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Abstract: The development of Internet of Things (IoT) systems is a rapidly evolving scenario, thanks
also to newly available low-power wide area network (LPWAN) technologies that are utilized for
environmental monitoring purposes and to prevent potentially dangerous situations with smaller and
less expensive physical structures. This paper presents the design, implementation and test results
of a flood-monitoring system based on LoRa technology, tested in a real-world scenario. The entire
system is designed in a modular perspective, in order to have the capability to interface different
types of sensors without the need for making significant hardware changes to the proposed node
architecture. The information is stored through a device equipped with sensors and a microcontroller,
connected to a LoRa wireless module for sending data, which are then processed and stored through
a web structure where the alarm function is implemented in case of flooding.

Keywords: wireless sensor network; flood; WSN; Internet of Things (IoT); LoRa; liquid level
monitoring; risk prevention

1. Introduction

Wireless sensor networks (WSNs) include many fields of application, made increasingly possible
by Internet of Things (IoT) solutions. The ability to easily connect devices for the purpose of data
collection and to create networks with different specifications makes these flexible structures suitable
for a wide variety of applications [1-14]. Very often, one of the characteristics of a node belonging to a
WSN is extremely low energy consumption, since this device must operate via battery power [15-18].
In this regard, low-power wide area networks (LPWANS) are considered particularly suitable thanks
to their relatively low operating power and the large distance covered [19,20].

Among the new leading technologies in this area, we consider LoRa [21-23], based on the chirp
spreading spectrum (CSS) technique, currently most frequently used with the LoRaWAN Medium
Access Control (MAC) level [24-26]. This technology stands out for its easy use, its high energy
efficiency, and its excellent performance in environments where the signal to noise ratio (SNR) is
low. WSN structures are particularly useful in environmental phenomena monitoring, especially in
scenarios where the occurrence of an event can lead to significant safety problems [27-29].

Flooding is a common event in rural and urban environments where the presence of water is due
both to geographical features, such as rivers or lakes and to the proximity of sensitive urban elements.
Flooding can present a high level of risk. For example, the flooding of roads can damage infrastructure.
Besides endangering public safety, this can have economic and social repercussions. [30,31]. Flooding
can be caused by adverse rain conditions, wind, temperature changes [32]. A forecast based on a
theoretical approach to this event is complex [33] and often not rapidly obtainable, therefore the
development of early warning systems [34—40] is useful and necessary. In this work, a flood-monitoring
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system was developed, designed for installation and use in urban and non-urban settings, to obtain an
early warning of the possible phenomenon. This would enable the implementation of countermeasures
that would inform the user of the possible risks or, in the event of service disruption, the implementation
of resolution strategies. One of the main objectives of this paper is the reliability of the device, for which
a customized electronic board has been created. It includes the data collection and transmission
functions, powered by a battery supported by a solar harvesting mechanism. Another important
specification is the modularity of the configuration which will be discussed later.

The implemented system is formed by a sensor node based on a low consumption microcontroller,
equipped with a LoRa wireless module for data transmission, all powered by a 3.7 V lithium battery
recharged through sunlight using a photovoltaic cell and a dedicated charging module. Using this
approach, it was possible to obtain a good energy performance, while maintaining the possibility of
obtaining a wide coverage range for radio communication.

This paper is structured as follows. Section 2 reports an overview and comparison with related
works. At the beginning of Section 3, an overview of LoRa and LoRaWAN is provided. In Section 3.2
the general architecture of the system is described. Then the design and the practical implementation
of the hardware structure that creates the WSN sensor node, as well as the organization and description
of the web section for data manipulation, are presented. In Section 4 the article reports the results
related to the energy performance of the node. Finally, it is shown that the system can be used to
manage the remotely received data, on which the early warning can be implemented.

2. Related Works

In Table 1 a comparison with selected related works, dealing with WSN implementation of
flood-monitoring systems, is reported. All the considered works deal with a flood-monitoring system,
even if with different approaches. In [34,35], a neural network-based approach is shown. The prediction
models offer a useful instrument for the time of flooding estimation but strongly rely on the coefficient
of determination of the algorithms. A more detailed description of the hardware configuration of
the structures is missing, as the works are more focused to describe the developed neural model.
In [36], a GSM-based flood and earthquake detection and rescue system is presented. An earthquake
or flooding event triggers an SMS alert to authorities and sonorous and visual alarm for the nearby
civilians. The system is composed by an Arduino Mega 2560 [41] based sensor node and a separated
alarm unit that includes a siren and alarm light-emitting diodes (LEDs), along with an ESP8266 [42]
that allows internet connection for remote data reading. Being the system composed of multiple
different units, which also implement less energy-efficient radio technologies compared to LoRa,
such as GSM [43] the overall energy efficiency is reduced. The system includes different discrete
electronic boards that need to be programmed separately, making the firmware updating a more
complex process, along with increasing the manufacturing cost. The final electronic board is not
well suited to outdoor working conditions, as it does not feature any enclosure. The paper does not
provide a detailed description of the results and of the web structure used for managing and displaying
the data obtained. In [37], a survey on the transmission behavior and reliability between the sensor
nodes and the hubs of the WSN is presented. In this paper, tests have been performed to study the
transmission quality of the node-gateway connection at different height dislocations of the devices,
and different antenna polarization setups. A more in-depth description of the nodes and hub hardware
structure is missing. The paper does not deal with the implementation and description of a data
analysis structure following the physical layer. In [38], the application of a LoRa and narrowband
Internet of Things (NB-IoT) flood-monitoring system to the development of a damage insurance map
is reported. The deployment of a WSN to contribute public data collection to the Storm and Flood
Damage Insurance Map in Korea is proposed. An overview of the hardware setup is not provided,
along with a description of the testing methods and results. In [39], a LoRa sensor node side analysis is
carried out, with the discussion of a water height measuring approach showing how it is possible to
measure water height through an ultrasonic sensor and implement a Twitter-based social network
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alarm, although this approach makes the alarm mechanism not generalizable to different alert interfaces.
The database, interface and alarm developments are not reported. None of the above flood-monitoring
system reported works present a focus on the node power consumption analysis in a WSN, albeit it
being a topic of fundamental importance in the research area. In [40] the results achieved in energy
management are worse compared to those of the proposed work because the sensor node uses a
more expensive, high capacity 17 Ah, Saft LS33600 (Saft, Levallois-Perret, France) [44] battery, and the
estimated discharge time is 3 years, which means in proportion to the presented work a higher energy
consumption. Furthermore, no energy-harvesting technique has been implemented, so the battery must
be replaced when exhausted. In comparison with the previously mentioned works, this paper reports
the development of a flood-monitoring system providing details both on the hardware, firmware and
server level. Moreover, in the proposed solution, it is shown the capability of miniaturization and
shape adaptability of the sensors, because of the intrinsic nature of the implementation.

Table 1. Comparison table.

[34] [35] [36] [371 [38] [39] This Work
Transmission  Not specified " " Lora,
technology 802.15.4 based GPRS GM LoRa NB-IoT LoRa LoRa
Not properly Pressure Resistive Float Not Ultrasonic ~ Resistive
Sensors type s . properly
specified sensor sensor switch e sensor sensor
specified
Raspberr TGO,
Processing Arduino, ASTI-ARQ Arduino, Pi Aljtme }; Not Wemos d1, Custom
board Raspberry Pi [45] ESP8266 ,se tup & specified  Raspberry board
Pi
Power. Not Not Not Not Not Detailed
consumption Not reported
analysis reported reported reported reported reported reported

* GPRS: General Packet Radio Service; GSM: Global System for Mobile Communications.

3. Materials and Methods

3.1. A View on LoRa and LoRaWAN

LoRaWAN [24-26] is a free network protocol, regulated by the LoRa Alliance [23], designed for
use on devices where hard management of energy availability is required. The devices that implement
this network functionality are based on chips that use the LoRa modulation technique [21,22]. LoRa
technology sacrifices the speed of transmission to make long transmission distances obtainable, which
makes it suitable for the realization of WSN systems where there is the need to send small amounts
of data at regular intervals of time. Compared to other wireless IoT communication solutions based
on the 802.15.4 standard [46], the aforementioned modulation allows taking advantage of much
less sophisticated transceiver devices because the system does not require a highly accurate and
expensive reference clock signal source. This translates into reduced module cost and superior energy
performance. A comparison between LoRa and NB-IoT [47] is reported in [48]. The latter specifies
that for LoRa based devices energy demand is lower compared to NB-IoT based devices, which
present synchronization requirements. Compared to LoRa, the narrowband Internet of Things offers
the advantage of higher data rates and lower latency, features that are not strictly necessary in the
monitoring of slowly evolving environmental phenomena such as flooding.

In [49] an energy-efficiency comparison between LPWAN-based IoT devices is presented, reporting
SigFox [50] having similar energy performances to LoRa, although the network coverage for SigFox
can be more expensive and less accessible than LoRaWAN, which only requires a gateway deployment.
A network coverage comparison between these LPWAN wireless technologies is reported in [20].

LoRa-based devices allow different radio communication parameters to be configured. Thus,
allowing several data rates and sensitivity levels to be chosen based on the specific application
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requirements. Carrier frequency is the center frequency of the transmission band, located in ISM
(industrial, scientific, and medical) bands that differ in various world regions, for Europe 868 MHz,
for the US 915 MHz, and for Asia 433 MHz. Spreading factor (SF) is the ratio between symbol rate
and chip rate, which can be selected from 6 to 12. A higher spreading factor increases SNR allowing
communication over longer distances and in the presence of higher noise levels, yet time on-air is
increased concerning lower SF, hence increasing energy consumption. Bandwidth (BW) is the range of
frequencies used in the transmission band; higher BW means higher transmission speed but lower
sensitivity due to the increased noise effects, lower BW instead allows more sensitivity at a lower data
rate. Coding rate (CR) is the forward error correction rate used. A higher CR allows increased error
protection at an increased time on air. Transmission power is the transceiver maximum output power
during transmission interval, higher output power allows longer transmission range but increased
energy consumption.

The LoRaWAN network architecture consists of devices that communicate with a central gateway
through a single-hop connection. The gateway is organized in a star structure and acts as a bridge
between the nodes and the cloud as shown in Figure 1.

Nodes Gateways Internet User Applications
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Figure 1. LoRaWAN network architecture.
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3.2. The Proposed System Architecture

In Figure 2 the general application scheme of the proposed flood-monitoring system is presented.
It has several key characteristics; among these, the most important is the low power consumption of the
sensor node. The latter is not powered by the electrical network but supported by a renewable energy
source like solar harvesting [51-53]. In addition, it can also be powered by a multisource harvesting
technique [54-57]. The low power consumption has been also achieved by a dedicated operating
algorithm that implements a deep sleep operation.

ey =
L‘ N e ((( ))) ey oy ﬂP D 2
- & The Things Losant IoT @

i I Network web service
LoRaWaN
gateway User data
monitoring
& alarm

Flood risk zone

Figure 2. Scheme of the proposed system.

Concerning the flooding phenomenon, the entire dynamic of the possible presence of water
has been partitioned in three zones (Figure 3): the first non-alert zone, an intermediate non-critical
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alarm zone, and a last maximum flooding partition. These areas are delimited by threshold levels
where the sensors are positioned, so as to achieve a direct correspondence between water level and
triggered alarm.

Level 2 P
treshold syl "T5 77777 TTTT T oo oo T oo oo o m s e m e m e

Level 1 ¢
treshold ==Y _________ cuie e o

Level 0 {

Figure 3. Flooding levels partitioning.

The entire structure of the system is based on the synergy between the hardware section, for the
physical detection of data and transmission, and the Web section, for storage and temporal analysis as
well as for the activation of an alert message in the case of flooding. The packets received at the LoRa
gateway, in this case the Lorix One [58] device, are managed through The Things Network [59] service,
where the sequence of incoming bytes is converted into a JavaScript Object Notation (JSON) object
suitable for data exchange between websites through a payload decoding function. The object contains
a key-value field where an integer numerical value is reported: 0 if the water is below level 1, for the
intermediate level the value is 1, for maximum flooding value 2. Through HyperText Transfer Protocol
(HTTP) integration, this key-value field is sent to the Losant IoT website [60] where data analysis and
email alert functions are implemented.

The advantage of the use of such web services is the possibility of exchanging data between
applications quickly and easily since interfacing is guaranteed at a very high level of abstraction;
this is a fundamental aspect for achieving the goal of system modularity. For the correct operation
and reliability of the system, the payload sending phase is designed to finish when a transmission
acknowledgement is successfully obtained.

The flow chart of the implemented apparatus operation is depicted in Figure 4.

BEGIN
(power on)

I?oard setup External
(microcontroller, Resat
RTC, LoRa module)

'

Water level
reading TTN Ieygl payload Losant payload
- # receiving and pa
v | forwardin, receiving
Payload sending to B
i Yes level >
’ treshold No

level >
treshold
2

RTC alarm reset

¥ Alarm Alarm
Deep Sleep mode email 1 email 2
until next
interrupt from RTC
— \

Figure 4. Flow chart of the system functional steps.
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3.3. Sensor Node

The sensor node is based on a customized electronic board equipped with a Microchip Atmel
SAMD?21 microcontroller, REFM95W LoRa module, sensor interface and 3.3 V voltage regulator.
The printed circuit board is made on FR-4 support, with dimensions of 5 X 5 cm. The microcontroller,
a central data processing unit, manages the external modules and the temporal control of actions as
shown in Figure 5 at block scheme level. Communication between the microcontroller and LoRa module
is implemented using a serial peripheral interface (SPI) along with dedicated digital Input/Output (I/O)
lines. An 868 MHz monopole antenna is connected to the wireless module for radio communication.
The external DS3231 real-time clock (RTC) (Maxim Integrated, San Jose, CA, USA) module, connected
to the custom board, is interfaced by I12C protocol. External sensors are connected to the board in a
bridge-based sensor interface circuit. The entire board is powered by a 3.7 V Li-Ion battery recharged
using an external TP4056 charge regulator module. A universal serial bus (USB) interface is used for

microcontroller firmware upload.
LoRaWAN .
Power Supply =‘ Radio LaRa'

A

8P
+
Digital /O

v

MICROCONTROLLER

SAMD21G18A

A
Power Supply

Power Management

Power Supply

Sensor

Interface

TP4056 charge module + LDO regulator

|

Sensors

Solar Cell
olar Ce ‘ battery

Li-lon

Figure 5. Block scheme of the sensor nodes architecture.

The physical sensors are forks of conductive material (model YL-69). In a standard situation
between the metal terminals, the measured electrical resistance is very high. When the sensor comes
into contact with the water, an immediate significant drop in the electrical resistance between the
metal terminals is measured, allowing the reading of this structure using a resistive voltage divider.
The key advantage of this solution is the simplicity and the reduced lumped elements count, which
significantly lowers the overall costs for the system implementation. Besides the fact that voltage mode
or current mode bridge-based solutions, like those proposed in [61-65], could be more effective for noise
reduction, increased sensitivity and accuracy, they need a higher number of discrete components to be
implemented. Moreover, the high resistance variation of the fork sensor in presence/absence of water
leads to an ON/OFF behavior which can be clearly detected by a simple voltage divider architecture.

In addition, the simple voltage divider readout interface is quite effective for the goal of system
modularity. In fact, the fork module could be replaced by any resistive sensor, while the produced
output voltage swing can be adjusted by changing only the reference resistor of the voltage divider.
This feature, in combination with the simple high level of abstraction for the data communication and
exchange, leads to a general-purpose LoRaWAN sensor node architecture, which promotes modularity.

The output of the analog stage is then processed by the analog-digital converter (ADC) of the
micro-controller and the subsequent mapping of the values obtained to identify flooding situations.
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The wall fixing of the sensors is achieved through the use of a custom enclosure developed using the
fused deposition material (FDM) 3D printing technique in Figure 6.

Figure 6. Wall mount sensor enclosure.

The prevention of external disturbance actions on the sensors is easily achievable through the
implementation of a fixed cover which provides a pair of small holes that allow the correct flow of
water inside the enclosure.

The micro-controller, model Atmel SAMD21G18A (Microchip Technology, Chandler, AZ, USA) [66]
from Microchip, features 32-bit arithmetic on ARM Cortex-MO0 architecture, 256 KB flash memory,
12-bit analog to digital converter (ADC), SERCOM interfaces, USB 2.0 interface for connection with
the computer. 52 I/O pins are available, all in a TQFP48 package. The firmware is loaded through the
Arduino integrated development environment (IDE) [67] after the flash of the bootloader via Atmel
in-circuit emulator (ICE) [68], for which specific pins have been dedicated to the electronic board.

In order to monitor the presence of water at given time intervals, it is necessary to carry out
checks periodically, and therefore a precise time reference that does not degrade in the long run
is needed. This function has been implemented through the use of a RTC model DS3231 (Maxim
Integrated, San Jose, CA, USA) [69], with available externally programmable interrupts. The choice of
the interval is related to the speed with which a flood can occur, which is of an order of magnitude
ranging from minutes to hours [30,32], according to the structural characteristics of the mounting
location. This parameter can be reconfigured over LoRaWAN by the implementation of a downlink
frame at the end of every reading cycle where the value is obtained on the server-side, making remote
management possible.

The on-board LoRa module is the RFM95 [70] model from HopeRF Electronics. With the small
dimensions of 1.6 cm X 1.6 cm this component can be easily installed on the board. The component
datasheet specified supply current absorption for BW 125 kHz, 13 dBm power output, SF12 is 0.2 pA
in sleep mode, 11.5 mA in receiver mode and 28 mA during transmission. For the combination of
spreading factor (SF8) and bandwidth (125 kHz) used, the typical sensitivity from the datasheet is
—126 dBm. Spreading Factor 8 has been chosen because it is an intermediate setting for lower time
on-air, which reduces energy consumption. It allows sufficient sensitivity for signal reception in the
test location of choice.

1.  The antenna is connected to the wireless module by a U.FL surface mount connector placed at the
end of a coplanar waveguide. Concerning the power supply module, in order to recharge the
battery, a Seed Studio solar cell [71] with dimensions of 55 mm X 70 mm has been used. The solar
panel is connected to a TP4056 charging regulator module [72] that features input voltage range
from —0.3 V to 8 V with a maximum charge current of 1 A and short circuit protection, along with
operating temperature range from —40 °C to +85 °C and USB recharge port.

2. The battery utilized is a Li-Ion 18650 with a 2200 mAh capacity. A 3.3 V power supply is provided
through a low-dropout (LDO) voltage regulator model TLV702 [73]. In Figure 7 a photo of the
prototype board is presented.
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Figure 7. Implemented custom board.

The custom board, external charger and RTC modules are mounted in a 3D printed waterproof
enclosure. The solar cell is mounted on the top cover of the enclosure and connected to the charging
module by internal wires.

Energy Consumption Measurement Setup

As previously described, energy efficiency is a fundamental factor for a device belonging to an
LPWAN. Measurements were performed on a Tektronix digital oscilloscope DPO 3032 (Tektronix,
Beaverton, OR, USA) [74] and Tektronix’s current probe and amplifier AM 503B (Tektronix, Beaverton,
OR, USA) [75]. The parameters for wireless transmission are listed in Table 2.

Table 2. Transmitter parameters.

Parameter Value
Frequency 868.2 MHz
Bandwidth 125 kHz
Spreading Factor SF8
Coding Rate 4/5
Transmission Power 14 dBm

4. Results and Discussion

4.1. Energy Consumption Results

In Figure 8 a MATLAB plot from an oscilloscope sample set over 20 s is shown. A time slot of 10 s
represents the board setup phase, immediately following the power on. In this period of time, the
microcontroller is running the code to set every external module and interrupt capability. Then, there
is the first standby phase which lasts until the next received interrupt from the RTC where a sensor
value sample is taken and transmitted (this scenario is reported in Figure 9). For both Figures 8 and 9,
the vertical axis ticks show the current absorption values during both setup and standby phase. In the
vertical scale, 10 mV corresponds to 5 mA, so it is, therefore, immediately able to obtain the current
value in the idle time through a proportion; it is on average 13 mA during the setup time period. In the
standby phase, the absorption of current drops to an average of 0.3 mA, or 300 pA.
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Figure 8. Power-on and sleep current consumption graph, red line indicates the average value.
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Figure 9. Time graph of a wake-up and transmission cycle.

This result is very important in light of the objective of obtaining a low power device. In a deeper
in-depth analysis of the battery charge-discharge variations, it is appropriate to consider the actual
different values of current absorption during the different time periods, especially during nighttime,
where the node has to operate using the energy stored during the light hours.

The average duration of a wake-up and transmission cycle is 0.64 s, with two idle phases,
Ty = 0.45 s, where the sensor value is read and the data packet prepared for the transmission, and
T, = 0.135 s where the standby mode is reactivated. The transmission has an average duration of
Tex = 0.052 s. During the first period of time and before returning to deep sleep the current absorption
Iigle is on average 13 mA as previously reported while the transmission span reports an average current
absorption of Iix = 45 mA. The chosen test location has an interval of time between sunset and sunrise
of about Tiot = 15 h in the worst case, meaning that running a data reading cycle every 10 min the total
runs in one night time are Neycles = 90. The single read discharge is given by:

C" = ([Tigre - (T1 + T2) + Iix - T ])/3600 = 0.0028 mAh 1)
The total battery discharge due to the total data reads and sending cycles can be expressed as follows:
Cq =C" - Neycles  0.249 mAh )

while the discharge during the total deep sleep period is calculated by:

Cs = (Tsleep . Isleep)/3600 ~ 4.5 mAh (3)
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being,
Tsleep = (Ttot - 3600) — (T - Ncycles) =53,943 s 4

The aforementioned calculated quantities allow the total charge variation during the night time to be
found easily by adding the two contributions; therefore, we have:

Ctot = Cd + Cs ~ 4.74 mAh (5)

Notice almost immediately that a 2200 mAh battery is absolutely sufficient to guarantee the
uptime even in the hours of insufficient insolation. Taking into account that the battery is recharged by
solar harvesting in the daytime, and given that the wake-up and data transmission phases have almost
negligible durations compared to the deep sleep period, which is in the order of minutes against tens
of seconds, it is possible to obtain 100% uptime from the moment of the first activation, ensuring
energy self-sufficiency. In a worst-case scenario, assuming the total absence of solar charging, with
reading cycles as previously reported, the charge variation over 24 h can be calculated by means of
a proportion, resulting in about 7.58 mAh, which corresponds to a total discharge of the 2200 mAh

battery in more than 280 days.

4.2. Functionality Tests

Concerning the system implementation in a real environment, a location in accordance with the
city of L’Aquila local administration has been chosen that is particularly subject to the risk of flooding
due to the presence of the Vetoio river (Figure 10). The nearest LoRa gateway is located about 1 km far

from the implemented sensor node.

yyyyyyyyyy

g

4 Sty
e

5 | e na

Figure 10. Testing location map (City of L’Aquila, center of Italy).

In Figure 11, the time graph of a flooding laboratory simulation is shown, where the water
level has been purposefully raised bypassing the intermediate alert level only for testing purposes.
The figure is captured from the plot of Losant [oT received values (time and date are on the horizontal
axis and the flooding level on its three values on the vertical one).
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Figure 11. Time series graph of water level over three days of laboratory test.

In Figure 12, a time graph concerning the water level on the actual test location reported in
Figure 12 is shown. The horizontal axis represents a time span of 24 h, during which the water level
has risen above the guard level, represented by the value 0, for a time duration of approximately 4 h.

‘ Water level time graph 24h ot 5m res. |

2

Water Level

]
04/08 0710 05/08 07:10

Figure 12. Time series graph of water level over one day of test.

The data obtained were stored remotely for possible further elaboration and an e-mail alarm was
activated with the aim of informing about the possible danger.

5. Conclusions and Future Works

In this paper, an autonomous flood-monitoring system based on LoRa technology has been
presented. The choice of this wireless technology, as well as a sensor node with the previously
illustrated structure, proved to be effective to obtain energy performance suitable for a battery-powered
IoT device. The structure of the aforementioned node has a modular implementation, it being
unnecessary to make significant changes to the electronic board to obtain the possibility of using it
as an interface for different types of sensors capable of detecting phenomena that differ from those
taken into consideration in this work. Future developments include improvements at the hardware
level, such as the direct integration of the power-management system on the electronic board, but also
in software as the implementation of superior safety functions. Due to the system power efficiency
achieved, it is possible to use a smaller and cheaper battery pack solution in a commercial scenario.
Moreover, the proposed systems, thanks to the high-performance microcontroller utilized, can be
expanded easily to a wireless multi-sensor network with the aim of monitoring various environmental
and structural parameters. The possibility of data processing at a higher level makes the structure
scalable to a large number of devices, even if in such a structure the traffic management policy relating
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to the gateway could be not negligible when managing a number of nodes of the order of magnitude
of hundreds.
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