
Journal of

Low Power Electronics
and Applications

Article

PkMin: Peak Power Minimization for
Multi-Threaded Many-Core Applications

Arka Maity 1,* , Anuj Pathania 2 and Tulika Mitra 1

1 School of Computing, National University of Singapore, Singapore 117417, Singapore;
tulika@comp.nus.edu.sg

2 Parallel Computing Systems, University of Amsterdam, 1090 GH Amsterdam, The Netherlands;
a.pathania@uva.nl

* Correspondence: amaity@comp.nus.edu.sg

Received: 16 July 2020; Accepted: 24 September 2020; Published: 30 September 2020
����������
�������

Abstract: Multiple multi-threaded tasks constitute a modern many-core application. An accompanying
generic Directed Acyclic Graph (DAG) represents the execution precedence relationship between
the tasks. The application comes with a hard deadline and high peak power consumption.
Parallel execution of multiple tasks on multiple cores results in a quicker execution, but higher peak
power. Peak power single-handedly determines the involved cooling costs in many-cores, while its
violations could induce performance-crippling execution uncertainties. Less task parallelization,
on the other hand, results in lower peak power, but a more prolonged deadline violating execution.
The problem of peak power minimization in many-cores is to determine task-to-core mapping
configuration in the spatio-temporal domain that minimizes the peak power consumption of an
application, but ensures application still meets the deadline. All previous works on peak power
minimization for many-core applications (with or without DAG) assume only single-threaded tasks.
We are the first to propose a framework, called PkMin, which minimizes the peak power of many-core
applications with DAG that have multi-threaded tasks. PkMin leverages the inherent convexity in the
execution characteristics of multi-threaded tasks to find a configuration that satisfies the deadline,
as well as minimizes peak power. Evaluation on hundreds of applications shows PkMin on average
results in 49.2% lower peak power than a similar state-of-the-art framework.

Keywords: peak-power management; many-core; directed acyclic task graphs

1. Introduction

A many-core application is made up of tens of tasks. All of the tasks are inherently multi-threaded.
An accompanying generic Directed Acyclic Graph (DAG) models the execution dependency between
the tasks and therefore determines the precedence order for execution [1]. The application must
complete execution within a given hard deadline. One way to meet the deadline is to execute as many
tasks as possible in parallel. Executing them with the maximum parallelization permitted under the
DAG with all available cores results in a short execution time, but also results in high peak power.

The highest power consumption observed during the task’s execution defines its peak power.
Rated peak power consumption predominantly determines the cost (and weight) of cooling
infrastructure that accompanies the many-core. Higher peak power also results in higher on-chip
temperatures, which leads to reliability issues [2–4]. Higher temperatures can also trigger performance
crippling thermal-throttling, which makes execution unpredictable [5]. We can minimize peak power
by executing all of the tasks sequentially on a single core, but such an execution will violate the deadline.

The problem of peak power minimization [6,7] in many-cores is to determine a spatio-temporal
task-to-core mapping (configuration) that still meets the application deadline, but minimizes the

J. Low Power Electron. Appl. 2020, 10, 31; doi:10.3390/jlpea10040031 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
https://orcid.org/0000-0002-9201-413X
https://orcid.org/0000-0003-4136-4188
http://dx.doi.org/10.3390/jlpea10040031
http://www.mdpi.com/journal/jlpea
https://www.mdpi.com/2079-9268/10/4/31?type=check_update&version=2

J. Low Power Electron. Appl. 2020, 10, 31 2 of 15

peak power. We make use of two well-known observations in the execution of multi-threaded tasks
in order to efficiently solve the problem. First, Figure 1a shows that the execution time of tasks in a
many-core application is discretely convex with increasing core allocation [8–11]. Second, Figure 1b
shows that the peak power of tasks is discretely linear with increasing core allocation. These two
observations open up the possibility of employing convex optimization in order to solve this problem.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

100

200

Number of Allocated Cores

Ti
m

e
[m

s]

DFS CilkSort

(a) Execution Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

Number of Allocated Cores

Pe
ak

Po
w

er
[W

]

(b) Peak Power

Figure 1. Execution characteristics of different tasks with different core allocations.

Most works on peak power minimization for many-core applications only assume
single-threaded tasks. Therefore, they have no hope for the exploitation of execution characteristics
that are shown in Figure 1, which are specific to multi-threaded tasks. In this work, we propose a
framework called PkMin that minimizes the peak power of multi-threaded many-core applications
with DAG under deadline constraint by exploiting the observations made in Figure 1. We evaluate
PkMin against a similar state-of-the-art framework [12] while using hundreds of applications for a
thorough evaluation. Empirical evaluations show that PkMin results in on average 48% lower peak
power than the state-of-the-art.

2. Motivational Example

Figure 2 shows a motivational example of the problem of peak power minimization in many-cores.
We use Sniper [13] multicore x86 simulator to execute the binaries that are associated with the task.
Sniper directly reports the execution time values (in clock cycles) for the binaries and also generates
traces that is then used by downstream tools, like McPAT [14], to estimate the power consumed by
various per core components like L1 (I/D) caches, instruction fetch units, L2 caches, etc., as well uncore
components, like memory controllers and DRAM subsystem. This methodology avoids the insertion of
costly instrumentation hooks within the program. We account for the power consumption only on the
“active” cores, i.e., those that are directly reponsible for execution of the application. Figure 2a gives a
DAG for an application composed of four tasks that we need to execute on many-core within 425 ms.
Tasks A and B are composed of DFS. Tasks C and D are composed of CilkSort.

J. Low Power Electron. Appl. 2020, 10, 31 3 of 15

A

B

C

D

(a) Application DAG

0 50 100 150 200 250 300 350 400 450
0

5

10

15
Peak Power = 75.95 W

Execution Time [ms]

C
or

es
A

llo
ca

te
d

Task A (DFS) Task B (DFS) Task C (CilkSort) Task D (CilkSort) Deadline

(b) High Peak Power Configuration

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
0

5

10

15
Peak Power = 9.17 W

Execution Time [ms]

C
or

es
A

llo
ca

te
d

(c) Infeasible Low Power Configuration

0 50 100 150 200 250 300 350 400 450
0

5

10

15
Peak Power = 10.77 W

Execution Time [ms]

C
or

es
A

llo
ca

te
d

(d) Optimal Configuration

Figure 2. Motivational example for peak power minimization of multi-threaded many-core applications
with Directed Acyclic Graph (DAG) under a deadline constraints.

Figure 2b shows the execution time of the benchmark in a configuration that executes the tasks
serially with all available cores. The execution in Figure 2b meets the deadline, but leads to a high
peak power of 75.95 W. Figure 2c shows the execution time of the application in a configuration
that parallelizes the execution, but does not use multi-threading in tasks. Execution in Figure 2c

J. Low Power Electron. Appl. 2020, 10, 31 4 of 15

leads to low peak power, but it violates the deadline. Figure 2d shows the execution time of the
application in an optimal configuration generated by PkMin that allocates just enough cores to tasks,
such that both precedence and deadline constraints are met, but with a minimal peak power of 10.77 W.
Figure 2d results in 85.82% lower and only 17.45% higher peak power than the configuration in
Figure 2b,c, respectively.

3. Related Work

Peak power minimization in the context of multi-/many-core scheduling is an active subject
of research [15]. The problem is important in both embedded [16–18] as well as super-computing
domain [19,20]. The authors in [21] propose an algorithm to minimize peak power for an application
with a task graph without a deadline. The authors of [22] were the first to study the problem of
peak power minimization in the context of task graph-based many-core applications with a deadline.
They propose an optimal algorithm that schedules a set of independent tasks from the application on a
many-core to minimize application’s peak power while meeting its deadline. The authors of [23] work
on the same problem, but proposed an alternative light-weight heuristic algorithm. Most recently,
the authors in [24] proposed an algorithm to minimize peak power for many-core applications with
DAG under reliability constraints. All of the works that target the peak power minimization problem
directly assume the tasks with DAG within the many-core application to be single-threaded and
thereby individually schedulable only on a single core. On the contrary, we focus on tasks that are all
individually multi-threaded, wherein the level of multi-threading in each of them is an independently
configurable design knob for solving the peak power minimization problem.

4. Convex Optimization Sub-Routine for Solving Serialized DAG

This section provides the details of the convex optimization sub-routine that is at the heart
of PkMin. This sub-routine solves the problem of peak power minimization for a many-core application
with a serial DAG optimally in the continuous domain and near-optimally in the discrete domain,
as the problem is NP-Hard in the discrete domain. PkMin uses this sub-routine to perform peak power
minimization of any generic DAG in Section 5.

System Model: we need to execute an application with M ∈ N multi-threaded tasks indexed
while using i on a many-core with N ∈ N cores. Tasks execute serially in an order ordained by the
serialized DAG. Ni is the maximum number of cores that can be allocated to the task i. Each task i
is executed with Ci ∈ R+ number of cores with the domain constraint 1 ≤ Ci ≤ Ni. The number of
cores Ci allocated to the task i in practice needs to be discrete. However, we, at first, assume it to be a
non-negative real value greater than equal to 1 and less than equal to Ni for tractability.

Based on the observations made in Figure 1a, we assume execution time τi : R+ → R+ of task i
with Ci cores allocated to be a univariate convex function of the number of allocated cores. In the
domain [1, Ni] ∈ R+ allocated cores, the execution time τi(Ci) is a monotonically decreasing convex
function of the number of allocated cores Ci. Based on observations made in Figure 1b, we assume the
power ρi : R+ → R+ of a task i with Ci cores allocated to be a univariate linear function of the number
of allocated cores.

Execution Model: the execution time of the application in totality τ : RM
+ → R+ with

configuration (core allocation vector) ~C = 〈C1, C2, ..., CM〉 ∈ RM
+ is the sum of the execution time

of the individual tasks.

τ(~C) =
M

∑
i=1

τi(Ci) (1)

Because the execution time of each task is individually convex and the sum of convex
functions is a convex function, then the application’s execution time τ(~C) is a multivariate convex
function of configuration ~C. Figure 3a shows the non-negative convex execution time surface of a
two-task application.

J. Low Power Electron. Appl. 2020, 10, 31 5 of 15

10 10

0

200

400

Cores Allocated to DFS Cores Allocated to CilkSort

Ex
ec

ut
io

n
Ti

m
e

[m
s]

100

200

300

400

(a) Convex Execution Time Surface

5

10

15

5

10

15
50

Cores Allocated to DFS

Cor
es

A
llo

ca
te

d
to

Cilk
So

rtPo
w

er
[W

]

20

40

60

(b) Convex Peak Power Surface

Figure 3. Characteristics for a two-task application (with a serialized DAG) with different core
allocations for each task in the continuous domain.

Peak Power Model: peak power of the application ρ̂ : RM
+ → R+ with configuration ~C is given

by task with the maximum power amongst all of the tasks.

ρ̂(~C) =
M

max
i=1

ρi(Ci) (2)

The application’s peak power ρ̂(~C) is a multivariate convex function of configuration ~C, as the
peak power of each task is individually linear and the max of linear functions is a convex function.
Figure 3b shows the non-negative convex peak power surface of a two-task application.

Deadline Model: the peak power function ρ̂(~C) attains its lowest value when all of the tasks
execute with bare minimum cores (∀i Ci = ni), but this is only permitted when there is no constraint
on the execution time. The application’s hard deadline of τ̂ ∈ R+ put a constraint τ(~C) ≤ τ̂ on its
execution time. The deadline τ̂ divides the domain for minimization of peak power function ρ̂(~C) into
feasible and infeasible regions.

Given a deadline, we are required to minimize the peak power over the feasible region F ⊂ RM
+ .

We now prove the feasible region F to be a convex set. Let ~Cx, ~Cy ∈ F be two feasible configurations.
By feasibility definition

τ(~Cx) ≤ τ̂ and τ(~Cy) ≤ τ̂ (3)

Because τ(~C) is a convex function,

τ(λ~Cx + (1− λ)~Cy) ≤ λτ(~Cx) + (1− λ)τ(~Cy)

Using Equation (3), we obtain

τ(λ~Cx + (1− λ)~Cy) ≤ λτ̂ + (1− λ)τ̂

≤ τ̂

Therefore, F is a convex set, since, for any ~Cx, ~Cy ∈ F and any λ ∈ [0, 1], we have
τ(λ~Cx + (1− λ)~Cy) ∈ F. Figure 4 shows the feasible region F for an application with two tasks
with a given hard deadline.

J. Low Power Electron. Appl. 2020, 10, 31 6 of 15

2 4 6 8 10 12 14 16

Number of Cores Allocated to CilkSort

2

4

6

8

10

12

14

16

N
u

m
b

er
of

C
or

es
A

ll
o
ca

te
d

to
D

F
S

Infeasible

Feasible
(Convex Set)

Deadline=80ms

30

P
eak

P
ow

er
[W

]

Figure 4. Feasible region for a two-task application (with a serialized DAG) with different number of
cores allocated to each task given a hard deadline.

Solution: our problem reduces to minimizing a convex peak power function ρ̂(~C) over the
feasible convex set F as its domain. Formally, it can also be summarized, as follows

minimize ρ̂(~C)

subject to τ(~C) ≤ τ̂

1 ≤ Ci ≤ Ni ∀Ci ∈ R+ (4)

We solve the above convex optimization problem in the continuous domain using NLOpt [25]
tool that internally solves the problem whlileusing the Method of Moving Asymptotes (MMA) [26]
algorithm. The problem-solving time is insignificant, even with an extremely large number of tasks.

Solution Discretization: when we modify the constraint in Equation (4) to force cores allocated to
the task to be integers i.e., ∀Ci ∈ Z+ in the domain [1, Ni] ∈ Z+ instead of real-numbers, the problem
becomes an NP-Hard Convex Mixed Integer Non-Linear Programming (CMINLP) problem [27].
Still, we can expect local optima in the discrete domain to be close to the discrete global optimum,
because the optimization is tractable using convex programming in its relaxed continuous domain,
unlike an arbitrary optimization problem [28].

We first solve Equation (4) to obtain the optimal real-valued configuration in the
continuous domain. We then round up all of the individual real-valued core allocations to the
nearest integer. The rounding up/down decision is tricky, because there are 2task graph size possibilities,
all of which cannot be exhaustively tested for optimality. Two choices are immediately obvious,
i.e., to round-down all the allocations or round-up all of them. Because the execution time is
non-increasing with increasing core allocation for any task (Figure 1a), rounding down can make the
allocation infeasible while rounding up will preserve the feasibility, although it not guaranteed to be
optimal in the discrete domain. For example, if the optimal configuration in a continuous domain for
a three task application is found to be ~C = 〈4.1, 3.4, 5.9〉, then we round up to discrete configuration
~C = 〈5, 4, 6〉.

5. Peak Power Minimization with PkMin

The problem of peak power minimization for many-core applications with precedence and
deadline constraints is inherently a multi-dimensional bin-packing problem, which is well-known to
be NP-Hard [29]. We introduce a framework, called PkMin, which solves the problem near-optimally
by exploiting the observations in Figure 1. At the heart of PkMin is a convex optimization sub-routine
that can solve the problem optimally for a serialized DAG in a continuous domain. Section 4 provides

J. Low Power Electron. Appl. 2020, 10, 31 7 of 15

the details of the sub-routine. The problem is NP-Hard, even with a serialized DAG, in the discrete
domain [27]. Therefore, the sub-routine extrapolates the real-valued solution to the discrete domain.

In general, an application DAG allows for the possibility of multiple tasks to be run in parallel.
For a given deadline, parallel execution allows for tasks to individually stretch out further along in the
time domain more than a serialized execution. Therefore, we can execute tasks with a fewer number
of cores being allocated to them individually and still meet the deadline. Tasks execute with a lower
peak power (Figure 1b) with a smaller number of cores. However, parallel execution is not guaranteed
to lower the peak power of the application, because the peak power of tasks that execute in parallel
adds up.

Figure 5 shows the functioning of PkMin with the help of a flowchart. PkMin begins by serializing
the DAG for an application by applying a topological sorting procedure [30]. It then passes the DAG
to a convex optimization sub-routine (Section 4) that computes an allocation for the serialized DAG.
PkMin then enumerates all of the task pairs that can be executed in parallel by computing the transitive
closure [31] of the DAG that exposes the pairwise independent tasks. A pair of independent tasks is
then “stacked” together to form a single unified task.

Begin DAG Serialization Convex Optimization Exit? Report Previous Config.
Y

Stop

Find Task PairsMerge Best Task PairsUpdate DAG

Figure 5. Execution Flow for PkMin.

All of the sub-tasks in the unified task always execute with the same number of cores.
The execution time and peak power of the unified task is the max and sum of the execution times
and peak powers of the sub-tasks, respectively. The sum operator preserves the linearity of power
characteristics, while the maximum operator preserves the convexity of execution time characteristics.
The new unified task has characteristics that are similar to its constituent tasks. If there are multiple
task pairs to choose from, PkMin chooses the task pair that gives the greatest reduction in execution
time on unification.

The unified task replaces its sub-tasks in the original DAG. PkMin then serializes the modified
DAG and passes it to the convex optimization sub-routine again in order to obtain a new feasible
configuration. It repeats the process of DAG modification, followed by convex optimization iteratively
until an exit condition is encountered in one of the following ways.

1. The new configuration yields a higher peak power than the previous configuration, i.e., a local
minimum is reached.

2. There are no more candidate task pairs that can be parallelized.

PkMin reports the configuration from the previous iteration as the final solution configuration.

Working Example

This section explains the functioning of PkMin with the help of a working example.
Figure 6 visualizes the steps that were taken by PkMin to solve the motivational example shown
in Figure 2. PkMin begins with the original DAG that is shown in Figure 2a. It then serializes the DAG,
as shown in Figure 6a. It then runs the convex optimization module from Section 4 in order to obtain
the core allocation for the serialized DAG, as shown in Figure 6b. It then tries to stack Task B and Task
C together by combining them into a new Task B||C and create a new DAG, as shown in Figure 6c.

Figure 6d gives the characteristics of unified Task B||C, which inherits the convexity properties
of the parent tasks under equal core distribution. Because the DAG in Figure 6c is already serialized,
then PkMin can directly operate on it. PkMin runs convex optimization sub-routine again on the
unified DAG to obtain a new core allocation as shown in Figure 6e. However, allocation in Figure 6e

J. Low Power Electron. Appl. 2020, 10, 31 8 of 15

has worse peak power than the allocation in Figure 6b, and, therefore, the algorithm terminates with
allocation in Figure 6b as the reported solution.

When compared to the worst-case peak power in Figure 2b, the solution reported by PkMin has
85.15% lower peak power. The solution reported by PkMin has only 4.27% higher peak power when
compared to the optimal solution in Figure 2d.

Figure 6. Working example for peak power minimization of the motivational example that is shown in
Figure 2 using PkMin.

6. Experimental Evaluation

Experimental Setup: we use Sniper simulator [32] to simulate the execution of multi-threaded
many-core applications. The simulated multi-core is composed of eight tiles—with two cores
each—arranged in a 4 × 2 grid connected while using a Network on Chip (NoC) with hop latency

J. Low Power Electron. Appl. 2020, 10, 31 9 of 15

of four cycles and link bandwidth of 256 bits. Two cores within the tile share a 1 MB L2 cache.
Cores implement Intel x86 Instruction Set Architecture (ISA) and run at a frequency of 4 GHz with
each core holding a 32 KB private L1 data and instruction caches. Many-core’s power consumption is
provided by the integrated McPat [14] assuming a 22 nm technology node fabrication.

Application Task Graphs: we use a set of five benchmarks—CilkSort, DFS, Fibonacci, Pi,
and Queens—from Lace benchmark suite [33] to create our tasks. In order to generate random DAGs
of size N, we first sample with replacement N tasks from the benchmark set, thereafter with a
probability p, we add an edge between select pair of nodes, such that the acyclic property of the
resulting directed graph is preserved. The setup allows for us to thoroughly evaluate PkMin with
an arbitrarily large number of tasks while simultaneously generating a large number of randomized
applications for a given number of tasks.

Application Deadline: setting up arbitrarily short deadlines will render application
execution infeasible. In order to set up a feasible deadline, we first note the minimum execution
time that is achievable by all of the benchmarks, as, for example, illustrated in Figure 1a for DFS
and CilkSort. Let B be the benchmark execution time that is worst among all of the benchmarks
considered. We then set the deadline to B · N for an application task graph with N tasks. This ensures
the existence of a feasible solution. This is also a fairly tight deadline, as all of the tasks are forced to
execute with maximum available cores, if they choose to execute one after the other in a serial fashion.
If the application deadline is relaxed further, then other execution configurations with much lower
cores (and hence peak power) may become feasible.

Baseline: we are unaware of any work that also solves the problem of peak power minimization
for multi-threaded many-cores applications with DAG under deadline constraints. The authors of [12]
propose a framework, called D&C, which uses a divide and conquer algorithm to minimize
execution time for multi-threaded many-core applications with DAG under a peak power constraint.
Therefore, D&C solves dual of the problem solved by PkMin. We modify D&C to DCPace that solves
the same problem as PkMin by replacing the constraint from peak power to deadline and replacing the
objective function from minimizing executing time to minimizing peak power. Modification keeps the
underlying algorithm’s ethos intact. DCPace thus acts as a suitable baseline for PkMin.

DCPace begins by allocating cores to tasks, to run them in their most energy-efficient configuration,
i.e., the one with minimum energy consumed. It then generates an intermediate schedule by scheduling
the tasks at the earliest possible time permitted under precedence constraints. It then identifies the
midpoint of the schedule along the time axis. All of the tasks that are actively executing at the midpoint
must be independent. DCPace divides the task into three bins beg, mid, and end. All three bins are
assigned a sub-deadline that is equal to the third of the original deadline. All independent tasks in
mid are greedily scheduled, such that the bin’s peak power is minimized under the available core
and sub-deadline constraints. This is done using a strip packing heuristic, like Next-Fit Decreasing
Height (NFDH) [34]. In a strip-packing problem, a collection of rectangles of different height and
width are to be packed on a rectangular bin, with a fixed width and unbounded height, such that
no two rectangles overlap. This problem is NP-complete. NFDH begins by sorting the rectangles
in decreasing order of their heights. After that, it packs the rectangle in a left-justified fashion until
the next rectangle can no longer fit in the remaining space to the right. A new level is defined as the
packing restarts from the remaining rectangles. DCPace continues to divide recursively mid and end
using their midpoint. Recursion breaks when a bin becomes a singleton with only one task.

Power and Energy Consumption Analyses: Figure 7 illustrates the working of DCPace and
PkMin algorithms. In this experiment, we use tasks graph with 100 tasks and set the deadline to
1700 million clock cycles or 425 ms. DCPace chooses the most energy-efficient core allocation to
execute each task, which is not changed thereafter. Given the task execution time and task peak power
characteristics, as shown in Figure 1, the minimum energy allocation can only occur either when all of
the cores are allocated, or a minimum number of core is allocated to each task. Figure 7b, shows the
variation in the total cores allocated as the application execution proceeds in time. Both DCPace

J. Low Power Electron. Appl. 2020, 10, 31 10 of 15

and PkMin show considerable variations in the total-cores allocated, although the former exclusively
varies between the maximum and the minimum possible allocations. Because the goal of PkMin is
to reduce peak power exclusively, its allocations amongst tasks under PkMin are such that any two
different non-overlapping tasks have almost similar peak power consumption when compared to
DCPace. PkMin exploits the convexity properties of the task characteristics in order to achieve this
“equivalent power” allocations. The power trace of application execution in Figure 7a under PkMin
has almost no peaks and troughs as compared to DCPace.

J. Low Power Electron. Appl. 2020, 10, 00 10 of 15

and PkMin show considerable variations in the total-cores allocated, although the former exclusively
varies between the maximum and the minimum possible allocations. Because the goal of PkMin is
to reduce peak power exclusively, its allocations amongst tasks under PkMin are such that any two
different non-overlapping tasks have almost similar peak power consumption when compared to
DCPace. PkMin exploits the convexity properties of the task characteristics in order to achieve this
“equivalent power” allocations. The power trace of application execution in Figure 7a under PkMin
has almost no peaks and troughs as compared to DCPace.

0 250 500 750 1000 1250 1500 1700

0

20

40

60

80

Time [M cycles]

Po
w

er
[W

]

DCPace PkMin

(a) Power Trace

0 250 500 750 1000 1250 1500 1700

0

5

10

15

Time [M cycles]

To
ta

lC
or

es

DCPace PkMin

(b) Utilization Trace

Figure 7. Power consumption and core utilization trace.

Performance Evaluation: we evaluate the efficacy of PkMin in minimizing peak power for
applications with an increasing number of tasks. We also evaluate the same applications using DCPace
to put the performance of PkMin in context.

First, we show the peak power savings for application task graph of sizes varying from 10 to 100.
We set the deadline to 17 · N million clock cycles, where the best possible execution time of each task is
17 million clock cycles and N is the number of tasks in the application. Figure 8a shows that PkMin
has, on average, 48% lower peak power when compared to the DCPace. The energy consumption of
PkMin is, however, around 0.8% higher than the DCPace, as illustrated in Figure 8b.

Figure 9 orthogonally shows the efficacy of PkMin in minimizing the peak power of hundred
random applications, each with 100 tasks. The deadline is similarly set to 1700 million clock cycles.
PkMin results in lower peak power than DCPace, with only 1% additional energy overhead.

Figure 10 shows the efficacy of PkMin in minimizing peak power in a random application
(with 100 tasks) as its deadline is relaxed. In this case, the improvement of peak power for PkMin over
DCPace comes at the cost of worsening energy consumption. However, a significant reduction in the
peak power of approximately 88% is possible with less than 10% increase in energy consumed.

Figure 7. Power consumption and core utilization trace.

Performance Evaluation: we evaluate the efficacy of PkMin in minimizing peak power for
applications with an increasing number of tasks. We also evaluate the same applications using DCPace
to put the performance of PkMin in context.

First, we show the peak power savings for application task graph of sizes varying from 10 to 100.
We set the deadline to 17 · N million clock cycles, where the best possible execution time of each task is
17 million clock cycles and N is the number of tasks in the application. Figure 8a shows that PkMin
has, on average, 48% lower peak power when compared to the DCPace. The energy consumption of
PkMin is, however, around 0.8% higher than the DCPace, as illustrated in Figure 8b.

Figure 9 orthogonally shows the efficacy of PkMin in minimizing the peak power of hundred
random applications, each with 100 tasks. The deadline is similarly set to 1700 million clock cycles.
PkMin results in lower peak power than DCPace, with only 1% additional energy overhead.

Figure 10 shows the efficacy of PkMin in minimizing peak power in a random application
(with 100 tasks) as its deadline is relaxed. In this case, the improvement of peak power for PkMin over
DCPace comes at the cost of worsening energy consumption. However, a significant reduction in the
peak power of approximately 88% is possible with less than 10% increase in energy consumed.

J. Low Power Electron. Appl. 2020, 10, 31 11 of 15

10 20 30 40 50 60 70 80 90 100
0.45

0.5

0.55

Number of tasks in the application

N
or

m
al

iz
ed

Pe
ak

Po
w

er
un

de
r

Pk
M

in
ag

ai
ns

tD
C

Pa
ce

(a) Normalized peak power
(

PkMin
DCPace

)

10 20 30 40 50 60 70 80 90 100

1.006

1.008

1.01

1.012

Number of tasks in the application

N
or

m
al

iz
ed

En
er

gy
un

de
r

Pk
M

in
ag

ai
ns

tD
C

Pa
ce

(b) Normalized energy consumption
(

PkMin
DCPace

)
Figure 8. Application performance under PkMin normalized with respect to DCPace. Application size
varies from 10 tasks to 100 tasks.

0 10 20 30 40 50 60 70 80 90 100
0.45

0.5

0.55

0.6

Workload Id

N
or

m
al

iz
ed

Pe
ak

Po
w

er
un

de
r

Pk
M

in
ag

ai
ns

tD
C

Pa
ce

(a) Normalized peak power
(

PkMin
DCPace

)

0 10 20 30 40 50 60 70 80 90 100

1.006

1.008

1.010

1.012

Workload Id

N
or

m
al

iz
ed

en
er

gy
co

ns
um

pt
io

n
un

de
r

Pk
M

in
ag

ai
ns

tD
C

Pa
ce

(b) Normalized energy consumption
(

PkMin
DCPace

)
Figure 9. Application performance under PkMin with 100 task applications normalized against their
performance under DCPace.

J. Low Power Electron. Appl. 2020, 10, 31 12 of 15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0.2

0.4

·104Deadline [M cycles]

N
or

m
al

iz
ed

Pe
ak

Po
w

er
un

de
r

Pk
M

in
ag

ai
ns

tD
C

Pa
ce

(a) Normalized peak power
(

PkMin
DCPace

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

1.02

1.04

1.06

1.08

1.1

·104Deadline [M cycles]

N
or

m
al

iz
ed

Pe
ak

Po
w

er
un

de
r

Pk
M

in
ag

ai
ns

tD
C

Pa
ce

(b) Normalized energy consumption
(

PkMin
DCPace

)
Figure 10. Peak power under PkMin for a 100-task application with different deadlines that are
normalized against its peak power under DCPace.

Scalability: PkMin uses NLOpt internally, which has a low polynomial-time computational
complexity. It invokes NLOpt at the max number of tasks |M| times, keeping the computational
complexity still polynomial. PkMin also uses topological sort and transitive closure graph algorithms
that also have a worst-case polynomial computational complexity of O(|M|) and O(|M|2), respectively.
This low polynomial-time computational complexity makes PkMin highly scalable. Figure 11 shows
the increase in worst-case problem-solving time that is required under PkMin with an increase in the
number of tasks in applications. For a 100-task application, PkMin requires 1.3 s to compute the
near-optimal configuration.

0 10 20 30 40 50 60 70 80 90 100

10−2

10−1

100

Number of Tasks

R
un

ti
m

e
[s

]

Figure 11. Runtime of PkMin for applications with different number of tasks.

7. Conclusions

We introduced a framework, called PkMin, in this work that solves the problem of peak power
minimization for a multi-thread many-core application with DAG under a deadline. PkMin exploits
the execution characteristics of multi-threaded tasks in many-core applications to optimally solve the
problem for a serialized DAG in the continuous domain while using convex optimization. It then uses
the convex optimization sub-routine to solve the problem near-optimally for any generic DAG.

J. Low Power Electron. Appl. 2020, 10, 31 13 of 15

Empirical evaluations on hundreds of applications show configurations obtained under PkMin
have, on average, up to 48% lower peak power than similar state-of-the-art with less than 1% additional
total energy. The peak power savings can be further increased to 88% with less than 10% energy
overheads whenever the deadline is relaxed. PkMin has polynomial-time computation complexity with
negligible problem-solving overheads, which makes it suitable for use at both run-time and design-time.

Author Contributions: Conceptualization, A.M., A.P. and T.M.; methodology, A.M., A.P. and T.M.; software,
A.M.; validation, A.M.; formal analysis, A.P. and A.M.; resources, T.M.; writing–original draft preparation,
A.P. and A.M.; writing–review and editing, A.M., A.P. and T.M.; supervision, T.M.; project administration, T.M.;
funding acquisition, T.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation, Prime Minister’s Office,
Singapore under its IndustryIHL Partnership Grant NRF2015-IIP003.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Singh, A.K.; Jigang, W.; Kumar, A.; Srikanthan, T. Run-time Mapping of Multiple Communicating Tasks on
MPSoC Platforms. Procedia Comput. Sci. 2010, 1, 1019–1026. [CrossRef]

2. Kriebel, F.; Shafique, M.; Rehman, S.; Henkel, J.; Garg, S. Variability and Reliability Awareness in the Age of
Dark Silicon. IEEE Des. Test 2015, 33, 59–67. [CrossRef]

3. Salehi, M.; Shafique, M.; Kriebel, F.; Rehman, S.; Tavana, M.K.; Ejlali, A.; Henkel, J.
dsReliM: Power-constrained Reliability Management in Dark-Silicon Many-Core Chips under
Process Variations. In Proceedings of the 2015 International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS), Amsterdam, The Netherlands, 4–9 October 2015.

4. Ma, Y.; Chantem, T.; Dick, R.P.; Hu, X.S. Improving System-Level Lifetime Reliability of Multicore Soft
Real-Time Systems. IEEE Trans. Very Large Scale Integr. Syst. 2017, 25, 1895–1905. [CrossRef]

5. Pagani, S.; Bauer, L.; Chen, Q.; Glocker, E.; Hannig, F.; Herkersdorf, A.; Khdr, H.; Pathania, A.;
Schlichtmann, U.; Schmitt-Landsiedel, D.; et al. Dark Silicon Management: An Integrated and Coordinated
Cross-Layer Approach. Inf. Technol. 2016, 58. [CrossRef]

6. Pathania, A.; Khdr, H.; Shafique, M.; Mitra, T.; Henkel, J. QoS-Aware Stochastic Power Management for
Many-Cores. In Proceedings of the 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC),
San Francisco, CA, USA, 24–28 June 2018.

7. Pathania, A.; Khdr, H.; Shafique, M.; Mitra, T.; Henkel, J. Scalable Probabilistic Power Budgeting for
Many-Cores. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE),
Lausanne, Switzerland, 27–31 March 2017.

8. Pathania, A.; Venkataramani, V.; Shafique, M.; Mitra, T.; Henkel, J. Distributed Scheduling for Many-Cores
Using Cooperative Game Theory. In Proceedings of the 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), Austin, TX, USA, 5–9 June 2016.

9. Pathania, A.; Venkataramani, V.; Shafique, M.; Mitra, T.; Henkel, J. Distributed Fair Scheduling
for Many-Cores. In Proceedings of the 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Dresden, Germany, 14–18 March 2016.

10. Pathania, A.; Venkatramani, V.; Shafique, M.; Mitra, T.; Henkel, J. Optimal Greedy Algorithm for Many-Core
Scheduling. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2017, 36, 1054–1058. [CrossRef]

11. Venkataramani, V.; Pathania, A.; Shafique, M.; Mitra, T.; Henkel, J. Scalable Dynamic Task Scheduling
on Adaptive Many-Core. In Proceedings of the 2018 IEEE 12th International Symposium on Embedded
Multicore/Many-Core Systems-on-Chip (MCSoC), Hanoi, Vietnam, 12–14 September 2018.

12. Demirci, G.; Marincic, I.; Hoffmann, H. A Divide and Conquer Algorithm for DAG Scheduling Under Power
Constraints. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage, and Analysis, Dallas, TX, USA, 11–16 November 2018.

http://dx.doi.org/10.1016/j.procs.2010.04.113
http://dx.doi.org/10.1109/MDAT.2015.2439640
http://dx.doi.org/10.1109/TVLSI.2017.2669144
http://dx.doi.org/10.1515/itit-2016-0028
http://dx.doi.org/10.1109/TCAD.2016.2618880

J. Low Power Electron. Appl. 2020, 10, 31 14 of 15

13. Carlson, T.E.; Heirman, W.; Eeckhout, L. Sniper: Exploring the Level of Abstraction for Scalable and Accurate
Parallel Multi-Core Simulation. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), Seatle, WA, USA, 12–18 November 2011.

14. Li, S.; Ahn, J.H.; Strong, R.D.; Brockman, J.B.; Tullsen, D.M.; Jouppi, N.P. McPAT: An Integrated Power, Area,
and Timing Modeling Framework for Multicore and Manycore Architectures. In Proceedings of the 2009
42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), New York, NY, USA,
12–16 December 2009.

15. Singh, A.K.; Shafique, M.; Kumar, A.; Henkel, J. Mapping on multi/many-core systems: Survey of
current and emerging trends. In Proceedings of the 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC), Austin, TX, USA, 29 May–7 June 2013.

16. Rapp, M.; Pathania, A.; Henkel, J. Pareto-optimal power-and cache-aware task mapping for many-cores
with distributed shared last-level cache. In Proceedings of the International Symposium on Low Power
Electronics and Design (ISLPED), Seattle, WA, USA, 23–25 July 2018.

17. Rapp, M.; Pathania, A.; Mitra, T.; Henkel, J. Prediction-Based Task Migration on S-NUCA Many-Cores.
In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy,
25–29 March 2019.

18. Rapp, M.; Sagi, M.; Pathania, A.; Herkersdorf, A.; Henkel, J. Power-and Cache-Aware Task Mapping with
Dynamic Power Budgeting for Many-Cores. IEEE Trans. Comput. 2019, 69, 1–13. [CrossRef]

19. Bartolini, A.; Borghesi, A.; Libri, A.; Beneventi, F.; Gregori, D.; Tinti, S.; Gianfreda, C.; Altoè, P. The DAVIDE
Big-Data-Powered Fine-Grain Power and Performance Monitoring Support. In Proceedings of the 15th
ACM International Conference on Computing Frontiers, Ischia, Italy, 8–10 May 2018.

20. Oleynik, Y.; Gerndt, M.; Schuchart, J.; Kjeldsberg, P.G.; Nagel, W.E. Run-Time Exploitation of Application
Dynamism for Energy-Efficient Exascale Computing (READEX). In Proceedings of the 2015 IEEE 18th
International Conference on Computational Science and Engineering, Porto, Portugal, 21–23 October 2015.

21. Lee, B.; Kim, J.; Jeung, Y.; Chong, J. Peak Power Reduction Methodology for Multi-Core Systems.
In Proceedings of the International SoC Design Conference (ISOCC), Seoul, Korea, 22–23 November 2010.

22. Lee, J.; Yun, B.; Shin, K.G. Reducing Peak Power Consumption in Multi-Core Systems without Violating
Real-Time Constraints. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 1024–1033

23. Munawar, W.; Khdr, H.; Pagani, S.; Shafique, M.; Chen, J.J.; Henkel, J. Peak Power Management
for Scheduling Real-Time Tasks on Heterogeneous Many-Core Systems. In Proceedings of the
20th IEEE International Conference on Parallel and Distributed Systems (ICPADS), Hsinchu, Taiwan,
16–19 December 2014.

24. Ansari, M.; Yeganeh-Khaksar, A.; Safari, S.; Ejlali, A. Peak-Power-Aware Energy Management for Periodic
Real-Time Applications. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2019, 39, 779–788. [CrossRef]

25. Johnson, S.G. The NLopt Nonlinear-Optimization Package. Available online: https://github.com/stevengj/
nlopt (accessed on 25 September 2020).

26. Svanberg, K. A Class of Globally Convergent Optimization Methods Based on Conservative Convex
Separable Approximations. SIAM J. Optim. 2002, 12, 555–573. [CrossRef]

27. Bonami, P.; Kilinç, M.; Linderoth, J. Algorithms and Software for Convex Mixed Integer Nonlinear Programs.
In Mixed Integer Nonlinear Programming; Springer: Berlin/Heidelberg, Germany, 2012.

28. Moriguchi, S.; Tsuchimura, N. Discrete L-Convex Function Minimization Based on Continuous Relaxation.
Pac. J. Optim. 2009, 5, 227–236.

29. Chekuri, C.; Khanna, S. On Multidimensional Packing Problems. J. Comput. 2004, 33, 837–851. [CrossRef]
30. Pearce, D.J.; Kelly, P.H. A Dynamic Topological Sort Algorithm for Directed Acyclic Graphs.

J. Exp. Algorithmics 2007. [CrossRef]
31. Ioannidis, Y.E.; Ramakrishnan, R. Efficient Transitive Closure Algorithms. In Proceedings of the 1988

VLDB Conference: 14th International Conference on Very Large Data Bases, Los Angeles, CA, USA,
29 August–1 September 1988.

http://dx.doi.org/10.1109/TC.2019.2935446
http://dx.doi.org/10.1109/TCAD.2019.2901244
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
http://dx.doi.org/10.1137/S1052623499362822
http://dx.doi.org/10.1137/S0097539799356265
http://dx.doi.org/10.1145/1187436.1210590

J. Low Power Electron. Appl. 2020, 10, 31 15 of 15

32. Pathania, A.; Henkel, J. HotSniper: Sniper-based toolchain for many-core thermal simulations in
open systems. IEEE Embed. Syst. Lett. 2018, 11, 54–57. [CrossRef]

33. Van Dijk, T.; van de Pol, J.C. Lace: Non-Blocking Split Deque for Work-Stealing. In European Conference on
Parallel Processing (Euro-Par); Springer: Berlin/Heidelberg, Germany, 2014.

34. Coffman, E.G., Jr.; Garey, M.R.; Johnson, D.S.; Tarjan, R.E. Performance Bounds for Level-Oriented
Two-Dimensional Packing Algorithms. SIAM J. Comput. 1980, 9, 808–826, doi:10.1137/0209062. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LES.2018.2866594
https://doi.org/10.1137/0209062
http://dx.doi.org/10.1137/0209062
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivational Example
	Related Work
	Convex Optimization Sub-Routine for Solving Serialized DAG
	Peak Power Minimization with PkMin
	 Experimental Evaluation
	Conclusions
	References

