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Abstract: Floating-point multipliers have been the key component of nearly all forms of modern
computing systems. Most data-intensive applications, such as deep neural networks (DNNs), expend the
majority of their resources and energy budget for floating-point multiplication. The error-resilient
nature of these applications often suggests employing approximate computing to improve the
energy-efficiency, performance, and area of floating-point multipliers. Prior work has shown that
employing hardware-oriented approximation for computing the mantissa product may result in
significant system energy reduction at the cost of an acceptable computational error. This article examines
the design of an approximate comparator used for preforming mantissa products in the floating-point
multipliers. First, we illustrate the use of exact comparators for enhancing power, area, and delay of
floating-point multipliers. Then, we explore the design space of approximate comparators for designing
efficient approximate comparator-enabled multipliers (AxCEM). Our simulation results indicate that
the proposed architecture can achieve a 66% reduction in power dissipation, another 66% reduction in
die-area, and a 71% decrease in delay. As compared with the state-of-the-art approximate floating-point
multipliers, the accuracy loss in DNN applications due to the proposed AxCEM is less than 0.06%.

Keywords: floating-point multiplication; deep neural networks; approximate computing

1. Introduction

Energy consumption is the main issue in VLSI design, especially in nano-scale devices, while
continuing demand for higher computational power is increasing for emerging applications. Nowadays,
computing systems are increasing in wireless and battery-operated devices such as cell phones. Research
shows that accurate computing units are not necessary for many applications such as data mining and
multimedia applications. They can tolerate imprecision [1]. Approximation methods are applied in
different levels of designs, and they provide a trade-off between the required system parameters such as
power consumption, delay, and accuracy which is presented by several metrics as the Mean Error Distance
(MED), Mean Squared Error (MSE), and Mean Relative Error Distance (MRED) [2].

Floating-point multiplication is the main component in many applications such as DSPs, multimedia,
and it may cause considerable delay and power consumption. In floating-point multiplications, the most
resource-intensive portion is the mantissa product computation unit, consuming almost 80% of the total
system energy [3]. Hence, several researchers have proposed various approximate multiplications in
the timing or functional behaviors to reduce the logic complexity or voltage scaling techniques [4–6].
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However, there has been less effort in the design of approximate floating-point multipliers. It includes two
main steps; (1) the addition of exponents, and (2) multiplying mantissae. Therefore, we need a 23-bit and
53-bit multiplication for single precision and double precision, respectively. Some approximate multiplier
blocks are presented to generate partial products [7], and also, some approximate adders are proposed to
accumulate partial products [8]. We aim to apply approximation methods in the mentioned unit to lower
its power consumption and silicon footprint while keeping the error at an acceptable range.

In this paper, we introduce an approximate comparator-enabled multiplier, called AxCEM, that can
reduce the delay and power consumption. We propose a novel floating multiplier using an approximate
comparator. Instead of mantissae multiplication (23-bit Multiplier for single precision and 52-bit multiplier
for double precision in IEEE-754), we exploit an approximate comparator, which reduces the delay and
provides an energy-efficient multiplier.

The contributions of this paper are as follows: (1) We investigate the use of comparators, as a novel
approximation technique, for enhancing power, area, and delay of floating-point multipliers. (2) To further
improve the circuit metrics, we explore the design space of approximate comparators for designing efficient
approximate comparator-enabled multipliers (AxCEM). We propose two novel designs called AxCEM1
and AxCEM2 by performing gate-level logic simplification to CEM. (3) Finally, we show that the proposed
designs, when employed in DNN applications, demonstrate less than 0.06% accuracy loss, while they show
better performance (in both training and inference steps) compared to the state-of-the-art approximate
floating-point multipliers.

The rest of the paper is organized as follows. Section 2 reviews some prior work on this subject.
Section 3 describes the proposed approach and our novel designs. The experimental results are described
in Section 4. Finally, Section 5 concludes the paper.

2. Background and Related Work

2.1. IEEE 754

Based on IEEE 754 standard, a 64-bit floating-point number, A, consists of three parts: (1) the sign bit,
(2) the exponent, and (3) the fraction, as shown in Figure 1. Starting from left to right, the most significant
bit, A63, represents the sign bit. If A63 is 1, the number is negative; otherwise, it is considered as a positive
number. The exponent portion is indicated with the next 11 bits, A62, ..., A52. Lastly, the 52 least significant
bit, A51, ..., A0, show the mantissae which is a number between 1 and 2 (note that the 1 is implicit and the
52 LSB bits, store a fractional value).

                                     

Sign
(1 bit)

Exponent
(11 bit)

Fraction
(52 bit)

Figure 1. A 64-bit floating point number in IEEE 754 standard.

Given two such numbers, A and B, the multiplication can be accomplished through a three-step
operation. Based on Figure 2, the sign bit of the result, C63, is calculated by XORing A63 and B63. Adding
the exponent portions of the inputs leads to the exponential value of the result. And the 52-bit fractional
value or mantissa is equal to the product of input fractions.
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Figure 2. The multiplication operation of two 64-bit floating-point numbers using IEEE 754 standard.

2.2. Related Work

In this section, we review some of the prior research that focuses on approximate multipliers.
Mohapatra et al. [9] propose to design techniques that enable the hardware implementations to scale
more gracefully under the presence of voltage over-scaling. Hashemi et al. [5] proposed a dynamic
and fast bit selection scheme to reduce the size of multipliers. Vahdat et al. [10] proposed a scalable
approximate sequential multiplier which reduces the number of partial products by truncating each of the
input operands based on their leading-one bit position. In [7,11], smaller approximate and low-power
multipliers are first designed, and then, they are used as basic building blocks to form larger multipliers.
References [12,13] proposed to employ approximate adders like iCAC [14] or CMA [12] for calculating
the summation of the partial products, or to skip some of the least significant bits. Imani et al. proposed
the CFPU, CMUL, and RMAC in [15–17], respectively. CFPU and CMUL are configurable floating-point
multiplier, and they decide to operate in the approximate or exact mode by examining only one of the input
mantissae. RMAC uses addition for manitssae product computation, instead of multiplying them [17].
In [18], Jiao et al. proposed a multiplier which exploits the computation reuse opportunities and enhance
them by performing approximate pattern matching.

Due to the inherent resilience of Neural Networks (NNs) to errors, many prior works have
proposed to apply approximate computing to DNNs for exploiting power and area efficiency. In [19],
Venkataramani et al. proposed the characterization of neurons into resilient and sensitive neurons. Then,
the resilient neurons are replaced with their approximate counterparts. Zhang et al. proposed to improve
the power consumption and the delay by overlooking uncritical memory accesses [20]. Floating-point
multiplication is one of the most key units in DNNs that consume a vast majority of the whole DNNs energy
and silicon budget. Therefore, some prior work attempted on reducing the power consumption and area
occupation of the DNNs by investigating the benefits of approximate multipliers when employed in a DNN.
In [21], Sarwar et al. proposed an approximate multiplier that utilize the notion of computation sharing
to achieve improved energy consumption. Neshatpour et al. proposed Iterative CNN by reformulating
the CNN from a single feed-forward network to a series of sequentially executed smaller networks and
allows the CNN function to be approximated by creating the early termination, with far fewer operations
compared to a conventional CNN [22].

3. Proposed Method

3.1. Approximate Mantissa Product Computation: The Comparator-Enabled Multipliers (CEM)

We propose to use a CEM unit instead of an accurate multiplier for the calculation of mantissae
product. A CEM unit takes two 52-bit mantissae A[51 : 0] and B[51 : 0] as inputs, compares them,



J. Low Power Electron. Appl. 2020, 10, 9 4 of 15

and outputs the smaller one as their product C[51 : 0]. Figure 3a shows the implementation of the
proposed CEM (as shown in Figure 3b the Cout is added to the exponent portion of the final result).
Employing a CEM as an alternative for an accurate multiplier decreases the power consumption and area
of the FP multiplier, significantly. Note that the proposed CEM consumes less power and area than an
accurate comparator. Owing to the fact that the CEM only identifies the smaller operand (i.e., it only
outputs the signal A < B). Hence, it does not contain the required logic for identifying A = B and A > B.
After a thorough investigation, we realize that the proposed CEM has a relatively lower error under two
conditions: (1) when the absolute difference between the operands is rather significant, or (2) at least one
of the operands is roughly equal to 2 or 1. Apart from that, the degradation in accuracy is relatively higher.
We perform excessive simulations to justify the validity of these two conditions. Since the mantissae is
always between 1 and 2, we consider perform our simulations on this range, i.e., 1 ≤ Mantissae < 2.

A

mux

B

C[51:0]

s

1

0

comparator

A<BA[51:0]

B[51:0]

A[51:0]

B[51:0]

64 bit

64 bit

OR

A[51]

B[51] Cout

(a)

                                         

XOR

Sign Exponent Fraction

                                         

                             

A

 

B

   

   

Comparator

OR

If equal 1+1

(b)

Figure 3. The proposed CEM; (a) the proposed CEM mantissae multiplication, (b) the whole floating-point
multiplier using the proposed CEM.

In Figure 4, we divide each of the input mantissae into four quarters (denoted with Q1 to Q4), based
on their proximity to 1. Each quarter refers to a specific range for the input mantissae; (1) for Q1 the
mantissa is in the range [1, 1.25], (2) for Q2 the mantissa is in the range [1.25, 1.5], (3) for Q3 the mantissa
is in the range [1.5, 1.75], and (4) for Q4 the mantissa is in the range [1.75, 2]. Each pair of input ranges
are identified using the notation Qi −Qj, where 1 ≤ i, j ≤ 4. For example, Q1 −Q4 refers to a case where
the first input is in the range [1, 1.25], and the second input is in the range [1.75, 1]. This leads to 4×4
combinations of input ranges. Figure 4 demonstrates the error of the proposed CEM over each of these
16 input ranges, in terms of MED and MSE metrics. Figure 5 shows the error percentage of the CEM.
These metrics are evaluated over 10000 randomly generated numbers—in Figures 4 and 5 all three metrics
follow almost the same trend; thus, we only investigate the errors through the MED metric. As shown in
Figure 4, for six input ranges, at least one input is close to 2 (i.e., there is at least one Q4, e.g., Q4−Q1 and
Q3−Q4), thus they have relatively smaller MED. Within these six input ranges, as the difference between
the two inputs enlarges (or one input gets closer to 1), the error gets smaller. This is why [Q1− Q4]
and [Q4− Q1] have the lowest errors. For Q1− Q1, both input ranges are close to 1; therefore, it has a
relatively small MED. The same error pattern can be seen for other input ranges as well, i.e., as the absolute
difference between two numbers enlarges, the error gets reduced. Also, as one input gets closer to 2 or 1,
the error decreases.
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Figure 4. The MED and MSE of the proposed CEM for different input ranges.

0

5

10

15

20

25

30

35

E
rr

o
r 

(%
)

Input Range

Min Mean Max

Figure 5. The error percentage of the proposed CEM for different input ranges.

3.2. AxCEM: Approximate Comparator-Enabled Multipliers

We propose to apply approximate computing to the proposed CEM to further reduce its power
consumption, area occupation, and delay. By applying logic simplifications to the CEM, we propose two
novel approximate CEMs, namely “AxCEM1” and “AxCEM2”. The main idea for improving the circuit
metrics (i.e., the power consumption, silicon area, and the delay) is to simplify the boolean equations of the
CEM. However, this simplification is accomplished in a way that it preserves the accuracy at an acceptable
range. This, prior to the logic simplification, requires a thorough examination of the CEM error for different
input ranges (similar to Figures 4 and 5). Next, the logic responsible for the error at a specific range should
be modified in a way that it consumes less power and area, compared to the proposed CEM. Note that
such logic simplifications, although improve the circuit metrics, often entail some amount of accuracy loss.
However, we show our approach for simplifying the CEM logic, while decreases the accuracy in some
cases, may lead to accuracy improvements for other input ranges. For the sake of simplicity, we illustrate
our approach on 3 MSB bits of the proposed CEM over Q3−Q3 input range. We choose Q3−Q3 because
it is one of the input ranges in which the CEM has relatively low accuracy.
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Step 1. We examine the error histogram of the CEM for a specific input range. Then, we check if it
mostly contains negative or positive errors. If the vast majority of errors are positive, the CEM should
be under-approximated, i.e., the approximate results should be less than the accurate results, averagely.
Otherwise, the equation should be simplified (approximated) in a way that generates results that are larger
than the accurate results (over-approximated).

Figure 6 demonstrates the error histogram of the CEM over Q3− Q3 input range. As shown in
Figure 6, all errors are positive, having their values between 0.35 to 0.75. Thus, a logic simplification that
under-approximate the CEM may have to cause the lowest accuracy loss—this approach might even lead to
accuracy improvements because it cancels some of the positive errors.
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Figure 6. The error histogram of the CEM.

Step 2. For the case of under-approximation, the simplifications should result in more 0s in the outputs.
Conversely, for over-approximation, we simplify the boolean equations of CEM in a way that the simplified
version tends to generate more 1s in the output.

In our example, step 1 concludes that under-approximation sounds a viable approach for logic
simplification. Moreover, the errors with the highest number of repetitions are in the range of 0.4 to
0.5. Therefore, if the approximation leads to a -0.5 error in comparison with the CEM, the accuracy loss
will be quite low. Bit position 51 has a value of 0.5. Hence, if the CEM results have a 1 in bit position 51,
the approximate version should result in a 0 in the same bit position. Equation (1) shows the boolean
equations for 3 MSBs of the proposed CEM. In our example, for each bit position, we simplify the CEM
equations while satisfying two conditions: (1) the approximation should result in a less complex gate-level
circuit, and (2) deduced from step 1 & 2, the simplification must lead to more 0s in the results, on average.

CEM =


OUT49 = (B49 · A51 · B51) + (A49 · A51 · B51) + (B49 · B51.A50 · B50)

+(B50 · A51.A50 · B50) + (A49 · A51 · A50 · B50) + (A49.B51.A50 · B50) + (A49 · B49)

OUT50 = (B50 · A51 · B51) + (A50 · A51 · B51) + (A50 · B50)

OUT51 = (A51 · B51)

(1)

Equations (2) and (3) show two approximations of the proposed CEM, AxCEM1 and AxCEM2.
For AxCEM1, the AND gate in the MSB of the CEM is replaced with a NOT gate. There are two reasons for
doing so: (1) the power consumption and area is reduced, and (2) in the input range Q3−Q3, both A51

and B51 are always 1; therefore, this approximation causes a −0.5 decrease in the final result. Note that
employing either one of A51 or B51 has the same impact on both circuit and error metrics. In AxCEM2,



J. Low Power Electron. Appl. 2020, 10, 9 7 of 15

the same idea is implemented using a NOR gate. In the CEM structure, the boolean equations for
calculating the LSB bits of the output are more complex than those of the MSB bits. Thus, the LSB bits are
more suitable for exploiting power, area, and delay improvements through aggressive logic simplifications
while the accuracy decrease is kept relatively low. Therefore, for bit positions 50 and 49, reducing the
power consumption, area occupation, and the delay has a higher priority than preserving the accuracy.
As can be seen in Equations (2) and (3), the number of gates required for bit 49 and 51 are drastically
reduced. At the same time, the total delay is reduced because OUT50 and OUT49 (in Equations (2) and (3))
does not take any inputs from their higher bit positions.

AxCEM1 =


OUT49 = A49 ⊕ B49

OUT50 = A50 + (A49 � B49) · B50

OUT51 = A51

(2)

AxCEM2 =


OUT49 = B49

OUT50 = ((A49.A50) · (B50) · (A49 · A50))

OUT51 = (A51 + B51)

(3)

After applying this approach for all 52 bits of mantissae, the error histograms of AxCEM1 and
AxCEM2 become as Figure 7. Based on Figure 7, errors of the proposed AxCEM1 and AxCEM2 are all
negative. The error of AxCEM1 starts from −0.1 and ends with −0.6, and the most repetition occurs for
errors ranging from −0.2 to −0.4. Therefore, AxCEM1 is expected to have less average error (i.e., MED,
MSE, and MRED) than the CEM. For AxCEM2, the error range is from −0.1 to −0.7, and the most repeated
errors are in range −0.3 to −0.5, which is slightly lower than those of the CEM. Figure 8 shows the MED,
MSE, and the MRED for the proposed CEM, AxCEM1, and AxCEM2 for all input ranges. Despite the
aggressive approximation performed for AxCEM1 and AxCEM2, Figure 8a–c shows that these two designs
have higher accuracy than the CEM over several input ranges. As an example, Figure 8a shows that for
input range [Q3−Q3] the MED of AxCEM1 and AxCEM2 are 0.4 and 0.3, respectively, while the MED for
CEM is more than 0.5. This is because the approach was mostly oriented on input range Q3−Q3. After
applying this approach for all 52 bits of mantissae, the error histograms of AxCEM1 and AxCEM2 become
as Figure 7. Based on Figure 7, errors of the proposed AxCEM1 and AxCEM2 are all negative. The error of
AxCEM1 starts from −0.1 and ends with −0.6, and the most repetition occurs for errors ranging from −0.2
tp −0.4. Therefore, AxCEM1 is expected to have less average error (i.e., MED, MSE, and MRED) than the
CEM. For AxCEM2, the error range starts from −0.1 to −0.7, and the most repeated errors are in range
−0.3 to−0.5, which is slightly lower than those of the CEM. Figure 8 shows the MED, MSE, and the MRED
for the proposed CEM, AxCEM1, and AxCEM2 for all input ranges. Despite the aggressive approximation
performed for AxCEM1 and AxCEM2, Figure 8a–c shows that these two designs have higher accuracy
than the CEM over several input ranges. As an example, Figure 8a shows that for input range [Q3−Q3]
the MED of AxCEM1 and AxCEM2 are 0.4 and 0.3, respectively, while the MED for CEM is more than 0.5.
This is because the approach was mostly oriented on input range Q3−Q3.
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
E

D

Input Range

AxCEM2 CEM AxCEM1

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

M
S

E

Input Range

AxCEM2 CEM AxCEM1

(b)

0

5

10

15

20

25

30

35

40

M
R

E
D

 (
%

)

Input Range

AxCEM2 CEM AxCEM1

(c)

Figure 8. Error comparison between CEM, AxCEM1, and AxCEM2; (a) MED, (b) MSE, and (c) MRED.

4. Evaluation

This section assesses the performance (i.e., both circuit and error metrics) of the proposed structures.
Three state-of-the-art approximate floating-point multipliers, namely, CFPU, RMAC, and CMUL, are
chosen as our baselines for comparisons. For circuit metric assessments, we evaluate the static and
dynamic power consumption, area occupation, and delay, and we consider them as circuit metrics.
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To evaluate error metrics, we calculate Mean Error Distance (MED), Mean Squared Error (MSE), and Mean
Relative Error Distance (MRED). Moreover, the performance of all designs (i.e., three previous work, three
novel designs, and one accurate design) are assessed in two ways; (1) as a standalone structure, and (2)
when they are employed in a Convolutional Neural Network (CNN).

4.1. Experiment Setup

For standalone comparisons, all multipliers, both previous and proposed work, are implemented
using VHDL description language. The circuit metrics are evaluated using the Synopsys Design Compiler
synthesis tool using the NanGate FreePDK45nm library [23]. The Monte Carlo method with 10,000 samples
was employed to estimate the MED, MSE, and MRED of multipliers. Based on [2], MED is calculated
using Equation (4), and it represents the average of absolute errors over all possible input combinations.

MED =
1

22n

22n−1

∑
j=0
|Errj| (4)

where Err is the difference between the accurate and approximate result. MSE is represents the average of
squared absolute errors for all inputs, as Equation (5) demonstrates [24].

MSE =
1

22n

22n−1

∑
j=0
|Errj|2 (5)

Finally, as shown in 6, MRED refers to the average of relative absolute errors over all applicable inputs [3].

MRED =
1

22n

22n−1

∑
j=0

|Errj|
RExact

(6)

where RExact is the correct result of the jth input pair.
To evaluate the impact of approximate multipliers (both previous and proposed ones) on the accuracy

of CNNs, operating on MNIST and CIFAR-100 datasets, we replaced the exact multipliers of the CNN
with approximate versions. Accordingly, seven CNNs are constructed based on seven different multipliers:
(1) the exact multiplier, (2) CFPU, (3) CMUL, (4) RMAC, (5) the proposed exact Comparator-Enabled
Multiplier (CEM), (6) the proposed AxCEM1, and (7) the proposed AxCEM2. For the sake of readability,
in this section, we refer to the different CNNs with the name of their multipliers, e.g., a CNN that employs
the AxCEM1 multiplier is named “AxCEM1-CNN”.

4.2. Circuit and Error Metrics

In Figure 9, we compare the circuit metrics (i.e., dynamic and static power consumption, occupied
area, and delay) of the proposed designs with those of the exact multiplier and previous approximate ones.
Figure 9a,b indicate that regarding the dynamic and static power, all three proposed designs, the CEM,
AxCEM1, and AxCEM2 perform the best, followed by RMAC—RMAC also replaces the mantissae product
computation unit with a much simpler circuit, i.e., adder. Figure 9a shows that the proposed AxCEMs
achieve more than two orders of magnitude improvements concerning the dynamic power consumption,
compared with the exact, CFPU, and CMUL multipliers. When compared with RMAC, proposed CEM,
AxCEM1, and AxCEM2 exhibit 30, 65, and 66% improvements, respectively. Likewise, the proposed
designs consume less static power by more than one order of magnitude in comparison with the exact,
CFPU, and CMUL, and up to 66% when compared with RMAC.
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Based on Figure 9c, the proposed designs show superiority compared with other multipliers,
demonstrating more than one order of magnitude less silicon footprint compared with the exact, CFPU,
and CMUL. They also advance more area efficiency than what RMAC offers, ranging from 29 (for CEM) to
65% (for AxCEM2). Moreover, AxCEMs and CEM operate 7X and 2.8X faster than the exact multiplier
(CFPU and CMUL are slightly slower). They also outperform RMAC, exhibiting 1.3X to 3.4X faster
response.
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Figure 9. Standalone comparison of circuit metrics: (a) dynamic power, (b) static power, (c) area, (d) delay.

The benefits achieved on circuit metrics are mainly due to the idea of replacing the mantissae
multiplication unit with a much simpler circuit, the comparator, which, in its own terms, serves a twofold
purpose: (1) the comparator itself is more circuit-budget friendlier than a multiplier, and (2) it also provides
a good starting point for applying hardware-oriented approximation leading to further hardware savings
and performance increase. Nevertheless, all such circuit gains appear at the downside of accuracy loss.

Figure 10 presents error characteristics of the proposed designs in comparison with previous work.
Initially, in Figure 4, the MED of CFPU, CMUL, and RMAC are less than 0.03, while the MED of the
proposed designs reaches up to 0.1. Regarding MSE in Figure 5, RMAC outperforms other designs,
followed by CMUL and AxCEM1, yet all designs have MSEs less than 0.02. Lastly, as shown in Figure 6,
again, RMAC is more accurate than other designs.
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It can be seen that despite their advantages in hardware resources, the proposed designs have
moderate performances w.r.t error metrics. That being said, these metrics, although they sound suitable
for standalone comparisons are rather conservative when it comes to evaluating their performance in
more complex systems such as CNNs. Thus, they are anticipated to fail to be a good representative of the
whole system’s accuracy for two reasons. First and foremost, complex CNN-like systems include many
multi-level addition/multiplication operations in the path from the input to the output layer. In multi-level
operation, approximate units in different layers may reduce (or even cancel) the prior computational
errors. Thus, a proper error analysis of a complex system must consider such error-reducing (or canceling)
properties.

Second, approximate computing is extremely data-dependent. However, the metrics displayed in
Figure 10 are evaluated over uniformly distributed input patterns. In such cases, a more realistic evaluation
must examine approximate units at each layer, only then, calculate the error metrics over their specific
input patterns—because inputs of the next layers are under the influence of their previous layer’s outputs,
approximate units at different layers may have a completely different input pattern. To mitigate the
outcomes of these two problems coupled with standalone metrics, we aim at evaluating the error behavior
of approximate designs with a more realistic approach, i.e., employ them in a CNN and calculate the final
accuracy of the CNN.
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Figure 10. Standalone comparison of error metrics: (a) MED, (b) MSE, (c) MRED.
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4.3. CNN Performance

The architectures used for the CNNs over the MNIST and CIFAR-100 datasets are as follows. As
shown in Table 1, for MNIST: (1) Inputs are 28× 28 black-and-white images. Thus, we allow 784 (28× 28)
input nodes (neurons), (2) A single convolution layer, comprising twenty 9× 9 convolution filters, is
contained within the feature extraction network, (3) The ReLU (Rectified Linear Unit) function takes the
outputs of the convolution layer as its inputs, (4) The outputs of the ReLU function are passed to the
pooling layer in which the average pooling is performed, (5) The classification of the NN comprises a single
hidden layer and an output layer. The hidden layer has 100 nodes that use the ReLU as their activation
function. There is a total of 10 classes to classify; thus, the output layer is constructed with 10 nodes, (6) We
use the Softmax activation function for output nodes. The architecture for CIFAR-100 dataset is roughly
similar to that of MNIST but with the following changes shown in Table 2.

Table 1. The CNN architecture over MNIST dataset.

Layer Remark Activation Function

Input 28× 28 nodes –
Convolution 20 convolution filters (9× 9) ReLU

Pooling Mean Pooling (2× 2) –
Hidden 100 nodes ReLU
Output 10 nodes Softmax

Table 2. The CNN architecture over CIFAR-100 dataset.

Layer Remark Activation Function

Input 32× 32 nodes –
Convolution 128 convolution filters (5× 5) ReLU

Pooling Mean Pooling (2× 2) –
Hidden 256 nodes ReLU
Output 100 nodes Softmax

Figure 11 depicts the quality of results of a CNN over two datasets, i.e., CIFAR-100 and MNIST.
The vertical axis shows the probability of success for correctly classifying and identifying the input images,
and they are normalized based on the exact-CNN. In Figure 11a, it can be seen that the accuracy of
CEM-CNN matches to that of exact-CNN up to the fifth decimal place. AxCEM1 and AxCEM2-CNN
show small degradations in the accuracy compared to exact, CFPU, CMUL, and RMAC. For the MNIST
dataset, the proposed designs-based CNN accuracy loss reaches up to 0.06%—the probability of success
for exact-CNN and AxCEM2 is 96.6921% and 96.6348%, respectively.

As shown in Figure 12, for the training step, in general, the training time for CNNs employing the
approximate multipliers is higher than the accurate-CNN. However, the CNNs employing the proposed
designs (i.e., CEM, AxCEM1, and AxCEM2) takes a shorter time to be trained in comparison with the
CNNs based on the prior approximate multipliers (i.e., CFPU, CMUL, and RMAC). For CIFAR-100 dataset,
Figure 12a shows that the CNNs based on the proposed designs are trained at least 25% faster than the prior
wok-based CNNs. Based on Figure 12a, the training times for CFPU-CNN, CMUL-CNN, and RMAC-CNN
are more than 1600 minutes, while the proposed CEM-CNN, AxCEM1-CNN, and AxCEM2-CNN, are
trained in less than 1200 minutes. For MNIST, the CNNs employing the proposed designs show better
performance in comparison with the prior approximate multipliers based CNNs. Figure 12b shows that
the CMUL and RMAC-CNNs take more than 100 minutes to train. And the training time for CFPU-CNN
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is 95 minutes. For the CEM, AxCEM1, and AxCEM2-CNNs the training times are 89, 49 and 45 minutes,
respectively. In summary, the results insinuate that although the proposed designs, when considered as
standalone designs, perform poorly w.r.t. MED, MSE, and MRED, they are quite good candidates for
approximating CNNs as a whole, due to there negligible accuracy loss when employed so.
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Figure 11. Accuracy comparison of the CNN provided with two different datasets: (a) CIFAR-100,
(b) MNIST.
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Figure 12. The comparison between training times of the CNNs over the two different datasets: (a)
CIFAR-100, (b) MNIST.

5. Conclusions

In this paper, floating-point multipliers that can approximately perform the computation with
significantly lower energy and higher performance are proposed. Our methodology, employing a
Comparator-Enabled Multiplier (CEM), suggests that instead of multiplying fractions, the smaller fraction
can be passed as the product output. Subsequently, two approximate versions of CEM, AxCEM1,
and AxCEM2, were presented to improve the circuit and error metrics of the CEM. In comparison
with other approximate designs, we achieve a 66% reduction in energy consumption. The value of the
MRED of the proposed approach Maximum equaled to 47%. The result of MRED indicated more error
in calculations, but when used proposed structures in CNN, the value of error achieved a maximum



J. Low Power Electron. Appl. 2020, 10, 9 14 of 15

0.06%. Moreover, the CNNs employing the proposed designs takes a shorter time (at least, 6% over the
MNIST and 25% over CIFAR-100 datasets) to be trained in comparison with the CNNs based on the prior
approximate multipliers. The results indicate that the train feature of CNN could reduce the influence of
the proposed error structures. Therefore, it could be concluded that the MRED, MSE, and MED are not
suitable criteria for evaluating the error of computational units. Accordingly, the error of the proposed
structure should be evaluated in real applications.
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