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Abstract: This work presents a comparison between different neural spike algorithms to find
the optimum for in vivo implanted EOSFET (electrolyte–oxide-semiconductor field effect transistor)
sensors. EOSFET arrays are planar sensors capable of sensing the electrical activity of nearby neuron
populations in both in vitro cultures and in vivo experiments. They are characterized by a high
cell-like resolution and low invasiveness compared to probes with passive electrodes, but exhibit
a higher noise power that requires ad hoc spike detection algorithms to detect relevant biological
activity. Algorithms for implanted devices require good detection accuracy performance and low
power consumption due to the limited power budget of implanted devices. A figure of merit (FoM)
based on accuracy and resource consumption is presented and used to compare different algorithms
present in the literature, such as the smoothed nonlinear energy operator and correlation-based
algorithms. A multi transistor array (MTA) sensor of 7 honeycomb pixels of a 30 µm2 area is simulated,
generating a signal with Neurocube. This signal is then used to validate the algorithms’ performances.
The results allow us to numerically determine which is the most efficient algorithm in the case of
power constraint in implantable devices and to characterize its performance in terms of accuracy and
resource usage.

Keywords: digital signal processing; signal detection; real-time systems; neuroscience; low power

1. Introduction

Intracortical brain computer interfaces have recently seen an increase in research and usage, with
scientists from various fields showing increasing interest in their fabrication and adoption. These
neural sensors can be used to monitor the extracellular electrical activity of neurons in both short-
and long-lasting in vivo implants. Particularly, in this last case, low invasiveness and limited power
consumption are required. The EOSFET MTA [1] are very promising in this scenario as they allow one
to integrate the neural interface, the electronics of signal conditioning, and the interface to outside
the cutis on a single silicon chip. EOSFETs are composed of a standard complementary metal-oxide
semiconductor (CMOS) transistor [2] combined with a biocompatible oxide covering the metal gate [3,4],
which creates a capacitive coupling between the neuron and the electronics [5]. This approach is
invasive but tissue-compatible [6], as there is a distance between neurons and the sensor surface that
helps limit damage to cells and allows for lasting implants. Such devices usually provide a limited
signal-to-noise ratio (SNR, 3 to 6 dB) per channel compared to standard passive electrodes [7], but
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the smallest size and pitch of the pixels on the grid allows for a high spatial resolution [8], providing
more sensing points for each cell on the chip surface. This, together with post-processing algorithms,
allows one to extract the biological signal from the background noise with comparable or even
more confidence than passive metallic electrodes. These algorithms take advantage of the density of
the sensor and the knowledge of the action potential (AP) shape—frequency band between 300 Hz
and 3 kHz—to detect spikes. While, for example, in real-time in vitro experiments, these algorithms
are usually implemented on field programmable gate array (FPGA) and there are no narrow power
constraints, in the view of an implantable device without any skin-penetrating wire, the power budget
is very limited under various aspects:

• An implanted chip receives power from a battery or from harvesting systems that are intrinsically
capable of providing limited power;

• The wireless data transmission between the sensor and the external interface cannot manage
a flow of raw data coming from the entire sensor (at least 10 kS/sec/pixel);

• Being in contact with living tissue, the temperature of the device must remain within the heat
dissipation capacity of the tissue to avoid damage.

For these reasons, this paper aims to compare different spike detection algorithms to understand
which one can be suitable to be implemented in an implantable device relying on two main criteria:
the possibility to be implemented in real-time with a low resource footprint and to be adapted to
exploit the spatial correlation of the high density pixel matrix of an MTA sensor. The boundary where
these algorithms are evaluated are the detection and extraction of the relevant features (spikes) from
a high amount of raw recording data. This is crucial to reduce the communication overhead required
by the high sampling rate and channel number of an MTA sensor that can easily have thousands of
pixels. Such a scenario allows one to reduce the communication bandwidth from tens of MB/s to few
kB/s, without precluding an external post-processing elaboration that can include verification and
sorting of the extracted spikes, doable mostly without power and performances constraints.

Although the literature presents many different spike detection approaches, several are mainly
developed for post-processing analysis, where there are not any particular time and resource constraints
and, thus, are adequate for the purpose of this paper. The compatibility with the boundaries has been
recognized in three of the most used spike detection algorithms:

• The standard deviation-based threshold crossing [9], a golden standard for most of the real-time
systems due to its extremely low resource footprint combined with a performance sufficient to
work as a spike sorting preprocessing step;

• A correlation algorithm exploiting the spatial and temporal information of the signal developed
explicitly for the MTA sensors [10–12];

• The well-known smoothed nonlinear energy operator (SNEO) [13–15], an algorithm used to
estimate the instantaneous frequency and amplitude of a sinusoid that, due to its response to
action potentials, has become widely used for spike detection in neural signals.

The final aim of this paper is therefore to find which algorithm should be chosen for an
implantable MTA sensor, depending on variables such as SNR, available resources and required
accuracy. The algorithm performances are evaluated by using a toolbox for synthetic neural data
generation (Neurocube [16]) based on detailed neuron models to reproduce realistic simulations of
extracellular recordings. This allows us to evaluate the algorithms’ performances on a well-known
spiking dataset, bypassing the lack of a ground truth typical of experimental recording (which is
a serious limitation in the accuracy evaluation correctness) and allowing the study of algorithm
behavior in different SNR conditions.
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2. Materials and Methods

2.1. Figure of Merit for Implanted Spike Detection Algorithms

The figure of merit (FoM) compares the quality of an algorithm in relation to its cost. To evaluate
the quality of an implantable device algorithm, it is necessary to consider the performances of an
algorithm to detect a true positive (TP) while minimizing the number of false positives (FP) and false
negatives (FN). A TP indicates a detection in the window of samples corresponding to a spike in
the dataset; conversely, an FN reflects a missed detection. An FP corresponds to a detection that
does not correspond to a spike shape or a spike detected multiple times. It must be considered that
the number of FNs affects the quality of the data generated by the sensor, as part of the electrical
activity of the neural network is not detected. Instead, the number of FPs generated by the background
noise increases the amount of data to be transmitted to the external unit, thus increasing the power
consumption of the device. Therefore, the total performance of a spike detection algorithm strictly
depends on TP, FP and FN, and it can be summarized by the accuracy. The detection accuracy is
defined as in Equation (1), where TP and FP are defined as above and NS is the total number of spikes
(TP + FN).

Accuracy =
TP

NS + FP
(1)

For each algorithm, the accuracy highly depends on the SNR. It is more difficult to detect a spike
in the case of low SNR, while most of the spikes are correctly detected with a high SNR, as can be
deduced from Figure 1. A good algorithm allows one to achieve a high accuracy with a low SNR value,
detecting even the weakest spikes. Therefore, the effectiveness of the algorithm is evaluated with an
SNR of 3 dB per pixel, an expectable value in a real scenario. The FoM is produced as the ratio between
the accuracy and the cost of the algorithm.
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Figure 1. (a) A simulated extracellular spike template. (b) Spike template with noise at 3 dB
signal-to-noise ratio (SNR).

The algorithm’s cost is evaluated as the resource consumption in terms of logic gates required by
the algorithm operations. Generically, complexity in operations corresponds to a larger digital circuit
and therefore more power requirement. For this reason, each algorithm is characterized by the number
of logic gates required by its per-sample operations. The logic gates number is used to evaluate the cost
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in the FoM as a parameter that depends only on the algorithm and not on the technological node
chosen or on the size of the sensor in terms of the number of the obtained pixels.

Finally, the FoM is designed as the ratio between the accuracy achieved at 3 dB of SNR per pixel—a
realistic signal and noise amount in real data acquisitions—and the number of logic gates required by
each algorithm, as in Equation (2).

FoM =
Accuracy

Logic Gates
(2)

In this way, with the FoM parameter, a greater score can be assigned to a method with a lower
accuracy but a light footprint in resource usage than a high performance but greedy algorithm.

2.2. Generation of Neural Signals

The algorithms were tested on signal created using Neurocube, a tool for the generation of realistic
simulation of extracellular recordings using detailed neuron models. The generated signal (Figure 2
shows 50 milliseconds activity of one channel) emulates a signal from an in vivo experiment where an
array of seven honeycomb channels records the activity of a neuron spaced by 8.5 µm from the center
of the array surface, plus other “far” neurons placed randomly in a cubic volume of 0.25 mm length
above the sensor. The sampling frequency of each channels is set to 10 kHz, while the pixel size is set to
6 µm, spaced by 2 µm. Both sizes and sample rate lay in the range of the current MTA recording system
characteristic. The neurons density is set to 300,000 neurons/mm2, with 10% active neurons firing at
100 Hz. The entire record is 30,000 samples, corresponding to a 3 s duration for a total of 299 spikes.
The synthetic dataset representing the noiseless electrical activity of the neural network is initially
generated. Then, thermal noise is added to the dataset to allow for observations of the accuracy at
different SNR levels. From the synthetic dataset, 10 datasets were obtained by adding the thermal
noise at 21 different SNR levels (from −10 to 10 dB). Each algorithm was tested on all datasets and
the results for each SNR level were averaged.
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Figure 2. (a) Fifty milliseconds of extracellular simulated activity without noise on a single channel of
a pyramidal neuron generated by Neurocube. (b) Noisy dataset created from the noiseless template
adding white noise to achieve an SNR of 3 dB.

2.3. Spike Detection Algorithms

Three of the most used algorithms for spike detection, i.e., threshold crossing, the correlation-based
algorithm, and the smoothed nonlinear energy operator (SNEO), were chosen for the comparison.
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Their performances are assessed through an FoM as introduced in Section 2.1. These methods were
adapted to take advantage of the signal correlation provided by the high spatial resolution to find
spikes even in the case of very poor SNR, since it is expected to sense the deterministic event of a spike
simultaneously on all the pixels surmounted by a neuron, drowned in a mostly uncorrelated thermal
noise. The first step is common for all these methods and consists of filtering of the raw signal with
a second order passband Butterworth with a cutoff at 300 and 3000 Hz. Thus, from here onwards,
the signal is defined as a filtered signal.

2.3.1. Threshold Crossing

Threshold crossing is the simplest and hardware-friendliest method between the three chosen
spike detection algorithms. It consists of a comparison between the peaks of the filtered signal and
a threshold. The comparison of the positive or the negative signal peaks is chosen depending on
the most preponderant one in the spike shape. To conduct a fair comparison with the other two
methods that exploit the spatial correlation of the activity, the filtered signal of the 7 pixels is summed
and compared with a threshold dependent on the standard deviation of the sum, as shown in the block
diagram in Figure 3.
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the comparison threshold.

The algorithm was optimized to achieve the best performances. For this method, the only
parameter that can be varied is the threshold value. Figure 4 shows the results of accuracy using
different threshold multipliers varying the SNR level. The threshold was set to recognize the negative
peak of the spike, with a value of −2 times the noise standard deviation σ, a value that demonstrates
the best performance in detection accuracy. The accuracy in the case of −1σ is seems to be higher for
lower SNR (<2 dB), but it presents a tremendous number of FPs that makes the threshold unusable.
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2.3.2. Correlation Algorithm

The Correlation algorithm searches for an equivalent pixel using both consecutive samples in
time and adjacent pixels in space. In the implementation presented in [12], it exploits the temporal
oversampling by summing three consecutive squared samples vp

2 for each channel, but we tested
the accuracy level using different temporal sum lengths. After the temporal sum, the algorithm
then normalizes these values by each pixel standard deviation σ2

p, to assign it a reliability. Every
channel value is then summed with that of its six surrounding neighbors and is compared with a fixed,
precomputed threshold ThMult, as explained in [12], to achieve one false positive per second on
the 7-pixel group. The process is summarized in Equation (3), where N is the number of samples used
for the temporal sum, and it is shown in Figure 5.

CA
(
vp(n)

)
=

7∑
p=1

∑N−1
k=0 vp(n− k)2

σ2
p

, (3)
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2.3.3. SNEO

The smoothed nonlinear energy operator (SNEO) gives an instantaneous estimation of the energy
contained in a signal oscillation. Due to its energy answer, it has been proved to fit well the detection of
spikes. This algorithm strictly depends on a parameter called k, which in turn depends on the sampling
frequency and the average spike duration. After computing the nonlinear energy response (NEO
block) of the signal samples, the SNEO soothes it using a Hamming window w(4k + 1) with a size
of 4k + 1 and compares the result with a threshold multiple of the standard deviation of the output.
Even in this case, the spatial correlation is exploited. In fact, as an input of this operator, the average of
the 7-pixel group is considered. The operator is described in Equation (4) and shown in Figure 7.

SNEO = NEO⊗w(4k + 1), NEO(x(n)) = x(n)2
− x(n + k)·x(n− k), x(n) =

7∑
p=1

vp(n)
7

(4)
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The performance was tuned changing the k parameter. Figure 8 shows the different performances
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3. Results

The algorithms’ performances were evaluated on synthetic datasets described in Section 2.2. For
each SNR level, 10 datasets were created. The performances measured for each algorithm at each SNR
level are the average of the 10 results achieved on these datasets.
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3.1. Algorithm Accuracy

The accuracy was estimated for each algorithm depending on the detection performances of true
and false positives at 3 dB SNR as explained in Section 2.1, and Figure 9 shows the results. The SNEO
detector provides the best detection accuracy from the lowest SNR level, followed by the correlation
algorithm. The threshold crossing method requires from 2 to 4 dB SNR to achieve the same results as
the others, but it also achieves 2–3% more accuracy from 5 dB SNR.
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3.2. Resource Consumption

As introduced in Section 2.1, resource consumption is estimated as the amount of operations
required by each algorithm. The filtering operation is common to all the spike detection methods and
is considered once for each algorithm during the FoM evaluation. Each method requires the estimation
of the standard deviation (STD) of the signal or of its output, computed as in Equation (5). The mean µ

is assumed 0 as a consequence of the high-pass filtering of the data. The STD can be estimated over
a power of 2 number of samples, allowing us to perform the division as a bit-shift operation, reducing
the required resources.

STD =

√√√
1
N

N∑
n=1

x(n)2
− µ, where µ ≈ 0 (5)

For each operation, the logic gate amount is estimated, in detail (including operational
pre-registers): adder is 23N, multiplicator is 18N + 6N2, comparator is 25N, divisor is 28N and
other registers are 9N logic gates each. N is the number of the operand bits. Each operation is assumed
in the integer domain—division included—and in a canonical form. For each operation, different
algorithms exist, varying the amount of logic gates required, especially in implementation exploiting
resource reutilization. Hopefully, the tradeoff between operation complexity and clock frequency in
the case of resource reutilization leads to approximately comparable power consumption. For this
reason, even if these resource estimation can be subjected to variation depending on the implementation,
it can be considered sufficiently accurate to perform algorithm comparison. Table 1 shows the resource
estimation results for every considered algorithm.
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Table 1. Resources required by the hardware implementation of the algorithms.

Filter Standard
Deviation

Threshold
Crossing

Correlation
Algorithm SNEO

Adder 4 1 + 1 1 6 20 1 1 + 6 1 + (4 k) 2

Multiplicator 5 1 2 * 3 + 2 * 2 + (4 k + 1) 1 + 2 *

Comparator 0 1 1 1 2 1 2

Divisor 0 0 0 7 0

Register 4 1 1 1 0 21 1 2 k + (4 k + 1) 1

STD 0 - 1 7 1

Weighted Total 254 N + 30 N 2 121 N + 6 N 2 235 N + 6 N 2 +
STD

995 N+42 N 2 +
7 * STD

557 N + 602 kN + 36
N 2 + 48 kN 2 + STD 1

5-bit, k = 2 2020 755 2080 11,310 13,615

8-bit, k = 4 3952 1352 3616 20,112 25,240
1 the operation occurs after a multiplication and it is weighted as 2N. 2 the operation occurs after two multiplications
and it is weighted as 4N. * one is for the threshold computation; one is to avoid the STD square root.

4. Discussion

From the accuracy performance and resource consumption of each algorithm shown in Sections 3.1
and 3.2, we can finally observe the FoM results in Figure 10. The curves show the ratio between
the accuracy at 3 dB of SNR and the resources required for algorithm implementation with different
sample widths. Detailed results are shown in Table 2.
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Table 2. Algorithm performances at 3 dB SNR.

Threshold
Crossing Correlation Algorithm SNEO

True Positive (%) 73 93 96
False Positive (%) 4 1 2

Accuracy (%) 70 93 95
Resources (8 bit) 3616 20,320 41,016

FoM (3 dB) 0.40 0.12 0.10
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As can be observed, according to the FoM, the threshold crossing method outperforms by a factor
of about 2.5× the others two algorithms, despite its poor accuracy, due to its light footprint in logic
gate requirements (5× and 8× compared to SNEO and the correlation algorithm, respectively). Despite
this consideration, a real winner must be chosen carefully, strictly depending on the scenario where
the detector must lay. If there are tight constrains on power that can be provided to the circuit,
the threshold crossing approach must be preferred, considering also that if the transmission bandwidth
allows it, it is possible to sacrifice the accuracy lowering the threshold multiplier. A more relaxed
threshold causes a higher number of FP, but it also increases the correct detections, as shown in the case
of the threshold set to −σ in Figure 4; an external sorting/clustering of the detected spikes eventually
discards the FP in the second step without a power constraint.

These considerations change for SNR above 4–5, as can be seen in Figure 9, where the threshold
crossing method can be considered the best approach without exception, providing over 90% accuracy,
and having 3–4× higher FoM than the competitors. Conversely, as shown in Figure 11, in the case of
SNR lower than 1, the threshold crossing method lose its supremacy due to the very poor performances
achieved. Here, the correlation and the SNEO algorithms can be considered equivalent in appearance
of the FoM. Paying about 1.2×more logic gates when compared to the correlation algorithm, the SNEO
clearly provides the better performances, with 5–7% better accuracy depending on the SNR. The k
parameter of the SNEO algorithm can considerably change the resource requirements of the algorithm,
especially because of the convolution operation that makes the resources grow quadratically. However,
for typical sampling frequency of up to 30 kHz, a k lower than 6 should be sufficient for an accurate
detection in most scenarios. A similar discussion can be applied where less constrained power limits
are required; in fact, the better accuracy provided by these last two methods should be preferred
over threshold crossing’s light footprint, at least below 5 dB of SNR. Results achieved under the 0
dB SNR level cannot surpass 50% accuracy with any of the proposed methods and are probably not
suitable to extract relevant activity from the observed neuronal population. In this case, similarly to
what was suggested with threshold crossing, the SNEO algorithm with a relaxed threshold and an
off-the-MTA-chip processing step can help to increase the detections but, as consequence, the algorithm
requires that both are paid more resources and that a greater amount of data is transmitted.
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As a side note, the sample number of bits alone has appeared incapable of changing
the consideration drawn until now, since it does not vary the relative distance of the algorithms
in the FoM. As a general hint, a small quantization step—and so wider data samples in a bit—cannot
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carry any useful information about the signal depending on the SNR level. This reduces the FoM of
each algorithm, increasing the resources required by each operation without bringing any advantages.
It is possible to define a typical samples bit range laying under 8–10 bits, but the literature present
different methods that allow one to improve the analog to digital converter (ADC) performances in
power-constrained applications [17], lowering the required bit number without losing precision.

5. Conclusions

This paper focused on the accuracy and resource consumption of spike detection methods that
are suitable for an in vivo low-power implantable MTA sensor, depending on the signal quality and
available power. With an SNR over 4 dB, the threshold crossing method can provide good performances
and is easily preferred over the more complex method. In the case of lower SNR (<2), the SNEO
algorithm provides the absolute better detection accuracy between the compared methods.
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