from the system. Analysis of long-term
retention and effects of charge trapping in nonvolatile analog memory is ongoing research
work and will continue to be studied in further detail. Because of the varied needs of
programming nonvolatile analog memory in terms of how fast and how often they need to
be programmed, we provide two methods for programming arrays of FG transistors in
the next Section—(1) serial programming for area-constrained systems that do not need
frequent re-writes and (2) parallel programming for systems that either need frequent
re-writes or cannot handle long outage times during write/erase cycling.

Since the main application of the FG memory cell introduced here is to be used in
low-power analog systems, the power dissipation of the memory cell in run mode should
be small. In voltage readout mode, the cell in Figure 5 was biased with I1 = 20 nA and
I2 = 2 nA, yielding a low power consumption of 66 nW/cell. If the FG transistor is
configured for current readout, then the current is part of the circuit that it is biasing and
does not contribute any additional power consumption beyond that of the circuit.

J. Low Power Electron. Appl. 2021, 11, 4 12 of 21

6. FG Array Programming

Since a benefit of FG transistors is that they allow for dense memory arrays, we em-
ployed our FG memory in several analog memory arrays. In an array configuration,
FG memory cells are arranged in M rows by N columns, depending on the size of the
application. Multiplexing circuitry at each of the FG memory-cell terminals is used to
select/deselect cells and to apply the required voltages for the read/program processes.

The two main methodologies for programming an array of FGs are serial and parallel
programming. As their names imply, serial programming involves programming one
floating gate at a time, while parallel programming involves programming multiple floating
gates simultaneously. Serial programming is suitable for applications where the chip area
is constrained, since only one programmer circuit is required for the entire chip. On the
other hand, parallel programming is preferable for analog applications that require faster
write times for a large number of FGs; however, parallel programming requires larger area
overhead for additional programming circuitry. We will discuss these two programming
methodologies in the following subsections.

6.1. Serial Programming of FG Arrays

In serial programming, FGs are programmed one transistor at a time. Therefore,
only one programmer circuit is needed per chip, which helps to keep the infrastructural
circuitry compact. During injection, one specific FG cell is selected and connected directly
to the programmer circuit of Figure 8. When the supply voltage is elevated to a voltage
large enough to induce injection, which we will denote as Vdd, f g, injection starts, and only
the selected FG memory cell is injected. All unselected FG memory cells are configured
to prevent injection by pulling the unselected cells’ Vcg to Vdd, f g and by setting the drain-
to-source voltage, Vsd, of the FG transistor to be low (∼0 V) by connecting the source and
drain to ground. Once the selected FG memory cell is injected to the desired target, it is
disconnected from the programmer and a new FG memory cell is selected and connected
to the programmer circuit. The process is repeated for each of the FG memory cells needing
to be injected.

Since only one programmer circuit is used in serial programming, M × N program-
ming cycles are required to program an M × N array. For large arrays, the M × N pro-
gramming cycles could cause a significant unwanted down-time in which the system is
not operational while it is being programmed, which could also be impractical for large
arrays that require frequent reprogramming. However, not all applications require constant
up-time or frequent rewrites. For example, in [1], the serial programming method was
used to program the FG transistors on a reconfigurable analog processor. A die photograph
of this programmable analog system is shown in Figure 13.

A signal-flow block diagram of the serial programming method is shown in Figure 14.
A serial peripheral interface (SPI) is used to select the particular FG memory cell to be
programmed, connect the programmer circuit to the appropriate cell, enable read/write
mode, and control a voltage scaling digital-to-analog converter (DAC) to apply the desired
target voltage. The programming process for this scheme operates as follows:

1. Globally erase all floating gates using tunneling
2. Raise the supply voltage to its elevated injection level Vdd, f g

3. Set the DAC output voltage (Vtarg) and select a specific row/column combination
4. Connect the programmer circuit to the corresponding FG memory cell
5. Programming starts immediately—hold for approximiately 100 ms to ensure that

injection completes—injection will automatically shut off when the FG memory cell
reaches the desired target

6. Repeat steps 3–5 for all FG memory cells in the array that need to be injected, one at
a time

7. Lower the supply voltage to Vdd when all FG cells have been programmed

J. Low Power Electron. Appl. 2021, 11, 4 13 of 21

Figure 13. A die photograph of a large-scale programmable analog system chip employing serial
programming.

P
ro
g
ra
m
m
e
r

M
u
x

Figure 14. Signal flow diagram of the presented serial programming architecture.

6.2. Parallel Programming of FG Arrays

To accelerate the process of programming a large number of FG cells, a parallel
programming technique can be used. In parallel programming, more than one cell is
programmed at a time. Consequently, multiple programmer circuits are required per chip
to accomplish parallel programming and will result in faster programming, since one
programming cycle is able to program multiple FGs in the array. However, in order to
program X floating gates in parallel, there must be X programmer circuits available—one
for each FG that will be programmed simultaneously. In this subsection, we present an FG
array with a parallel programmer scheme. In this particular system for an M × N array,
N programmer circuits are used—one for each column.

A block diagram of the whole parallel programming system is shown in Figure 15.
Like with the serial programming system, a digital interface for programming via SPI
is used to set all parameters needed for programming. Consequently, only four digital
input signals are required to program the full array of FG memory cells, which minimizes
the number of pins required to interface with the chip, reduces programming overhead,
and removes some of the programming details from the end user.

A voltage-scaling DAC is again used to generate analog target voltages. However,
differently from the serial programming scheme, the output of the DAC is sampled by an
array of sample-and-hold (S/H) circuits which provide the actual target voltages that are
applied to the array of FG memory cell circuits to perform programming. This array of S/H
circuits permits one single DAC to be used instead of N DACs for each FG memory cell
being programmed in parallel. The DAC is stepped through N different values, and each
of the N outputs are sampled—one output by each S/H circuit. These N voltages are held

J. Low Power Electron. Appl. 2021, 11, 4 14 of 21

at the outputs of the S/H circuits (i.e., Vtarg values of each of the N programmer circuits)
until all N FG memory cells are programmed.

S
P
I D

A
C

S
&

H
 A

rr
a

y

P
ro

g
ra

m
m

e
r
A

rr
a

y

F
G

M
O

S
 A

rr
a

y

C
ir
c
u

it
 A

rr
a

y

Address Bus

DATA

CLK

CS

LATCH

Figure 15. Signal flow diagram of the presented parallel programming architecture.

The requirements of the S/H circuits used in this application are that they must have
long hold times to reliably maintain a constant target voltage while all N FG memory cells
are programmed in parallel. Additionally, the S/H should have low pedestal error so as to
not introduce offset between the DAC and the individual Vtarg values.

To achieve the long hold times and low pedestal error, we employed a S/H topol-
ogy based on [24]. This S/H employs Miller feedback in its hold-mode configuration to
increase the effective hold capacitance, Chold, without requiring larger drawn capacitors.
This configuration reduces the droop rate of the S/H. A simplified version of the S/H
schematic is shown in Figure 16a. The two switches, S1 and S2, are comprised of trans-
mission gates which include half-sized dummy transmission-gate switches on each node
except for Vin, since this charge injection error gets absorbed by the input source and
does not affect Vout. Also, note that switch S1 is clocked using Φ1d, a delayed version of Φ1.
Consequently, S2 opens slightly before S1 when transitioning to hold mode, further reducing
charge injection [25].

Vin

Vref

Vdd Vdd,fg

Vout

C1 C2

Gm1 Gm2

(a)

Vdd,fg

Gm2

S1

S2

(b)

0 1 2 3 4 5 6 7 8 9 10

4.0

4.5

5.0

5.5

6.0

S
/H

In
p

u
t

&
O

u
tp

u
t

(V
)

Time (s)
0 1 2 3 4 5 6 7 8 9 10

0

1

S
a

m
p

le
C

L
K

(B
it
s
)Vin

Vout

CLK

Vin

Vref

VddC1 C2

Gm1

S1

S2

F1

F1d

Sample & HoldSample & Hold ufferBuffer

Figure 16. (a) Schematic of the sample-and-hold circuit with Miller hold capacitance. (b) Transient
response to a sinusoidal waveform.

J. Low Power Electron. Appl. 2021, 11, 4 15 of 21

In sample mode, the S/H OTA, Gm1, is connected as a unity-gain buffer, forcing its
inverting input to equal Vre f as C1 and C2 are charged to Vin. In hold mode, S1 and S2 are
opened, and Miller feedback through C1 and C2 forces the capacitance on the hold node
to be Chold ≈ C2(1 + A), where A is the open-loop gain of the S/H OTA, Gm1. Figure 16b
demonstrates the S/H’s operation by showing a transient plot of the S/H sampling a sine
wave. The time scale is large, illustrating the long duration of hold times achievable by this
circuit (hold time of 500 ms in this example).

The addition of the S/H array necessitates extra considerations to initiate injection in
each device. Before programming, the output of the DAC is forced to ∼0 V. Each S/H is
sequentially selected, and ∼0 V is sampled onto each of them. Next, the supply voltage
of the buffer OTA, Gm2, is raised to Vdd, f g (note that Gm1 does not need to be raised up
to the higher supply voltage), and each FG in row M is connected to its corresponding
programmer. Since a low Vtarg was set for each programmer, all of the FG memory cells
connected to the programmers have their Vcg latched to a high voltage, and no FG memory
cell undergoes injection. The DAC then sequentially applies the desired Vtarg for each FG
memory cell. However, injection still does not happen because Vcg is still latched high.
To initiate injection, an extra switch is connected to the output of the programmer OTAs of
Figure 8. A short-duration “start” pulse briefly shorts the output of the OTAs to ground,
causing current to flow in the current mirrors biasing the FG transistors. This current resets
the Vcg values of the memory cells to a low value. At the conclusion of the start pulse,
the FG memory cells inject to the targets. Once the last programmer has started injecting
its FG memory cell, the supply voltage is left at a high value of Vdd, f g for a set period of
time to ensure that all FGs have reached their targets.

Figure 17 shows the die photograph of an example system employing parallel pro-
gramming of an array of FG memory cells. This integrated circuit was fabricated on a
standard 0.5 µm CMOS process, and system-level results from this integrated circuit will
be shown in the following Section. Figure 18 shows two FG memory cells on this chip
being programmed in parallel using our programmer. Note that while 8 memory cells are
programmed in parallel on this chip, the voltage outputs of only two cells were observable
at any time—one was observable via selection by the the SPI, and another was hard-wired
to output pins for debugging purposes. In this Figure at 100 ms, the first S/H is clocked,
sampling the DAC output to set Vtarg1. Shortly after, the start pulse is applied to initiate
injection. Then, the next column is selected, and the process is repeated. A very long
programming time-scale is shown in this example to illustrate the long hold times available
by the S/H circuitry. However, typical programming hold times are 100 ms.

SPI

10-Bit
DAC

S&H Array

Programmer
Array

3-to-8
Decoder

FG Array

C4 Array

1.19mm

1
.1

9
m

m

Figure 17. Die photograph of a programmable bandpass array chip using parallel programming.

J. Low Power Electron. Appl. 2021, 11, 4 16 of 21

Figure 18. Transient response of node Vcg on two FG memory cells being programmed in parallel
using our parallel programmer.

A summary of the parallel programming procedure is as follows:

1. Globally erase all floating gates using tunneling
2. Sample ∼0 V on each of the S/H circuits
3. Raise the supply voltage to its elevated injection level, Vdd, f g

4. Set the DAC output voltage and select a specific row/column combination
5. Sample the target voltage from the DAC to set Vtarg
6. Initiate injection with the start pulse
7. Repeat steps 4–6 for each subsequent FG memory cell in the column
8. Repeat steps 4–7 for each row in the array
9. Lower the supply voltage to Vdd when all FG cells have been programmed

6.3. Serial vs. Parallel Programming

As a comparison between the two methods for programming arrays, Figure 19 demon-
strates the programming time for serial and parallel programming. As the Figure illustrates,
to program an array of FGs serially, one FG is programmed at a time, which makes the
programming process linearly proportional to the overall size of the array. Using the serial
method for programming results in overall programming time of:

ttot,serial = M × N × (ts + ti) (3)

where M is the number of rows, N is the number of columns, ti is the injection time, and ts
is pre-injection time (time to select the FG cell, connect the programmer, and apply the
start pulse if needed) which is very short compared to ti. On the other hand, our parallel
programming method dramatically reduces the overall programming time by staggering
FG programming through time, as shown in Figure 19. To program an N × M array using
our parallel programming method, the overall programming time is:

ttot,parallel = M × (N × ts + ti) (4)

Generally, comparing the two methods, our parallel programming compromises
between minimizing die area (by using a programmer circuit per each column) and pro-
gramming time, which makes it the most appropriate programming method for FG-dense

J. Low Power Electron. Appl. 2021, 11, 4 17 of 21

analog applications. Serial programming is most appropriate for systems that are size-
constrained and/or can handle longer down times between write cycles.

row
tttt

Serial Programming

Parallel Programming

row"

tttt

row#

Timing DiagramProgramming Type

FG$

FG$

FGFG

FG%

FG% FG%FG& FG&

FG&

FG'

FGm

row"

FG$

FG&

FG'

FGm

row

FG$

FG%

FG&

FG'

FGm

row#

FGm FGm

FG%

Figure 19. Serial vs. parallel programming.

7. System Application

FG transistors have a wide range of analog applications that require a large number of
FGs to be integrated on a single die. These applications range from simple filter banks to
more complicated field-programmable analog arrays (FPAAs). FGs are used to provide
biasing voltages/currents for those analog applications. A proof-of-concept system was
fabricated in a standard 0.5 µm CMOS process, and it consists of a programmable filter array
employing our parallel programmer. This chip contains 8 sample-and-holds, 8 programmer
circuits, a 2 × 8 array of floating-gate transistors (16 total), and 8 bandpass filters. This chip
also contains the SPI, DAC, and miscellaneous peripheral circuitry. Each bandpass filter
requires two FGs for biasing—one for the low corner frequency and one for the high
corner frequency. The FGs are distributed in an array of 2 rows and 8 columns. In this
configuration, the chip allows for one row of FGs to be programmed in parallel. Thus,
two programming sequences, one for each row, are required to program the full chip. A die
photograph of the chip is shown in Figure 17.

To demonstrate the programmer’s ability to directly tune circuit parameters, we use
the capacitively-coupled current conveyor (C4) presented in [4] and shown in Figure 20a.
The C4 is a transconductance-capacitance (Gm-C) filter whose corner frequencies are pro-
portional to the transconductances of two OTAs—Gm,L and Gm,H in Figure 20a. Since these
transconductances are directly proportional to the bias currents of each OTA, the corner fre-
quencies can be directly tuned using the FG memory cell as a current reference to bias them.
Figure 20b shows how the FG transistors are configured as current sources and are con-
nected to the OTAs. Figure 21a shows the effect on frequency response holding Gm,H
constant and programming different values of Gm,L; Figure 21b shows the effect of increas-
ing Gm,H . As can be seen, the two corner frequencies can be tuned orthogonally, so that
the current in one OTA does not impact the corner frequency set by the other OTA. In this
example system, the biases providing the low corner frequencies for each of the bandpass
filters were contained on one row (and programmed simultaneously), and all the biases for
the high corner frequency were on the other row.

J. Low Power Electron. Appl. 2021, 11, 4 18 of 21

Gm,L

Gm,HVref

Vin Vout

C1

C2

CW CL

(a)

M4

M8M7

V+ V-

Iout

Vcg

M3

M6

M1 M2

M10

M9

M11

Vtun

Mfg

Transconductor Floating Gate Biasing

M5

(b)

Figure 20. (a) Schematic of the OTA-based C4. (b) Schematic of the OTA used for both Gm,L and Gm,H .

(a)

G
a

in
(d

B
)

101 102 103 104

0

0

Increasing

G
m, L

Frequency (Hz)

101 102 103 104

G
a

in
(d

B
)

Increasing

G
m, H

Frequency (Hz)

(b)

Figure 21. (a) Independent tuning of the low corner frequency. (b) Independent tuning of the high
corner frequency.

Figure 22 demonstrates the capability of accurately programming the parameters of a
filter array using the parallel programming structure presented in this paper. Three filter
spacings are demonstrated: full-octave spacing, half-octave spacing, and third-octave
spacing. The value of the quality factor, Q, for each of these configurations was chosen
according to fractional-octave spacing rules, such that the filters cross at their −3 dB
points. Therefore, Q∼1.4 for octave spacing, Q∼2.9 for half-octave spacing, and Q∼4.3 for
third-octave spacing. Figure 22 (top) shows the results of programming the C4s to octave
spacing starting at fc = 88 Hz, Figure 22 (middle) shows half-octave spacing beginning at
fc = 300 Hz, and Figure 22 (bottom) shows third-octave spacing beginning at fc = 445 Hz.

As can be seen from Figure 22, the programming structure presented in this paper is able

J. Low Power Electron. Appl. 2021, 11, 4 19 of 21

to precisely tune the circuit parameters to achieve exponentially spaced center frequencies.
Additionally, the use of FG transistors provides a mechanism to tune the circuit’s operation
for multiple conditions (e.g., different center frequency spacings, bandwidths, etc.).

10
1

10
2

10
3

10
4

10
5

Frequency (Hz)

10
1

10
2

10
3

10
4

10
5

N
o

rm
a

liz
e

d
G

a
in

(d
B

)

10
1

10
2

10
3

10
4

10
5

Octave

Half-Octave

Third-Octave

N
o

rm
a

liz
e

d
G

a
in

(d
B

)
N

o
rm

a
liz

e
d

G
a
in

(d
B

)

0

0

0

Figure 22. Programmed C4 array frequency responses. (Top) octave spacing starting at fc = 88 Hz,
(Middle) half-octave spacing starting at fc = 300 Hz, and (Bottom) third-octave spacing starting at
fc = 445 Hz.

8. Conclusions

We presented a compact analog FG memory cell that uses a continuous-time program-
ming technique. Two different integrated circuits with memory cells and the programmer
have been fabricated to characterize the design—one in standard 0.35 µm CMOS with serial
array programming and the other in standard 0.5 µm CMOS with parallel programming.
The FG memory cell and the programmer circuit were characterized and tested for repeat-
able programming. We demonstrated that the FG memory cell could be programmed to
have a linear relationship with a target voltage over a range of 2.32 V with a resolution of
13.0 bits, all while being programmed in under 100 ms.

The FG memory cell was used to build a memory array that can be used in analog
applications. A parallel programming technique was presented that significantly reduces the

J. Low Power Electron. Appl. 2021, 11, 4 20 of 21

time required to inject all FG cells in the array. Finally, as a proof of concept, the FG memory
array was used as programmable current sources to program a C4 bandpass filter array.

Arrays of this FG memory cell are ideally suited to low-power applications that
require analog processing of information—particularly applications that pre-process sensor
information to make early classification and detection of events, such as [26]. Either a
serial or parallel programming paradigm, as described in this paper, could be used, and
the determination between the two should be made based on area constraints, allowable
duration of down-time while reprogramming, and frequency of write/erase cycles. Future
work in the area of programmable non-volatile analog memory will include (1) circuits to
linearize the Vtarg to Vcg transfer function better to reduce the need for a calibration phase,
(2) circuitry to permit negative voltages to be used in the injection process to eliminate the
need for a voltage ramp-up phase for injection (early work has been presented in [27]),
(3) infrastructural circuits to support generating the write/erase cycles, (4) demonstration
of performance in newer technology nodes, etc.

Author Contributions: Conceptualization, B.R. and D.G.; Data curation, D.G.; Funding acquisition,
D.G.; Investigation, B.R., S.C., H.A. and A.D.; Methodology, B.R., S.C., H.A., A.D. and D.G.; Supervi-
sion, D.G.; Writing—original draft, B.R., S.C. and D.G.; Writing—review and editing, H.A. and D.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This material is based on work supported by the National Science Foundation under Award
No. 1148815 and by the United States Army Research Laboratory under Contract W911NF-10-2-0109.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rumberg, B.; Graham, D.; Clites, S.; Kelly, B.; Navidi, M.; Dilello, A.; Kulathumani, V. RAMP: Accelerating wireless sensor

hardware design with a reconfigurable analog/mixed-signal platform. In Proceedings of the 14th International Conference on
Information Processing in Sensor Networks, Seattle, WA, USA, 13–17 April 2015; pp. 47–58.

2. Hasler, J. Large-Scale Field-Programmable Analog Arrays. Proc. IEEE 2020, 108, 1283–1302. [CrossRef]
3. Becker, J.; Henrici, F.; Trendelenburg, S.; Ortmanns, M.; Manoli, Y. A Field-Programmable Analog Array of 55 Digitally Tunable

OTAs in a Hexagonal Lattice. IEEE J. Solid-State Circuits 2008, 43, 2759–2768. [CrossRef]
4. Rumberg, B.; Graham, D. A Low-Power and High-Precision Programmable Analog Filter Bank. IEEE Trans. Circuits Syst. II

Exp. Briefs 2012, 59, 234–238. [CrossRef]
5. Lu, J.; Young, S.; Arel, I.; Holleman, J. A 1 TOPS/W Analog Deep Machine-Learning Engine with Floating-Gate Storage in

0.13 µm CMOS. IEEE J. Solid-State Circuits 2015, 50, 270–281. [CrossRef]
6. Shah, S.; Töreyin, H.; Güngör, C.B.; Hasler, J. A Real-Time Vital-Sign Monitoring in the Physical Domain on a Mixed-Signal

Reconfigurable Platform. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1690–1699. [CrossRef] [PubMed]
7. Hasler, P.; Minch, B.; Diorio, C. Floating-gate devices: They are not just for digital memories anymore. In Proceedings of the 1999

IEEE International Symposium on Circuits and Systems (ISCAS), Orlando, FL, USA, 30 May–2 June 1999; pp. 388–391.
8. Bandyopadhyay, A.; Serrano, G.; Hasler, P. Adaptive Algorithm Using Hot-Electron Injection for Programming Analog

Computational Memory Elements Within 0.2% of Accuracy Over 3.5 Decades. IEEE J. Solid-State Circuits 2006, 41, 2107–2114.
[CrossRef]

9. Rumberg, B.; Graham, D.W. A floating-gate memory cell for continuous-time programming. In Proceedings of the 2012 IEEE
55th International Midwest Symposium on Circuits and Systems (MWSCAS), Boise, ID, USA, 5–8 August 2012; pp. 214–217.

10. Clites, S. A Parallel Programmer for Non-Volatile Analog Memory Arrays. Master’s Thesis, West Virginia University, Morgantown,
WV, USA, 2015.

11. Huang, C.; Sarkar, P.; Chakrabartty, S. Rail-to-Rail, Linear Hot-Electron Injection Programming of Floating-Gate Voltage Bias
Generators at 13-Bit Resolution. IEEE J. Solid-State Circuits 2011, 46, 2685–2692. [CrossRef]

12. Diorio, C. A p-Channel MOS Synapse Transistor with Self-Convergent Memory Writes. IEEE Trans. Electron Dev. 2000, 47, 464–472.
[CrossRef]

13. Wunderlich, R.; Adil, F.; Hasler, P. Floating Gate-Based Field Programmable Mixed-Signal Array. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 2013, 21, 1496–1505. [CrossRef]

14. Basu, A.; Hasler, P.E. A Fully Integrated Architecture for Fast and Accurate Programming of Floating Gates Over Six Decades of
Current. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2011, 19, 953–962. [CrossRef]

15. Diorio, C.; Mahajan, S.; Hasler, P.; Minch, B.; Mead, C. A high-resolution nonvolatile analog memory cell. In Proceedings of the
Proceedings of ISCAS’95-International Symposium on Circuits and Systems, Seattle, WA, USA, 30 April–3 May 1995; Volume 3,
pp. 2233–2236.

http://dx.doi.org/10.1109/JPROC.2019.2950173
http://dx.doi.org/10.1109/JSSC.2008.2005697
http://dx.doi.org/10.1109/TCSII.2012.2188460
http://dx.doi.org/10.1109/JSSC.2014.2356197
http://dx.doi.org/10.1109/TBCAS.2019.2949778
http://www.ncbi.nlm.nih.gov/pubmed/31670678
http://dx.doi.org/10.1109/JSSC.2006.880621
http://dx.doi.org/10.1109/JSSC.2011.2167390
http://dx.doi.org/10.1109/16.822295
http://dx.doi.org/10.1109/TVLSI.2012.2211049
http://dx.doi.org/10.1109/TVLSI.2010.2042626

J. Low Power Electron. Appl. 2021, 11, 4 21 of 21

16. Román, H.; Serrano, G. A system architecture for automated charge modifications of analog memories. In Proceedings of the
2010 53rd IEEE International Midwest Symposium on Circuits and Systems, Seattle, WA, USA, 1–4 August 2010; pp. 1069–1072.

17. Kim, K.H.; Lee, K.; Jung, T.S.; Suh, K.D. An 8-Bit-Resolution, 360-µs Write Time Nonvolatile Analog Memory Based on
Differentially Balanced Constant-Tunneling-Current Scheme (DBCS). IEEE J. Solid-State Circuits 1998, 33, 1758–1762.

18. Wu, Y.D.; Cheng, K.C.; Lu, C.C.; Chen, H. Embedded Analog Nonvolatile Memory With Bidirectional and Linear Programmability.
IEEE Trans. Circuits Syst. II 2012, 59, 88–92. [CrossRef]

19. Andreou, A.; Boahen, K.; Pouliquen, P.; Pavasović, A.; Jenkins, R.; Strohbehn, K. Current-Mode Subthreshold MOS Circuits for
Analog VLSI Neural Systems. IEEE Trans. Neural Netw. 1991, 2, 205–213. [CrossRef]

20. Navidi, M.; Graham, D. A regulated charge pump for injecting floating-gate transistors. In Proceedings of the 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 2270–2273.

21. Ma, Y.; Gilliland, T.; Wang, B.; Paulsen, R.; Pesavento, A.; Wang, C.-H.; Nguyen, H.; Humes, T.; Diorio, C. Reliability of pFET
EEPROM with 70-Angstrom tunnel oxide manufactured in generic logic CMOS processes. IEEE Trans. Device Mater. Reliab. 2004,
4, 353–358. [CrossRef]

22. St. John, I.; Fox, R. Leakage effects in metal-connected floating-gate circuits. IEEE Trans. Circuits Syst. II 2006, 53, 577–579.
[CrossRef]

23. Srinivasan, V.; Serrano, G.; Gray, J.; Hasler, P. A Precision CMOS Amplifier Using Floating-Gate Transistors for Offset Cancellation
IEEE J. Solid-State Circuits 2007, 42, 280–291. [CrossRef]

24. Lim, P.; Wooley, B. A High-Speed Sample-and-Hold Technique Using a Miller Hold Capacitance. IEEE J. Solid-State Circuits 1991,
26, 643–651. [CrossRef]

25. Carusone, T.; Johns, D.; Martin, K. Analog Integrated Circuit Design, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012.
26. Bhattacharyya, S.; Andryzcik, S.; Graham, D. An Acoustic Vehicle Detector and Classifier Using a Reconfigurable Analog/Mixed-

Signal Platform. J. Low Power Electron. Appl. 2020, 10, 6. [CrossRef]
27. Navidi, M.; Graham, D.; Rumberg, B. Below-Ground Injection of Floating-Gate Transistors for Programmable Analog Circuits.

In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017;
pp. 1–4.

http://dx.doi.org/10.1109/TCSII.2012.2184371
http://dx.doi.org/10.1109/72.80331
http://dx.doi.org/10.1109/TDMR.2004.837119
http://dx.doi.org/10.1109/TCSII.2006.875317
http://dx.doi.org/10.1109/JSSC.2006.889365
http://dx.doi.org/10.1109/4.75067
http://dx.doi.org/10.3390/jlpea10010006

	Introduction
	Overview of Floating-Gate Programming
	Continuous-Time Floating Gate Programming
	Current-Conveyor-Based Memory Cell
	Programmer Circuit
	FG Array Programming
	Serial Programming of FG Arrays
	Parallel Programming of FG Arrays
	Serial vs. Parallel Programming

	System Application
	Conclusions
	References

