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Abstract: As modern embedded systems are becoming more and more ubiquitous and interconnected,
they attract a world-wide attention of attackers and the security aspect is more important than
ever during the design of those systems. Moreover, given the ever-increasing complexity of the
applications that run on these systems, it becomes increasingly difficult to meet all security criteria.
While extra-functional design objectives such as performance and power/energy consumption are
typically taken into account already during the very early stages of embedded systems design, system
security is still mostly considered as an afterthought. That is, security is usually not regarded in
the process of (early) design-space exploration of embedded systems, which is the critical process
of multi-objective optimization that aims at optimizing the extra-functional behavior of a design.
This position paper argues for the development of techniques for quantifying the ’degree of secureness’
of embedded system design instances such that these can be incorporated in a multi-objective
optimization process. Such technology would allow for the optimization of security aspects of
embedded systems during the earliest design phases as well as for studying the trade-offs between
security and the other design objectives such as performance, power consumption and cost.

Keywords: embedded computer systems; cyber security; system-level design and design-space
exploration; multi-objective optimization; system trade-offs

1. Introduction

Embedded computer systems are ubiquitous and have a major impact on our society. Examples of
such systems are close at hand—modern TVs contain one or multiple computer systems to handle
functionality such as decoding the input signal, performing various image enhancement techniques
as well as displaying and updating live information (e.g., program guide or weather forecast).
Smart-phones rely on embedded computer systems to allow users to make phone calls, shoot photos
and videos, perform GPS navigation, browse the Internet, execute apps, and so on. The use of
embedded computer systems is, however, by no means restricted to consumer electronics: in industrial,
medical, automotive, avionic, or defense applications they are equally pervasive.

The complexity of the underlying system architectures of modern embedded systems forces
designers to start with modeling and simulating (possible) system components and their interactions
in the very early design stages. This is often referred to as system-level design [1]. The system-level
models typically represent application workload behavior, characteristics of the underlying computing
platform architecture, and the relation (e.g., mapping, hardware-software partitioning) between
application workload(s) and platform architecture. These models are applied at a high level of
abstraction, thereby minimizing the modeling effort and optimizing the simulation speed. This is
especially needed for targeting the early design stages since many design decisions are still open and,
therefore, many design alternatives still need to be studied. High-level system modeling allows for
the early verification of a design and can provide estimates on the extra-functional properties of a
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design such as system performance and energy/power consumption. The system-level models are
typically accompanied by a methodology for efficient design-space exploration (DSE) [2], which is
the process of assessing alternative design instances with respect to (i) the platform architecture
that will be deployed (e.g., the number and type of processing elements in the platform, the type of
network to interconnect the processors, etc.) and( ii) the mapping of application tasks to the underlying
platform components [3]. It is a multi-objective optimization problem that searches through the space
of different implementation alternatives to find optimal design instances. Exploration of different
design choices, especially during the early design stages where the design space is still at its largest,
is of eminent importance. Wrong decisions early in the design can be extremely costly in terms of
re-design effort, or even deadly to the product’s success. Consequently, considerable research effort in
the embedded systems domain has been spent in the last two decades on developing frameworks for
system-level modeling and simulation that aim for early design-space exploration.

As embedded systems are becoming more and more ubiquitous and interconnected (illustrated by,
e.g., the strong trend towards the Internet of Things), they also attract a world-wide attention of
attackers. This makes the security aspect more important than ever during the design of these
systems [4]. Moreover, given the ever-increasing complexity of the applications that run on modern
embedded systems, it becomes increasingly difficult to meet all security criteria. While design
objectives such as performance and power/energy consumption are usually taken into account
during the early stages of design (as explained above), system security is still mostly considered
as an afterthought. That is, security is typically not regarded in the process of (early) design-space
exploration of embedded systems. However, any security measures that may eventually be taken
much later in the design process do affect the already established trade-offs with respect to the other
extra-functional properties of the system like performance, power/energy consumption, cost, and
so forth [4]. Thus, covering the security aspect in the earliest phases of design is necessary to design
systems that are, in the end, optimal with regard to all extra-functional objectives. However, this poses
great difficulties because unlike the earlier mentioned conventional system objectives, like performance
and power consumption, security is hard to quantify—there exists no single metric with which one
can measure the degree of secureness of a design.

This position paper argues for the need for security-aware, system-level design-space exploration
methods and techniques for embedded systems. To this end, we will discuss a multifaceted,
scoring-based methodology for quantifying the degree of secureness of embedded system design
instances. This methodology allows for incorporating the secureness quantifications in a multi-objective
optimization process and would thus enable optimization of the security aspect during the earliest
phases of design. However, we want to emphasize the fact that this is a position paper and therefore
does not present an actual implementation of the proposed solution nor any experimental results.

The remainder of this paper is organized as follows. In the next section, we will provide a brief
introduction to the concept of design-space exploration. In Section 3, we will describe our proposal for
a security-aware DSE approach, focusing on a method to quantify the secureness of embedded system
design instances. Section 4 discusses related work, after which Section 5 concludes the paper.

2. Design-Space Exploration

During the design-space exploration (DSE) of embedded systems, multiple optimization
objectives—such as performance, power/energy consumption, and cost—should be considered
simultaneously. This is called multi-objective DSE [2]. Since the objectives are often in
conflict, there cannot be a single optimal solution that simultaneously optimizes all objectives.
Therefore, optimal decisions need to be taken in the presence of trade-offs between design criteria.
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2.1. Multi-Objective Optimization

Given a set of m decision variables, which are the degrees of freedom (e.g., parameters like the
number and type of processors in the system, application mapping, etc.) that are explored during DSE,
a so-called fitness function must optimize the n objective values [2]. The fitness function is defined as:

fi : Rm → R1. (1)

A potential solution x ∈ Rm is an assignment of the m decision variables. The fitness function fi
translates a point in the solution space X into the i-th objective value (where 1 ≤ i ≤ n). For example,
a particular fitness function fi could assess the performance or energy efficiency of a certain solution x
(representing a specific design instance). The combined fitness function f (x) subsequently translates a
point in the solution space into the objective space Y. Formally, a multi-objective optimization problem
(MOP) that tries to identify a solution x for the m decision variables that minimizes the n objective
values using objective functions fi with 1 ≤ i ≤ n :

Minimize y = f (x) = ( f1(x), f2(x), ..., fn(x))

Where x = (x1, x2, ..., xm) ∈ X

y = (y1, y2, ..., yn) ∈ Y.

Here, the decision variables xi (with 1 ≤ i ≤ m) usually are constrained. These constraints make
sure that the decision variables refer to valid system configurations (e.g., using not more than the
available number of processors, using a valid mapping of application tasks to processing resources,
etc.), that is, xi are part of the so-called feasible set. In the remainder of this section, we assume a
minimization procedure, but without loss of generality, this minimization procedure can be converted
into a maximization problem by multiplying the fitness values yi with −1.

With an optimization of a single objective, the comparison of solutions is trivial. A better fitness
(i.e., objective value) means a better solution. With multiple objectives, however, the comparison
becomes non-trivial. Take, for example, two different embedded system architecture designs:
a high-performance system and a slower but much cheaper system. In case there is no preference
defined with respect to the objectives and there are also no restrictions for the objectives, one cannot
say if the high-performance system is better or the low-cost system. A typical MOP in the
context of embedded systems design can have a variety of different objectives, like performance,
energy consumption, cost and reliability. To compare different solutions in the case of multiple
objectives, the Pareto dominance relation is generally used. Here, a solution xa ∈ X is said to dominate
solution xb ∈ X if and only if xa < xb:

xa < xb ⇐⇒ ∀i ∈ {1, 2, ..., n} : fi(xa) ≤ fi(xb) ∧
∃i ∈ {1, 2, ..., n} : fi(xa) < fi(xb).

Hence, a solution xa dominates xb if its objective values are superior to the objective values
of xb. For all of the objectives, xa must not have a worse objective value than solution xb.
Additionally, there must be at least one objective in which solution xa is better (otherwise they
are equal).

An example of the dominance relation is given in Figure 1, which illustrates a two dimensional
MOP. For solution H the dominance relations are shown. Solution H is dominated by solutions B, C
and D as all of them have a lower value for both f1 and f2. On the other hand, solution H is superior
to solutions M, N and O. Finally, some of the solutions are not comparable to H. These solutions are
better for one objective but worse for another.

The Pareto dominance relation only provides a partial ordering. For example, the solutions A to F
of the example in Figure 1 cannot be ordered using the ordering relation. Since not all solutions x ∈ X
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can be ordered, the result of a MOP is not a single solution, but a front of non-dominated solutions,
called the Pareto front. A set X′ is defined to be a Pareto front of the set of solutions X as follows:

{x ∈ X′ | @xa ∈ X : xa < x}.

The Pareto front of Figure 1 contains six solutions: A − F. Each of these solutions does not
dominate the other. An improvement on objective f1 is matched by a worse value for f2. Generally, it
is up to the designer to decide which of the solutions provides the best trade-off.
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Figure 1. A Pareto front and an example of the dominance relation (taken from Reference [2]).

2.2. Search for Pareto Optimal Solutions

The search for Pareto optimal design points with respect to multiple design criteria entails two
distinct elements [5]:

1. The evaluation of a single design point using the fitness function(s) f (x) regarding all
the objectives in question like system performance, power/energy consumption and so on.
These evaluations are usually based on measurements using real systems or predictions from
either analytical models or simulation models [2].

2. The search strategy for navigating through and covering the design space during the DSE process.
Such search strategies can be based on exact, but typically unscalable, methods that guarantee
finding the optimal solution(s). These exact methods can, for example, be implemented using
integer linear programming (ILP) solutions (e.g., References [6,7]) or branch & bound algorithms
(e.g., Reference [8]). Alternatively, so-called meta-heurisics, such as genetic algorithms (GA) or
simulated annealing, can be used to search the design space for optimal solutions. They only
perform a finite number of design point evaluations, and can thus handle larger design spaces.
However, there is no guarantee that the global optimum will be found using meta-heuristics,
and therefore the result can be a local optimum within the design space. GA-based DSE has been
widely studied in the domain of system-level embedded design (e.g., References [9–12]) and has
demonstrated to yield good results.

In this paper, we focus on the fitness evaluation aspect of DSE. More specifically, we argue that
while there are well-established techniques and metrics for the fitness evaluation of traditional design
objectives such as performance, power/energy consumption, cost, and reliability, this is not the case
for evaluating the fitness of design instances in terms of how secure they are. This lack of security
fitness evaluation methods and metrics inhibits the use of system security as a first-class citizen in the
process of early design-space exploration of embedded systems. As was indicated before, such design
practice leads to suboptimal products because any security measures that may be taken later in the
design process do affect the already established trade-offs with respect to the other extra-functional
properties of the system like performance, power/energy consumption, cost, and so forth.

In the next section, we will therefore argue for the development of a security-aware DSE approach,
based on a multifaceted, scoring-based security quantification methodology. This methodology allows
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for quantifying the degree of secureness of design instances such that these can be incorporated in the
DSE’s multi-objective optimization process. Eventually, once such a security-aware DSE would have
been implemented, it would allow for optimization of security aspects of embedded systems in their
earliest design phases as well as for studying the trade-offs between security and the other design
objectives like performance, power consumption and cost. Evidently, such technology would provide
a substantial competitive advantage in the embedded systems industry.

3. Towards Security-Aware, System-Level DSE

The envisioned approach for security-aware system-level design-space exploration, adopting
a multifaceted, scoring-based security quantification methodology, is illustrated in Figure 2.
Below, we will explain the different components of this approach. The blue parts of Figure 2 refer
to the methodology components that only need to be specified or performed once, whereas the red
parts refer to components that are dependent on the design-space exploration process and thus must
be revisited every time a new design instance is evaluated in terms of extra-functional properties
such as performance, power consumption, and of course, in the scope of this paper, also secureness.
Before describing our approach in detail, however, we will first discuss several assumptions that
delimit our proposed approach.

3.1. Assumptions

We focus on security threats in which the underlying embedded system architecture plays a
central role, and do not consider any security flaws that can be exploited purely at the application
level. This implies that we restrict ourselves to the following set of attack types:

1. Side-channel attacks like power analysis attacks, timing attacks such as the recent Spectre and
Meltdown attacks, scan attacks, differential fault analysis attacks and electromagnetic analysis
attacks (see References [13,14] for an overview of these side-channel attacks);

2. Denial of service attacks [15,16];
3. Software-based attacks such as buffer overflows for which protection mechanisms may be available

at the system (architecture) level (e.g., Reference [13]);
4. Attacks directed towards breaking encryption algorithms [17].

For each of the above attacks, we subsequently consider a range of protection
mechanisms—derived from literature—that can be applied to protect specific system components or
the entire system against these attacks.

Moreover, we consider system-level DSE in which both the platform architecture (e.g., selection of
platform components such processing elements, memories, and networking components) as well as the
mapping of application tasks and communications to the selected platform components are optimized
for traditional objectives such as performance, power consumption, and cost, but now also for
secureness. Such system-level design-space exploration is depicted in the top-middle part of Figure 2
and could, for example, be performed with system-level DSE frameworks such as Sesame [18,19] or a
similar environment (e.g, References [20–22]). Important to note here is that the performance, power
and cost models used in the DSE also need to account for the effects of deploying specifically selected
security protection mechanisms (as discussed above) inside a platform architecture.
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Figure 2. Proposed approach for security-aware system-level design-space exploration (DSE) using a
multifaceted, scoring-based security quantification methodology.

3.2. A Multifaceted, Scoring-Based Methodology for Secureness Quantification

As a first step in our methodology, shown in the top left of Figure 2, the applications that need
to execute on the target embedded system together with their extra-functional requirements are
identified and specified. The specified extra-functional requirements include the traditional ones
such as performance and real-time requirements, power/energy consumption budgets, and so forth,
but also requirements in terms of secureness. Regarding the latter, one can use the well-known
CIA triad to indicate the needs with respect to the security aspects Confidentiality (preventing
sensitive information from reaching the wrong people), Integrity (maintaining consistency, accuracy,
and trustworthiness of data) and Availability (ensuring timely and reliable access to, and use of,
information) [23]. Here, a domain-specific language (DSL) could be developed to specify these
extra-functional requirements. The application workloads themselves can be specified using task or
process graphs, explicitly describing application tasks and their interactions (communications).

Given the attack types we consider in our proposed approach, as discussed in Section 3.1 and
shown at the left in Figure 2, only those attacks that are relevant for the embedded system under
design need to be identified, which we refer to as the so-called domain-specific attacks. To this end, we
need to consider the security requirements of the target embedded system as specified using the CIA
triad as well as the characteristics of the specific attack types in terms of, for example, passivity and
accessibility. Here, passivity refers to what extent an attack manipulates the target system, either as
a means or a goal of the attack. For example, a denial of service attack clearly is an active attack as
its sole aim is to manipulate the system, whereas a side-channel attack based on power analysis is a
passive attack. Accessibility refers to the access level that is required for an attack to be performed.
Revisiting the example of a side-channel attack via power analysis, such an attack obviously requires
physical access to the embedded system, whereas for example, a software-based attack does not require
this. If we now consider, for example, an anti-lock braking system, then confidentiality is not a major
concern as such a system does not process sensitive information. This makes passive attacks such as
side-channel attacks not relevant and can therefore be excluded from the set of domain-specific attacks.
However, the braking system may not be disrupted or manipulated (i.e., integrity and availability are
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crucial CIA elements) thereby making active attacks highly relevant. Table 1 provides an overview of
the required access level and passivity of the attack types we consider in this paper. Here, virtual access
level attacks require access to one process that runs within an application on the embedded system in
question. Cryptanalysis attacks often do not require access to the system. For example, in the case of
public key cryptography, the public key is distributed to other systems and therefore freely available.

Table 1. Required access level and passivity of various types of attacks on embedded systems.

Attack Sub-Type Access Level Passivity

Side-channel Power analysis Physical Passive

Timing attack Virtual Passive

Scan attack Physical Active

Fault Analysis Physical & Virtual Passive & Active

Electromagnetic Analysis Physical Passive

Denial of Service Virtual Active

Software Buffer overflow Virtual Active

Cryptanalysis None Passive

Once the set of domain-specific attacks has been determined, those attacks that are relevant to
the different components in the underlying platform architecture can be determined: for example,
a networking component is not susceptible to a software-based buffer overflow attack, whereas a
microprocessor component is. To do so, we also need the mapping information (i.e., which application
tasks and communications are mapped onto what platform components) of the design instance(s) that
are currently being explored by the system-level DSE process. Subsequently, for each component in
the platform architecture, we can now determine the set of possible security protection mechanisms
that can be deployed to effectively increase its secureness (’Per-component protection mechanisms’ in
Figure 2). These sets of possible per-component protection mechanisms are an important ingredient of
our envisioned scoring-based security quantification methodology: they allow for determining the
coverage with respect to the protection mechanisms that are actually deployed in the design instances
being explored by the system-level DSE. To achieve this, a scoring technique would be needed that
can capture binary coverage relationships (i.e., a certain protection mechanism is available or not) as
well as numerical coverage relationships. The latter applies in cases where, for example, a certain
amount of random noise is added to a system component to disguise real power behavior in order to
complicate or even prevent side-channel attacks based on power analysis [24] (here, the amount of
noise forms a power/security trade-off) or when the strength of a cryptographic processor is identified
as a function of the key-size it uses.

Besides the coverage of protection mechanisms deployed in the platform architecture components,
one can take two other facets into account to determine the security score of a particular design instance.
First, the spatial isolation realized in design instances can be considered. That is, reducing the amount
of resource sharing between applications or even between tasks from a single application will increase
the secureness of the system, as this will complicate certain types of attacks such as side-channel attacks.
Therefore, a proper technique for quantifying the spatial isolation (using the mapping information
from the system-level DSE) would be required such that it can be used for security scoring purposes.
As a final ingredient of our anticipated security score, the platform component utilization can be
used. The rationale behind this is that higher utilized components typically are more prone to certain
attacks. Moreover, higher utilized components possibly also play a more important role in achieving
the CIA-triad system requirements. To include the platform component utilization, we need to profile
the application(s) to measure the activity of application tasks and communications, that is, the degree
to which they utilize the underlying resources. Hereafter, this information is related to the mapping of
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these application tasks and communications onto the platform architecture. The resulting component
utilization can then be used to weight the protection mechanism coverage and spatial isolation of
design instances in the final security scoring (as shown at the bottom of Figure 2).

3.3. Scoring the Security of Design Instances

Above, we described the ingredients of our envisioned security scoring methodology. We do
realize that we have not provided any details on how such security scoring could actually be
implemented. Actually, this remains a topic for future research, which will hopefully also be picked up
by the community. Nevertheless, in this section, we would like to provide a rough sketch of a fairly
simple approach to do such scoring.

Given a mapping of a (set of) application(s) to the underlying resources of a possible platform
architecture, which includes the mapping of application tasks to computational resources as well as
the mapping of inter-task communications to network and memory resources. Then, for each utilized
component in the platform, we could calculate a security score along the following lines. Let ATx be
the set of Attack Types (see e.g., the second column of Table 1) to which component x is susceptible:

ATx = {
⋃

∀ti |ci mapped on x
Attacksti |ci

}.

For ATx, we only consider the application tasks ti or inter-task communications ci (dependent on
whether x is a processing or communication component) that are mapped to component x. Attacksti |ci

refers to the possible attacks for task ti or communication ci, taking into account its security
requirements according to the CIA triad as well as taking into account the access level and passivity of
the various attacks (see Table 1). To determine a security score Sx for a component x, one could then
perform the following calculation:

Sx =

∑
p∈PATx

Protection-level(p, x)

|ATx|
·

1
Utilizationx

.

Here, p is a particular protection mechanism and is part of the set PATx that consists of the
possible protection mechanisms for the attacks listed in set ATx for component x. The function
Protection-level(p, x) returns a value that indicates the extent to which component x implements
protection mechanism p. This function could, for example, return a value between 0 and 1: The value
0 would mean that the component does not implement the protection mechanism, implying that
component x would be fully susceptible to the associated attack type. The value 1, on the other
hand, would refer to an available implementation of protection mechanism p such that component
x is fully protected against attacks of the associated type. Evidently, the returned value may also
be in between 0 and 1, indicating partial protection. For example, in the case protection mechanism
p adds a certain amount of random noise to a component to disguise real power behavior in order
to prevent side-channel attacks based on power analysis [24], the level of added noise (which is
a trade-off between power consumption and security) would determine the returned value of the
function Protection-level(p, x). To calculate Sx, we also consider the reciprocal of the utilization of
component x. Here, the utilization refers to the fraction the computing/communication component x
contributes to the overall computing or communication time of an application. The rationale behind
this is that one could argue that those components (both processing and communication components)
that are less active over time will be less susceptible to certain types of attacks, like side-channel attacks.
To determine the overall security score of a specific design instance (i.e., a particular application
mapping to a selected platform architecture), one could simply accumulate the Sx scores for all
components x used in the design instance.
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The above scoring example is by no means meant to be a complete and fully-fledged solution to
the security scoring problem. It is merely meant to act as an illustration for the direction of thought
as presented in this paper. Moreover, in the above scoring example, we also do not consider spatial
isolation as part of the security score. One direction to accomplish this, would for example, to penalize
the mapping of multiple application tasks or communications to a single platform component.

The multifaceted, scoring-based security quantification methodology as outlined in this section
could provide a real innovation to system-level embedded system design as it would facilitate designers
to study the trade-offs between the performance, power consumption, cost, and secureness of design
instances during the early stages of design.

4. Related Work

The need for recognizing security as a first-class citizen, next to traditional design objectives
such as performance, cost and power consumption, in the design of embedded systems is not new.
For example, quoting from Reference [4], “However, security is often misconstrued by embedded
system designers as the addition of features, such as specific cryptographic algorithms and security
protocols, to the system. In reality, it is a new dimension that designers should consider throughout
the design process, along with other metrics such as cost, performance, and power.” Nevertheless,
the integration of security aspects in the process of system-level design-space exploration of embedded
systems has never really got off the ground and is still a largely uncharted research ground. Only a
few efforts exist that address this problem but, at best, most of them provide partial solutions or
solutions to very specific security problems. For example, in Reference [25], the evaluation of security
protocols is integrated in the design process. For instance, it rates the security of a system based on the
probability of a hash collision. However, it does not cover other types of attacks, such as timing attacks
and power analysis. The authors of Reference [26] try to neutralize several types of side-channel
attacks by means of spatial isolation in a DSE setting but, again, they do not consider any other types
of attacks/protection mechanisms. In Reference [27], a small number of attacker capabilities and
corresponding requirements that refer to the CIA triad are defined in the context of DSE. The problem
of this approach is that it is not trivial to relate types of attacks to those capabilities and requirements.
The work of Reference [28] incorporates security in system-level DSE by first generating potential
architecture configurations, after which an automated security analysis is performed to check the
generated configurations against designer-specified security constraints.

In all the above works of References [26–28] security is modelled as a requirement in the DSE
process, which does not allow for studying actual trade-offs between performance, power consumption
or cost in relationship to secureness of a design.

An alternative approach for quantifying security is by means of a security risk assessment using
a specific attack model [29]. For example, Reference [30], proposes an attack tree model to evaluate
the user’s privacy risks associated with an Internet-of-Things eco system. They evaluate the potential
risks based on varying attack attributes, the probable considerations or preferences of an adversary,
and the varying computational resources available on a device. Research efforts like this are, however,
typically not focused on the process of (early) DSE.

To the best of our knowledge, only the works of References [31,32] and Reference [33] are similar
to what we propose in terms of aiming at incorporating security as an objective that can be traded
off with other objectives in the process of early DSE. In References [31,32], the authors introduce an
UML-based approach in which application security requirements can be described together with
security ‘capabilities’—in addition to other extra-functional aspects such as performance and power
consumption—of system components stored in a library. This then allows for a DSE process during
which the application requirements are matched with the component capabilities. The very recent work
of Reference [33] introduces a novel DSE framework that allows for considering security constraints,
in the form of attack scenarios, and attack mitigations, in the form of security tasks. Based on the
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descriptions of the system’s functionality and architecture, possible attacks, and known mitigation
techniques, the framework tries to find the optimal design for an embedded system.

5. Conclusions

As embedded systems are becoming increasingly ubiquitous and interconnected, they attract a
world-wide attention of attackers. This makes the security aspect during the design of these systems
more important than ever. However, state-of-the-art design tools and methodologies for embedded
systems do not consider system security as a primary design objective. This is especially true for the
early design phases in which the process of design-space exploration is of eminent importance for
performing trade-off analysis. Any security measures that may eventually be taken much later in
the design process will then affect the already established design trade-offs with respect to the other,
and more traditional, design objectives like system performance, power consumption and cost. It goes
without saying that such a design practice leads to suboptimal products.

In this position paper, we therefore argued for security-aware design methods for embedded
systems that will allow for the optimization of security aspects of embedded systems in their earliest
design phases as well as for studying the trade-offs between security and the other design objectives
such as performance, power consumption and cost. To this end, we proposed a multifaceted,
scoring-based methodology for quantifying the degree of secureness of embedded system design
instances, which would allow for incorporating these secureness quantifications in early design-space
exploration of embedded systems. The proposed methodology has not yet been implemented,
and would require further research to do so. We do hope, however, that this position paper will
be a trigger for more wide-spread research on techniques that allow for incorporating security as a
first-class citizen in the process of early design-space exploration of embedded systems.
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