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Abstract: AI evolution is accelerating and Deep Neural Network (DNN) inference accelerators
are at the forefront of ad hoc architectures that are evolving to support the immense throughput
required for AI computation. However, much more energy efficient design paradigms are inevitable
to realize the complete potential of AI evolution and curtail energy consumption. The Near-Threshold
Computing (NTC) design paradigm can serve as the best candidate for providing the required energy
efficiency. However, NTC operation is plagued with ample performance and reliability concerns
arising from the timing errors. In this paper, we dive deep into DNN architecture to uncover some
unique challenges and opportunities for operation in the NTC paradigm. By performing rigorous
simulations in TPU systolic array, we reveal the severity of timing errors and its impact on inference
accuracy at NTC. We analyze various attributes—such as data–delay relationship, delay disparity
within arithmetic units, utilization pattern, hardware homogeneity, workload characteristics—and
uncover unique localized and global techniques to deal with the timing errors in NTC.

Keywords: near-threshold computing (NTC); deep neural network (DNN); accelerators; timing error;
AI; tensor processing unit (TPU); multiply and accumulate (MAC); energy efficiency

1. Introduction

The proliferation of artificial intelligence (AI) is predicted to contribute up to $15.7 trillion to the
global economy by 2030 [1]. To accommodate the AI evolution, the computing industry has already
shifted gears to the use of specialized domain-specific AI accelerators along with major improvements
in cost, energy and performance. Conventional CPUs and GPUs are no longer able to match up
the required throughput and they incur wasteful power consumption through their Von-Neumann
bottlenecks [2–6]. However, the upsurge in AI is bound to cater to a huge rise in energy consumption
to facilitate power requirements throughout the wide spectrum of AI processing in the cloud data
centers to smart edge devices. Andrae et al. have projected that 3–13% of global electricity in 2030 will
be used by datacenters [7]. We need to develop energy efficient solutions to drag down this global
consumption as low as possible to facilitate the rapid rise in AI compute infrastructure. Moreover,
the AI services are propagating deeper into the edge and Internet of Things (IoT) paradigms. Edge AI
architectures have several advantages, such as low latency, high privacy, more robustness and efficient
use of network bandwidth, which can be useful in diverse applications, such as robotics, mobile
devices, smart transportation, healthcare service, wearables, smart speakers, biometric security and
so on. The penetration towards the edge will, however, be hit by walls of energy efficiency, as the
availability of power from the grid will be replaced by limited power from smaller batteries. In addition,
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the collective power consumption from the edge and IoT devices will increase drastically. Hence,
ultra low power paradigms for AI compute infrastructure, both at server and edge, are inevitable for
realizing the complete potential of AI evolution.

Near-threshold computing (NTC) has been a promising roadmap for quadratic energy savings
in computing architectures, where the device is operated close to threshold voltage of transistors.
Researchers have explored the application of NTC to the conventional CPU/GPU architectures [8–16].
One of the prominent use cases of NTC systems has been to improve the energy efficiency of the
computing systems by quadratically reducing the energy consumption per functional unit and
increasing the number of functional units (cores). The limit of the general purpose applications to
be paralleled [17,18] in this use case has hindered the potential of NTC in CPU/GPU platforms.
Deep Neural Network (DNN) accelerators are the representative inference architectures for AI
compute infrastructure, which have larger and scalable basic functional units, such as Multiply and
Accumulate (MAC) units, which can operate in parallel. Coupled with the highly parallel nature of the
DNN workloads to operate on, DNN accelerators serve as excellent candidates for energy efficiency
optimization through NTC operation. Substantial energy efficiency can be rendered to inference
accelerators in the datacenters. Towards edge, the quadratic reduction in the energy consumption
carries the potential to curtail the collective energy demands of the edge devices and makes many
compute intensive AI services feasible and practical. Secure and accurate on-device DNN computations
can be enabled for AI services, such as face/voice recognition, biometric scanning, object detection,
patient monitoring, short term weather prediction and so on at the closest proximity of hardware,
physical sensors and body area networks. Entire new classes of edge AI applications delve further into
the edge, which are limited by the power consumption from being battery operated and can be enabled
by adaptation of NTC.

NTC operation in DNN accelerators is also plagued with almost all the reliability and performance
issues as experienced by the conventional architectures. NTC operation is prone to a very high
sensitivity to process and environmental variations, resulting in excessive increase in delay and
delay variation [14]. This slows down the performance and induces high rate of timing errors in
the DNN accelerator. The prevalence, detection and handling of timing error, and its manifestation
on the inference accuracy are very challenging for DNN accelerators in comparison to conventional
architectures. The unique challenges come from the unique nature of DNN algorithms operating in
the complex interleaving among its very large number of dataflow pipelines. Amidst these challenges,
the homogeneous repetition of the basic functional units throughout the architecture also bestows
unique opportunities to deal with the timing errors. Innovation in the timing properties of a single
MAC unit is scalable towards providing a system-wide timing resilience. We observe that very few
input combinations to an MAC unit sensitize the delays close to the maximum delay. This provides
us with the predictive opportunity where we can predict the bad input combinations and deal with
them differently. We also establish the statistical disparity in the timing properties of the multiplier
and accumulator inside a MAC unit and uncover unique opportunities to correct a timing error in a
timing window derived from the disparity. Through the study of the utilization pattern of MAC units,
we present opportunities for fine tuning the timing resilience approaches.

We introduce the basic architecture of DNN in Section 2 with the help of Google’s DNN
accelerator, Tensor Processing Unit (TPU). We uncover the challenges of NTC DNN accelerators
around the performance and timing errors in Section 3. We propose the opportunities in NTC DNN
accelerators to deal with the timing errors in Section 4, by delving deep into the architectural attributes,
such as utilization pattern, hardware homogeneity, sensitization delay profile and DNN workload
characteristics. The quantitative illustrations of the challenges and opportunities are done using the
methodology described in Section 5. Section 6 surveys the notable works in the literature close to the
domain of NTC DNN accelerators. Finally, Section 7 concludes the paper.
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2. Background

DNN inference involves repeated matrix multiplication operation with its input (activation) data and
pre-trained weights. Conventional general purpose architectures have a limited number of processing
elements (cores) to handle the unconventionally large stream of data. Additionally, the Von-Neumann
design paradigm forces to have repeated sluggish and power-hungry memory accesses. DNN accelerators
aim for better performance in terms of cost, energy and throughput with respect to conventional
computing. DNN workload, although very large, can be highly parallel which opens up possibilities
for increasing throughput by feeding data parallel to an array of simple Processing Elements (PE).
The memory bottlenecks are relaxed by mixture of different techniques, such as keeping the memory
close to the PEs, computing in-memory, architecting dataflow for bulk memory access, using advanced
memory, data quantization and so on. DNN accelerators utilize the deterministic algorithmic properties
of the DNN workload and embrace maximum reuse of the data through a combination of different
dataflow schemes, such as Weight Stationary (WS), Output Stationary (OS), No Local Reuse (NLR),
and Row Stationary (RS) [6].

WS dataflow is adapted in most of the DNN accelerators to minimize the memory accesses to the
main memory by adding a memory element near/on PEs for storing the weights [19–22]. OS dataflow
minimizes the reading and writing of the partial sums to/from main memory, by streaming the
activation inputs from neighboring PEs, such as in Shidiannao [22,23]. DianNao [24] follows NLR
dataflow, which reads input activations and weights from a global buffer, and processes them through
PEs with custom adder trees that can complete the accumulation in a single cycle, and the resulting
partial sums or output activations are then put back into the global buffer. Eyeriss [19] embraces an
RS dataflow, which maximizes the reuse for all types of data, such as activation, weight and partial
sums. Advanced memory wise, DianNao uses advanced eDRAM, which provides higher bandwidth
and access speed than DRAMs. TPU [22] uses about 28MiB of on-chip SRAM. There are DNN
accelerators which bring computation in the memory. The authors in [25] map the MAC operation
to SRAM cells directly. ISAAC [26] PRIME [27], and Pipelayer [28] compute dot product operation
using an array of memristors. Several architectures ranging from digital to analog and mixed signal
implementations are being commercially deployed in the industry to support the upsurging AI-based
economy [22,29–31]. Next, we take an example architecture of the leading edge DNN Accelerator,
Tensor Processing Unit (TPU) by Google to better understand the internals of a DNN accelerator
compute engine. TPU architecture, already being a successful industrial scale accelerator, has also put
its prevalence at the edge through edge TPU [32,33]. We will use this architecture to methodologically
explore different challenges and opportunities in an NTC DNN accelerator.

The usage of the systolic array of MAC units, has been recognized as a promising direction to
accelerate matrix multiplication operation. TPU employs a 256 × 256 systolic array of specialized
Multiply and Accumulate (MAC) units, as shown in Figure 1 [22]. These MACs, in unison with
parallel operation, multiply the 8-bit integer precision weight matrix with the activation (also referred
to as input) matrix. Rather than storing to and fetching from the memory for each step of matrix
multiplication, the activations stream from a fast SRAM-based activation memory, reaching each
column at successive clock cycles. Weights are pre-loaded into the MACs from the weight FIFO
ensuring their reuse over a matrix multiplication lifecycle. The partial sums from the rows of MACs
move downstream to end up at output accumulator as the result of the matrix multiplication. As a
consequence, the Von-Neumann bottlenecks related to memory access are cut down. The ability
of the addition of hardware elements to compute the repeating operations not only enables higher
data parallelism, but also enables the scaling of the architecture from server to edge applications.
This architectural configuration allows TPU to achieve 15–30 X throughput improvement and 30–80 X
energy efficiency improvement over the conventional CPU/GPU implementations.
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Figure 1. TPU Systolic Array.

3. Challenges for NTC DNN Accelerators

This Section uncovers different challenges in the NTC operation of DNN accelerators. Section 3.1
demonstrates the occurrence of timing errors and their manifestations on the inference accuracy.
Section 3.2 presents the challenges in the detection and handling of timing errors in high performance
environment essential for a high throughput NTC system.

3.1. Unique Performance Challenge

Even though NTC circuits give a quadratic decrease in energy consumption, they are plagued with
severe loss in performance. The loss is general to all the computing architectures as it fundamentally
comes from delay experienced by transistors and basic gates. As shown in Figure 2a, basic gates,
such as Inverter, Nand and Nor, can experience a delay more than 10×, when operating at near
threshold voltages. The gates are simulated in HSPICE for a constant temperature of 25 ◦C, for more
than 10,000 Monte-Carlo iterations. On top of the increase in base delay, the extreme sensitivity of
NTC circuits with temperature and circuit noise results in a delay variation of up to 5× [14]. This level
of delay increase and delay variability forces the computing architectures to operate in a very relaxed
frequency, to ensure the correctness in computation. An attempt to upscale the frequency introduces
timing errors. To add to it, the behavior of timing errors is more challenging in DNN accelerators,
than conventional CPU/GPU architectures.

In Figure 2b, we plot the rate of timing errors in the inference computations in a TPU of eight DNN
datasets using the methodology described in Section 5. As there can be computations happening in all
the MAC units in parallel, crossing a delay threshold brings a huge number of timing errors at once.
The rate of the timing errors is different for different datasets due to its dependence on the number of
actual operations which actually sensitize the delays. As DNN workload consists of several clusters
of identical values, (usually zero [2]), DNN workloads tend to decrease the overall sensitization of
hardware delays. The curves tend to flatten towards the end as almost all delay sensitizing operations
are saturated as timing errors at prior voltages.

Inference Accuracy is the measure of the quality of the DNN applications. In Figure 2c, we show
the drop in inference accuracy of MNIST dataset from 98%. We conservatively model the consequence
of timing error as the flip of the correct bit with 50% probability in the MAC unit’s output. DNN
workloads have an inherent algorithmic tolerance to error until a threshold [34,35]. In line with the
tolerance, we see that the accuracy variation is maintained under 5% until the rate of timing errors is
0.02%. However, after the error tolerance exceeds this, the accuracy falls very rapidly with a landslide
effect. By virtue of the complex interconnected pipelining of the operations, the timing error induced
incorrect computations add up rapidly as errant partial sums spread over most parts of the array,
towards a bad accuracy. After about 0.045% of timing errors, the accuracy rapidly drops from 84%
to a totally unusable inference accuracy of 35% on the timing error difference window of just 0.009%
(highlighted in blue color).
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(a) Delay vs. Operating Voltage (b) Rate of Timing Errors vs. Operating Voltage

(c) Inference Accuracy vs. Rate of timing errors for MNIST dataset

Figure 2. (a) shows the increase in base delay with the decrease in operating voltage, (b) demonstrates
the increase in the rate of timing errors with the decrease in operating voltage and (c) shows the effect
of timing errors in inference accuracy. (Detailed methodology in Section 5).

This points to a completely impotent DNN accelerator at only a timing error rate of less than 0.06%.
This treacherous response of timing errors to inference accuracy in DNN accelerators is magnified
at NTC. It further compels the NTC operation to consider all the process, aging and environmental
extremes just to prevent a minuscule (�0.1%), yet catastrophic rate of timing errors, resulting in
extremely sluggish accelerators. This creates further distancing in the adaptation of NTC systems into
mainstream server/edge applications. Hence, innovative and dynamic techniques to reliably identify
and control timing errors are inevitable for NTC DNN accelerators.

3.2. Timing Error Detection and Handling

DNN accelerators have been introduced to offer a throughput, which is difficult to extract from
conventional architectures for DNN workload. However, the substantial performance lag at NTC
operation hinders the usefulness of NTC DNN accelerators in general. So, in order to embrace
NTC design paradigm, the DNN accelerators have to be operated at very tight frequencies, with an
expectation and detection of timing errors, followed by their appropriate handling. In this Section,
we explore the challenges in the timing error detection and handling for NTC DNN accelerators in
these high performance points through the lens of techniques available for conventional architectures.

Razor [36] is one of the most popular timing error detection mechanisms. It detects a timing error
by augmenting a shadow flip-flop driven by a delayed clock, to each flip-flop in the design driven by
a main clock. Figure 3 shows Razor’s mechanism through timing diagrams. A delayed clock can be
obtained by a simple inversion of the main clock. Figure 3a depicts the efficient working conditions of
a Razor flip-flop. Delayed transitioning of data2 results in data1 (erroneous data) being latched onto the
output. However, shadow flip-flop detects a detained change in the computational output and alerts the
system via an error signal, generated by the comparison of prompt and delayed output. The frequency
scaling for very high performances decreases the clock period thereby, diminishing the timing error
detection window or speculation window. Shrinking the speculation window, prevents detection of
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delayed transitions in the computational output and leads to a huge number of timing errors going
undiscovered. Figure 3b depicts the late transition in the Razor Input during the second half of the
Cycle 1. Since the transition occurs after the rising edge of delayed clock, the data manifestation goes
undetected by the shadow flip-flop resulting in an undiscoverable timing error. Rapid transition
from data2 to data3, and in-time sampling of data3 at the positive edge of clock during Cycle 2,
ushers the complete withdrawal of data2 during Cycle 1 from the respective MAC computation. Hence,
the undiscoverable timing error leads to the usage of data1 (erroneous data) during Cycle 1, in place of
the data2 (authentic data). Figure 3c demonstrates a delayed transition from data2 to data3, causing
data3 to miss the sampling point (positive edge of the clock in Cycle 2). Shadow flip-flop appropriately
procures the delayed data (i.e., data3), spawning an architectural replay and delivering data3 to Razor
output during the next operational clock cycle (i.e., Cycle 3). However, authentic data (i.e., data2) to be
used for MAC computation during Cycle 1, is again ceded from the appropriate MAC’s computation.
Erroneous values (i.e., data1) used during Cycle 1, render to an erroneous input being used in MAC
calculations, generating faulty output. Hence, the undiscoverable timing error again leads to an
erroneous computation.

Razor Output

data2Razor Input

clock

delayed_clock

data1

data1

Error

data2

Cycle 1 Cycle 2

(a) Detectable Timing Error [36].

Razor Output

data3Razor Input

clock

delayed_clock

data1

data1

Error

data3

data2

Cycle 1 Cycle 2

(b) Undetectable Timing Error Scenario 1.

Razor Output

data3Razor Input

clock

delayed_clock

data1

data1

Error

data2

data2 data3

Cycle 1 Cycle 2 Cycle 3

(c) Undetectable Timing Error Scenario 2.

Figure 3. (a) depicts Razor’s timing error handling effectiveness in a TPU Systolic Array during a
standard detectable timing error occurrence scenario. (b,c) demonstrate the Razor’s limitations in
handling undetectable timing errors arising at high performance scaling. In (c), even though data2 is
sampled at Cycle 2, architectural replay invoked due to late transition and detection of data3 ensues the
relinquishing of data2, entirely.

Figure 4 depicts the undiscoverable timing errors as a percentage composition of the total timing
errors at various performance scaling, for different datasets. The composition of undiscoverable
timing errors rises linearly until 1.7× the baseline performance. However, with the further increase in
performance, the percentage of undiscoverable timing errors grows exponentially, following along
with the landslide effect contributed by a large number of parallel operating MACs. This exponential
composition of the undetectable timing errors points towards a hard wall of impracticality for
razor-based timing error detection approaches.
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Figure 4. Rate of undiscovered timing errors vs. Performance Scaling.

For handling of timing errors, the architectural replay of the errant computation has been a
feasible and preferred way in the conventional general purpose architectures by virtue of their handful
of computation pipelines [36,37]. However, the DNN accelerator involves hundreds of parallel
computation pipelines and complex and coordinated interleaved dependencies among each other,
which in the worst case, forces the sacrifice of computation in all the MACs for correcting just one
timing error. For instance, a timing error rate of just 0.02% (starting point of accuracy fall in Figure 2c)
for the matrix multiplication of a 256 × 256 activation and weight matrices in a 256 × 256 (N = 256)
TPU systolic array, introduce ~3355 timing errors. Distributing the errors to the multiplication life cycle
of 766 (3N-2) clock cycles creates approximately four errors per clock cycle. Even with a conservative
estimate with a global sacrifice of only one relaxed clock cycle for all the errors per cycle, we get a
throughput loss of more than 100%. Scaling to the inflated hardware size at the NTC design paradigm,
the throughput coming from a DNN accelerator will be severely undermined by holistic stalling
sacrifice of the MAC computations.

Fine tuned distributed techniques with pipelined error detection and handling [37,38] also incur
larger overheads than conventional razor-based detecting and handling [35]. A technique designed
exclusively for DNN accelerators, TE-Drop [35], skips an errant computation rather than replaying it
by exploiting the inherent error resilience of DNN workload. However, the skipping is only triggered
by a razor-based detection mechanism and thus can work for razor detectable errors only. With this
comprehensive impracticality of the conventional detection and handling of timing errors for NTC
performance needs, it calls for further research around the scalable solutions which can provide timing
error resilience at vast magnitudes encompassing the entirety of functional units.

4. Opportunities for NTC DNN Accelerators

This Section reveals the unique opportunities for dealing with the timing errors in NTC DNN
accelerators. Section 4.1 does an extensive analysis of the delay profile of the accelerators pointing
towards predictive opportunities. Section 4.2 presents a novel opportunity of handling a timing error
without performance loss. Section 4.3 uncovers the opportunity of an added layer of design intelligence
derived from the utilization pattern of MACs in the DNN accelerators.

4.1. Predictive Opportunities

The DNN accelerator’s compute unit is comprised of homogeneously repeated simple functional
units, such as MAC. In the case of TPU, the multiplier of the MAC unit operates on 8-bit activation
and 8-bit weight. Delay is sensitized as a function of the change in these inputs to the multiplier.
Weight is stagnant for a computation life cycle and the activations can be changed after each clock cycle.
We create an exhaustive set of a 8-bit activation changed to another 8-bit activation for all possible
8-bit weights, leading to 256 × 256 × 256 = 16,777,216 unique combinations. Injecting these entries to
our in-house Static Timing Analysis (STA) tool, we plot the exhaustive delay profile of the multiplier
in Figure 5 as a histogram. We consider the maximum delay as one clock cycle period, to ensure an
error free assessment. The histogram is divided into ten bars, each representing the percentage of the
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combinations falling into the ranges of clock cycles in the x-axis. We see that more than 95% of the
sensitized delays fall in the range of 20–60% of the clock cycle and only about 3% of the exhaustive
input sequences incur a delay of more than 60% of the clock period. As these limited sequences are the
leading candidates to cause timing error in the NTC DNN accelerator, we see a huge opportunity for
providing immense timing error resilience by massively curtailing the potential timing errors through
their efficient prediction beforehand.

Figure 5. Delay Profiles of multiplier, accumulator and different datasets.

As opposed to exhaustive prediction, the amount of prediction required for achieving timing error
resilience is drastically reduced, while operating on real DNN workloads. Real DNN workloads will
only have a subset of the exhaustive input combinations. Additionally, real DNN workloads consist of
a large share of clustered, non-useful data in the computation, which can be skipped for computation.
For instance, test images of MNIST and FMNIST datasets in Figure 6a,b visually show the abundant
wasteful black regions in their 28 × 28 pixels of data, which can be quantized to zero. As the result of
multiplication with zero is zero, we can skip the computation altogether by directly passing zero to the
output. This technique has been well recognized by researchers to improve the energy efficiency of
DNN accelerators, as Zero-Skip [2,19,39]. Figure 6c shows the percentage of the ZS computations in
eight DNN datasets that can be transformed to have a close-to-zero sensitization delay. We see that,
on average, the DNN datasets can have about ~75% of the ZS computations.

This points to an opportunity of cutting down timing error, causing input combinations that have
to be correctly predicted by ~75% in the best case. We plot the delay profile of the datasets for all the
input sequences remaining after the massive reduction via ZS in Figure 5. It is evident that there is an
ample delay variation across the datasets and the sensitization delays are clustered below 50% of the
clock cycle. This further curtails the number of predictions required.

(a) MNIST test image. (b) FMNIST test image. (c) Zero Skipable Computations in different
datasets.

Figure 6. Demonstration of the share of computations which can be safely skipped. The black region
pixels in the MNIST and FMNIST test images can be quantized to zero and all the computations
involving those pixels can be “zero skipped”.
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Hence, given that even a very small rate of timing error (�0.1%) can cause a devastation in the
inference accuracy (Section 2), the absolute feasibility of predictive approach to capture and deal with
limited number of timing error causing input sequences in real DNN workloads serves as a boon.
Moreover, prediction, along with ZS, provides unique opportunity for performance overscaling of
NTC DNN accelerators to match STC performance. Even assuming that all the computations will incur
a timing error at such environments, we would only have to predict only ~25% of the computations.
We can employ NTC timing error resilience techniques, such as voltage boosting, for only the predicted
bad input sequences and then scale it to larger TPU sizes. We have exploited this predictive opportunity
and voltage boosting, to enable high performing NTC TPU in [40] with around less than 5% area and
power overheads. Prediction can also be used in conjunction or on top of other timing error resilience
schemes, such as TE-Drop [35], MATIC [41], FATE [42] and ARES [43], to yield better results. Extended
research on the possibility of decreasing the amount of predictions on high performance scaling can be
done with inspirations from algorithmic domains, layer wise delay analysis, and so on, to truly boost
the adaptation of NTC DNN accelerators.

4.2. Opportunities from Novel Timing Error Handling

In this section, we discuss the opportunities in the handling of timing errors, bestowed by the
unique architectural intricacies inside the MAC unit. We start by comparing the delay profiles of
the arithmetic units, multiplier and accumulator, inside of the MAC unit. We prepare an exhaustive
delay profile for multiplier as described in Section 4.1. As an exhaustive delay profile of accumulator
is not feasible with its much larger input bit width (state space), we prepare its delay profile by
using the outputs from multiplier fed with exhaustive inputs. From the delay histograms of the
multiplier and accumulator in Figure 5, we see that accumulator operation statistically takes much less
computation time than the multiplier. Over 97% of the accumulator sensitized delays fall within 30% of
the clock cycle. Hence, an MAC operation temporally boils down as an expensive multiplier operation
(Section 4.1) followed by a minuscule accumulator operation. This disparate timing characteristic in
MAC’s arithmetic units, clubbed with the fixed order of operation, opens up a distinct timing error
correction window to correct timing violations in a MAC unit, without any performance overhead.

Figure 7 shows a column-wise flow of computation using two MAC units. When MAC 1 encounters
a timing error, the accumulator output (MAC 1 Out) provided by MAC 1 and the accumulator input
(MAC 2 In) received by MAC 2 after data synchronization, will be an erroneous value. Although MAC 2
multiplier operation is unaffected by the faulty accumulator input, MAC 2 accumulator output (MAC 2
Out), will be corrupted due to the faulty input (MAC 2 In). While the MAC 2 accumulator is waiting for
the completion of MAC 2 multiplier’s operation, the faulty input (MAC 2 In) can hypothetically use this
extra time window to correct itself. Since the accumulator requires a statistically smaller computation
period, the accumulation process with the corrected input can be completed within a given clock
period, thereby preserving the throughput of the DNN accelerator. Next, we discuss a simple way of
performing this time stealing in hardware through the intelligent remodeling of razor.

Typical use of Razor in a Systolic Array incurs a huge performance overhead due to architectural
replay when a timing error is detected (Section 3.2). However, a minimal modification in the Razor
design aids in the exploitation of timing error correction window during Systolic Array operation.
Figure 8a depicts the change employed in the razor which replays the errant computation [36] to
ReModeled razor, which can propagate the authentic value to the downstream MAC without replaying
or skipping the computation.

Figure 8b depicts the error mitigation procedure using ReModeled Razor. In ReModeled razor,
the timing error manifests as a different (correct) value from a shadow flip-flop, which overrides and
propagates over the previous erroneous value passed through the main flip-flop. Since accumulation
operation statistically requires much less than 50% of the clock cycle (Figure 5), the accumulator in the
downstream MAC can quickly recompute with the correct value. The presence of ZS computations
(Figure 6c) further aids the timing error correction window, as the skippable multiplier operations
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leave the accumulator to sensitize only to the upstream MAC’s output. Figure 9 demonstrates the
RTL simulations for Razor/Remodeled Razor in the absence and presence of a timing error. Figure 9a
depicts the standard waveform for a timing error free operation. Figure 9b shows an occurrence of a
timing error due to a minor delay in the Razor input and the stretching of operational cycle to procure
the correct value for the re-computation process. Figure 9c elaborates the detection and correction of
the timing error, within the same clock cycle. Although, Razor adds buffers on short paths to avoid
hold time violations, Zhang et al. [44] have modeled the additional buffers in timing simulations and
determined that in a MAC unit only 14 out of 40 flip-flops requires a protection by Razor, which only
adds a power penalty of 3.34%. The addition of ReModeled Razor into the Systolic Array adds an
area overhead of only 5% into the TPU. In light of these findings, it is evident that we can extract
novel opportunities to handle the timing errors at NTC by additional research on fine-tuning the
combinational delays among the various arithmetic blocks inside the DNN accelerator. We have
exploited this opportunistic timing error mitigation strategy in [45] to provide timing error resilience
in a DNN systolic array.

Figure 7. Column-Wise MAC Operation.

(a) Razor [36] to ReModeled Razor.

Razor Output

data3Razor Input

clock

delayed_clock

data1

data3

Cycle 1 Cycle 2

data2

data1 data2

(b) Error Correction.

Figure 8. (a) depicts the modifications employed in Razor to exploit the timing error correction window.
(b) demonstrates the error correction process using Remodeled Razor scheme. The error is detected
and corrected in the same clock cycle of operation.



J. Low Power Electron. Appl. 2020, 10, 33 11 of 19

(a) Error free operation in Razor/ReModeled Razor.

(b) Error handled by Razor using instant replay.

(c) Error handled by ReModeled Razor without a loss in clock period.

Figure 9. Timing simulations for error-free and error-handling scenarios.

4.3. Opportunities from Hardware Utilization Trend

Although DNN accelerators host very high number of functional units, not all of them are
computationally active through out the computation lifecycle. We can leverage the hardware utilization
pattern of the DNN accelerators to fine tune our architectural optimization strategies at NTC. In a
TPU systolic array, activation is streamed to each row of MACs from left to right with a delay of one
clock cycle per row. As the MACs can only operate on the presence of an activation input, a unique
utilization pattern of the MAC units is formed. Visual illustration of the computation activity for a
scaled down 3 × 3 systolic array during the multiplication of 3 × 3 activation and weight matrices
is presented in Figure 10. Computationally active and idle MACs are represented by red and green,
respectively. Figure 11a plots the computationally active MACs in every clock cycle as a fraction of
the total MACs in the systolic array for the actual 256 × 256 array, for the multiplication of 256 × 256
weight and activation matrices, corresponding to a batch size of 256. The batch size dictates the amount
of data available for continuous streaming, which consequently decides the computation cycles (width
of the curve) and maximum usage (maximum height of the curve). Batch sizes are dependent and
limited by the hardware resources to hold the activations and AI latency requirements. Regardless of
the batch size, the utilization curve follows a static pattern where the activity peaks at the middle of
the computation life cycle with a symmetrical rise and fall.

Figure 10. Cycle accurate utilization pattern of the MAC units during the multiplication of 3 × 3
activation and weight matrices in a 3 × 3 systolic array.
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(a) Progression of computation in a TPU systolic array. (b) Relative cycle wise occurence of timing errors.

Figure 11. The progression of number of MACs involved in computation guides the trend of timing
error over the clock cycles for different datasets.

Timing errors are only encountered when the MACs are actively involved in the computation.
This means that the intensity of timing errors in any clock cycle are always capped by the number
of computationally active cycles in that cycle and the rate of occurrence of timing errors follow
the trend of computation activity. We plot the cycle wise trend of timing errors in Figure 11b for
four datasets. It is evident that the progression of timing errors is guided by the trend of compute
activity. Any timing error handling schemes used for general purpose NTC paradigm can be further
optimized for adaptation to DNN accelerators by leveraging this architectural behavior of timing
errors. For instance, aggressive voltage boosting can be implemented at only the windows of maximum
timing errors. Additionally, the timing error control schemes can be relaxed temporally at the windows
of low probabilities of timing errors. In addition, predictive schemes can be tailored by adjusting
the prediction windows according to these static timing error probabilities guided by hardware
utilization pattern.

5. Methodology

In this Section, we explain our extensive cross-layer methodology, as depicted in Figure 12,
to explore different challenges and opportunities of NTC DNN accelerators.

Figure 12. Cross Layer Methodology.

5.1. Device Layer

We simulated basic logic gates (viz., Nand, Nor and Inverter) in HSPICE using basic CMOS
32-nm Predictive Technology Model libraries [46], across the spectrum of supply voltages. We used
the 31-stage FO4 inverter chain as a representative of various combinational logics in a TPU for
accurate estimation. We incorporated the impact of the PV at NTC using the VARIUS-NTV [47] model.
The characteristics of the basic gates were mapped to the circuit layer (Section 5.2), to ascertain the
sensitized path delays in a MAC at different voltages.
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5.2. Circuit Layer

We developed the Verilog RTL description of MAC unit as the functional element of the systolic
array. Our in-house Statistical Timing Analysis (STA) tool takes the synthesized netlist, input vectors
for the netlist, and the timing properties of the logic gates. We synthesized the MAC RTL using the
Synopsys Design Compiler and Synopsys’s generic 32 nm standard cell library, to get the synthesized
netlist. The input vectors for the MAC units were the activation, weight and partial sum input,
which came from the cycle accurate simulation described in Section 5.3. The changes in timing
properties of the logic gates on different operating conditions came from the HSPICE simulation,
described in Section 5.1. The STA tool propagated the path in the netlist which was sensitized by the
given input vectors and calculated the delay coming from the logic gates in the path by mapping them
to the delays from HSPICE. Hence, we got an accurate estimation of delay sensitized by any input
change for a range of operating conditions. Our baseline NTC operating voltage and frequency were
0.45 v and 67 MHz.

5.3. Architecture Layer

Based on the architectural description detailed in [22], we developed a cycle-accurate TPU systolic
array simulator—TPU-Sim—in C++, to represent a DNN accelerator. We integrated the STA tool
(Section 5.2) with TPU-Sim, to accurately model timing errors in the MACs, based on real data-driven
sensitized path delays. We created a real TPU-based inference eco-system by conjoining TPU-Sim
with Keras [48] on Tensorflow backend. First, we train several DNN applications (viz., MNIST [49],
Reuters [50], CIFAR-10 [51], IMDB [52], SVHN [53], GTSRB [54], FMNIST [55], FSDD [56]). Then,
we extracted each layer’s activation as input matrices. We extract the trained model weights using
Keras built-in functions. As the Keras trained model is at high floating point precision, we processed
the inputs and weights into multiple 256 × 256 8-bit-integer matrices as TPU operates at 8-bit integer
precision on a 256 × 256 systolic array. TPU-Sim is invoked with each pair of these TPU-quantized
input and weight matrices. Each MAC operation in the TPU is mapped to a dedicated MAC unit in
the TPU-Sim. The delay engine was invoked with each input vector arriving at the MAC to get the
assessment of a timing error. The output matrices from the TPU-Sim were combined and compared
with the original test output to evaluate the inference accuracy. We paralleled our framework for
handling large amounts of test data using Python Multiprocessing.

6. Related Works

Several schemes have been proposed to increase the reliability and efficiency of neural network
accelerators. Sections 6.1–6.3 provide brief accounts of enhancement methodologies which are
categorized based on the emphasis on the architectural/design components.

6.1. Enhancements around Memory

In this Section, we enlist methodologies which target memory to provide improved performance.
Kim et al. [57] demonstrate that a significant accuracy loss is caused by certain bits during faulty
DNN operations and using this fault analysis proposed a fault tolerant reliability improvement
scheme—DRIS-3—to mitigate the faults during DNN operations. Chandramoorthy et al. [58] present a
technique which dynamically boosts the supply voltage of the embedded SRAMs to achieve superior
energy savings. Yin et al. [59] evaluate thermal issues in an NN accelerator 3D memory and propose
a “3D + 2.5D” integration processor named Parana which integrates 3D memory and the NPU.
Parana tackles the thermal problem by lowering the amount of memory access and changing the
memory access patterns. Nguyen et al. [60] propose a new memory architecture to adaptively control
the DRAM cell refresh rate to store possible errors leading to a reduction in power consumption.
Salami et al. [61], based on a thorough analysis of the NN accelerator components devise a strategy
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to appropriately mask the MSBs, to recover the corrupted bits, thereby enhancing the efficiency by
mitigating the faults.

6.2. Enhancements around Architecture

This Section focuses on techniques which have provided enhancements around the architectural
flow/components of the DNN Accelerator. Li et al. [62] demonstrate that, by providing appropriate
precision and numeric range to values in each layer, reduces the failure rate by 200×. In each layer of
DNN, this technique uses a ”symptom based fault detection” scheme to identify the range of values
and adds a 10% guard-band. Libano et al. [63] propose a scheme to design and apply triple modular
redundancy selectively to the vulnerable NN layers to effectively mask the faults. Zhang et al. [35]
propose a technique, TE-Drop, to tackle timing errors arising due to aggressive voltage scaling.
The occurrence of a timing error is detected using Razor flip-flop [36]. The MAC encountering timing
error steals a clock cycle from the downstream MAC to recompute the correct output and bypasses the
downstream MAC’s output with its output. Choi et al. [64] demonstrate a methodology to enhance the
resilience of the DNN accelerator based on the sensitivity variations of neurons. The technique detects
an error in the multiplier unit by augmenting each MAC unit with a Razor Flip-Flop [36] between
multiplier and accumulator unit. Occurrence of a timing error will be lead to the upstream partial sum
to be bypassed on to the downstream MAC unit. Zhang et al. [65] address the reliability concerns due
to permanent faults arising from MAC units by mapping and pruning the weights of faulty MAC units.

6.3. Enhancements around Analog/Mixed-Signal Domain

Analog and mixed-signal DNN accelerators are also making a mark in the Neural Network
computing realm. Analog and mixed-signal accelerators use enhanced Analog-to-Digital converter
(ADC), Digital-to-Analog converter (DAC) for encoding/decoding and Non-Volatile Memories, such as
ReRAM’s in DNN-based computations. Eshraghian et al. [66] utilize the frequency dependence of
v-i place hysteresis to relieve the limitation on the single-bit-per-device and allocating the kernel
information to the device conductance and partially to the frequency of the time-varying input.
Ghodrati et al. [67] propose a technique BIHIWE, to address the issues in mixed-signal circuitry
due to restricted scope of information encoding, noise susceptibility and overheads due to Analog
to Digital conversions. BIHIWE, bit-partitions vector dot-product into clusters of low-bitwidth
operations executing in parallel and embedding across multiple vector elements. Shafiee et al. [26]
demonstrate a scheme ISAAC, by implementing a pipelined architecture with each neural network
layer being dedicated specific crossbars and heaping up the data between pipe stages using eDRAM
buffers. ISAAC also proposes a novel data encoding technique to reduce the analog-to-digital
conversion overheads and performs a design space inspection to obtain a balance between memristor
storage/compute, buffers and ADCs on the chip. Mackin et al. [68] propose the usage of crossbar
arrays of NVMs to implement MAC operations at the data location and demonstrates simultaneous
programming of weights at optimal hardware conditions and exploring its effectiveness under
significant NVM variability. These recent developments in Analog and Mixed-signal DNN accelerators
envision employing ADC, DAC and ReRAM’s in NTC DNN accelerators to yield better energy
efficiency. Successive Approximation Register ADCs can be efficiently utilized at NTC owing to their
simple architecture and low power usage [69–73]. In addition, the efficacy of ReRAM [74–79] in a low
power computing environment provides a promising direction in DNN accelerators venturing into the
NTC realm.

7. Conclusions

The NTC design paradigm, being a stronger direction towards energy efficiency, is plagued
by timing errors for DNN applications. In this paper, we illustrate the unique challenges coming
from the DNN workload and attributes of the occurrence and impact of timing errors. We discover
that NTC DNN accelerators are challenged by landslide increases in the rate timing errors and the
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inherent algorithmic tolerance of DNNs to timing errors is quickly surpassed with a sharp decline in
the inference accuracy. We explore the data–delay relationship with the practical DNN datasets to
uncover an opportunity of providing bulk timing error resilience through prediction of a small group
of high delay input sequences. We explore the timing disparities in the multiplier and accumulator
to propose opportunities for providing an elegant timing error correction without performance loss.
We correlate the hardware utilization pattern to outshine the broad control strategies for timing error
resilience techniques. The application of NTC in the domain of DNN accelerators is a relatively newer
domain and this article serves to present concrete possible directions towards timing error resilience,
which remains to be a big hurdle for NTC systems. Energy efficient AI evolution is the need of the
hour and further research with promising domains, such as NTC is required.
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