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Abstract: In this study, threshold voltage instability on commercial silicon carbide (SiC) power metal
oxide semiconductor field electric transistor MOSFETs was evaluated using devices manufactured from
two different manufacturers. The characterization process included PBTI (positive bias temperature
instability) and pulsed IV measurements of devices to determine electrical parameters’ degradations.
This work proposes an experimental procedure to characterize silicon carbide (SiC) power MOSFETs
following two characterization methods: (1) Using the one spot drop down (OSDD) measurement
technique to assess the threshold voltage explains temperature dependence when used on devices
while they are subjected to high temperatures and different gate voltage stresses. (2) Measurement
data processing to obtain hysteresis characteristics variation and the damage effect over threshold
voltage. Finally, based on the results, it was concluded that trapping charge does not cause damage
on commercial devices due to reduced value of recovery voltage, when a negative small voltage
is applied over a long stress time. The motivation of this research was to estimate the impact and
importance of the bias temperature instability for the application fields of SiC power n-MOSFETs.
The importance of this study lies in the identification of the aforementioned behavior where SiC
power n-MOSFETs work together with complementary MOS (CMOS) circuits.

Keywords: silicon carbide MOSFET; pulsed IV measurements; stress modeling; hysteresis; threshold
voltage; recovery voltage

1. Introduction

Silicon carbide (SiC) instead of silicon (Si) material is positioning itself as an alternative to
manufactured MOSFETs, mainly by taking advantage of its high temperature operation stability, wide
bandgap energy, high blocking voltage, ten times larger critical field, larger saturation velocity, and a
greater thermal conductivity [1]. Besides, 4H-SiC is used to manufacture power MOSFETs and it is
starting to become commercially available for power electronics applications [2]. Power MOSFETs
manufactured by SiC will have smaller drift zones to those manufactured in silicon, with identical
voltage and on-resistance RON. The used area can be reduced, allowing SiC MOSFETs to have one
hundred times lower gate-source and gate drain capacitances [3,4]. SiC MOSFETs give significantly
shortened dynamic and static losses, and they work at higher temperatures, higher power densities,
and higher frequencies. These characteristics definitely incorporate system benefits.

For scaling down, the number of passive components of inverter integrated circuits’ (ICs)
additional heat sinks is reduced, accomplishing full silicon carbide-based system solutions which
are much lightweight, more compressed, cheaper, and more efficient [5,6]. Our work studied the
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threshold voltage instabilities of commercially available SiC MOSFETs by analyzing the positive bias
temperature stress (PBTS) behavior, which is a reliability goal. PBTS causes trapping of carriers near
the SiC/ SiO2. interface, producing a variation on output characteristics from devices [2,7]. This work
aimed to carry out a more comprehensive analysis of bias temperature instability (BTI), by evaluating
and modeling voltage and temperature stress influence on the threshold voltage shift for devices
under experimentation.

The threshold voltage variation ∆Vth occurs if a positive and negative gate polarization supply
voltage is referred to its equivalent temperature instability due to the oxide trap. If the polarization
voltage of the gate is removed, a recovery is generated that accelerates when the voltage goes in the
opposite direction to the voltage [8].

The objective of this article is to highlight and help to better understand the variation of the
threshold voltage of SiC power MOSFETs. Based on the idea that silicon carbide is a unique
wide-bandgap (WBG) semiconductor and that it has a native oxide with high quality, the SiC/SiO2

interface is distinct from the Si/SiO2 interface due to the narrower band offsets to the dielectric, a wider
band gap, vacancies inside the structure, and carbon associated point defects which only prevail in
SiC [9–11]. The main contribution of this work was detecting the instability of the threshold voltage
drifts that mainly affects to the reliability of the high powered devices and integrated systems. Due
to the threshold voltage shift, the positive and negative bias temperature instability contributes to
inhomogeneous current distributions in the system; for this reason the commutation degrades and the
temperature in the module increases.

2. One Spot Drop Down (OSDD) Characterization Method

The one spot drop down (OSDD) characterization method is illustrated in Figure 1. BTI stress
is fixed and VG (voltage gate) is reduced from VG−STR (voltage gate stress) to a convenient VG−SNS

(voltage gate sense bias) to evaluate ID−LIN (linear drain current) in tM (measure time) spaced in
logarithmic time intervals. The OSDD technique also suffers from recovery problems; nonetheless,
it takes a much shorter time to measure a single spot drain current (ID) than a full ID −VGS sweep.
Consequently, recovery can be reduced.
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Figure 1. Schematic measured of OSDD technique employed.

As shown in Figure 2, once post-stress ∆IDLIN is measured at VG−SNS, it can be compared to
pre-stress ID −VGS sweep to determine BTI degradation. In the vertical shift method, Equation (1) can
be estimated by noting the difference in ID−LIN between pre-stress and post-stress at VG−SNS, and in
the absence of mobility variation [12].

∆Vth =
−ID−LIN

VG−SNS −VT0
. (1)
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Figure 2. Measured IDLIN versus VG sweep before stress and one spot IDLIN measurement after stress.

3. Experimental Procedure and Measurements

A practical way to produce stress on MOSFETs suggests the application of high temperature gate
bias (HTGB) where SiC power MOSFET degradation accelerates significantly. The objective of the study
was to analyze the positive and negative bias temperature instability (PBTI and NPBTI) and transfer
characteristics. The devices under scrutiny were two different n-channel SiC power MOSFET families
provided by two different manufacturers. These devices were submitted to a thorough review that
determined electrical parameters’ degradations in the metal oxide semiconductor (MOS) structure; we
used probes at a fixed temperature of 150 ◦C, mainly to measure experimental ID −VGS characteristics
in order to evaluate the trapping phenomena in the gate dielectric or in the interface between the gate
dielectric and the SiC layer.

The characterization process was carried out by using the 4200-SCS Semiconductor
Characterization System of Keithley Instruments, setting a suitable source measure unit (SMU), and
setting a pulsed measure unit (PMU). The devices being tested were SiC power MOSFETs, characterized
by a breakdown voltage of 1200 V and the drain-source on resistance RDSON at VGS = 20 V equal to
52 mΩ.

All measurements were carried out at high temperature, 150 ◦C, and with VDS = 50 mV, to achieve
low drain bias and to keep oxide field (EOX) approximately constant across the channel during the
application of stress [9]. The following measurement method consists of three main phases: the initial
stabilization phase, the stress phase, and the recovery phase. The degradation in SiC power n-MOSFET
drain current can be frequently checked in the gate stress. The initial stabilization phase is performed
by applying a negative gate voltage: −5 V for 10 s. In this phase, the virgin device is stabilized by
releasing the charges enclosed in trapping centers. The determination of the BTI-induced, parametric
degradation of MOSFETs is frequently done by stressing the device at an accelerated aging condition,
through a suitable gate bias (VG) that is larger than (VG = VG−STR) than the one used during ordinary
operation [13].

The experimental stress phase was performed at gate bias by varying it from 12 to 20 V at 150 ◦C.
The accelerated stress test was performed at 1000 ms. After the stress phase, the recovery phase was
performed by biasing the SiC power MOSFET with a voltage gate recovery (VG−RECOVERY) ranging at
intervals from 0 to −2 V for at least 1000 s.

Pulsed I–V measurements were carried out by means of a parameter analyzer: a Keithley 4200-SCS
equipped with the 4225-PMU ultra-fast I–V module and two 4225-RPM remote amplifier/switch
modules. I–V curves were achieved by the implementation of a train of pulses with a period of 300 µs
and a width of 30 µs at the drain and gate of the device. The gate voltage pulse amplitude was varied
from −5 to 20 V with a step of 100 mV.

Two different devices families provided by two different manufactures have been investigated.
The fundamental electrical parameters of the devices are reported in Table 1.
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Table 1. Main electrical parameters of the investigated devices.

Device Device 1 Device 2

BVdss [V] 1200 1200
Idsmax@25 ◦C [A] 45 65

Rdson typ@20A, VGS = 20 V, T = 25 ◦C [mΩ] 80 52
Vth@1mA [V] 3.5 3

Ciss@ (Vds = 50 mV ) [nC] 2.5 3.5
Temp max [◦C] 200 200

Pack HiP247TM HiP247TM

4. Results and Discussion

4.1. Bias Temperature Instability (BTI) in the SiC MOSFET Transitor

The BTI measurement procedure consists of three steps: initial stabilization, measurement of the
ID–VGS reference curve, and multiple stress-sense measurements. Figure 3 depicts the progressions
of ID–VGS curves with stress in the situation of each sample. Subsequently, at each stress period,
the ID–VGS curves shifted toward the positive VGS direction, displaying clearly, a threshold voltage
instability (similar behavior shown for the devices A and B).
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Figure 3. ID–VGS curves before (the initial stabilization phase was performed for each new sample)
and after successive stress experiments for the devices A and B.

The initial stabilization phase is to achieve biasing a negative gate voltage of −5 V for 10 s. In this
phase, the virgin sample is stabilized by releasing the charges originally trapped in the SiC/SiO2

interface or in the bulk as shown in Figure 4. As result of the concomitant charge trapping and releasing
during the stress, it was evaluated a IDS −VGS curve sweeping VGS ranging from −5 to 3.5 V. It was
necessary to measure the curve above 3 V, which is higher than Vth [14]. Similar behavior was shown
for Device A and Device B. In fact, after the recovery phase, the stress phase experiments for distinct
stress voltages were performed by showing that the IDS −VGS curve never comes back to this reference
state phase.
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Figure 4. Transfer curves in the linear regime for a virgin device (device A and B), after the initial
stabilization phase and after successive stress–recovery experiments.

The observed decrease and increase of the linear drain current at sense conditions is converted
in the threshold voltage shift by using the IDS −VGS reference curve, as depicted in Figure 5 (similar
behavior is shown for both devices). The observed ∆Vth shift can be attributed to the electron trapping
and de-trapping from the channel (under the gate oxide) into the traps placed in the SiO2 energy gap
(see Figure 6) [15,16].
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Figure 7 shows ∆Vth during the stress phase at diverse stress temperatures and voltages. In order
to determine the ∆Vth evolution, the threshold degradation-time dependence was compared on both
devices. Clearly, a good fit with the classic power law model is shown. Devices A and B showed the
same ∆Vth in the gate bias regime when VG−STR adopted values of 12, 16, and 20 V at 150 ◦C within the
measurement window from 0 to 1000 s. The stress conditions were interrupted at fixed time intervals
and measure ID at VG−SENSE = 3 V and compared with the initial reference curve (similar behavior for
the devices A and B).
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Device A and Device B. A similar power law behavior was observed in the two types of SiC MOSFETs.

In the recovery phase, the suitable current level to return the drain current to the initial value is
in the range of minutes, as shown in Figure 9. The observed ∆Vth evolution at the recovery phase is
attributed to the release of electrons into the SiC layer from the energy trap states of the SiO2 band gap.
For the proposed experimental conditions, this behavior does not cause permanent damage in the
test devices.
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Figure 9. Time evolution of ∆VT recovery measured at different VG−REC for the devices A and B.

Two different values of VG−REC have been used, as shown in Figure 10. Note that ∆Vth starts to
recover immediately after stress when the devices are recovered at VG−REC = 0 V. It demonstrates
very a similar impact of recovery VG−STRESS for both devices, as shown in Figure 10.
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4.2. Hysteresis between Two Adjecent Sweeps.

Considering the data depicted in Figure 11, the results show that both devices show some levels
of defectiveness in their interface layers. The amplitude increases by raising the maximum gate
voltage being applied, since it allows filling the traps at higher energy levels. Devices A and B show
different drain current degradations at the same gate voltage. The degradation of current can be
attributed to traps enclosed at the lateral regions or oxide/SiC interface, generating a change of the
∆Vth. In order to quantify the hysteresis in the I–V curve, the maximum voltage shift ∆VMAX was
measured. The difference between VTH−down and VTH−up was named threshold voltage hysteresis
(∆VTH−HYST) [17,18]. The observed hysteresis between up-sweep and down-sweep can be expressed
as a threshold voltage shift and may reach several millivolts. It was demonstrated that the threshold
voltage shift is caused by electron capture produced by applying a gate bias in the SiO2 and SiC/SiO2

interface. Moreover, the inset shows that the ID–VGS overlaps in the initial ascending part, confirming
that the starting bias at −5 V allows resetting the device characteristics by releasing the previously
trapped charge. This observation also implies that the threshold voltage shift induced by the gate bias
is recoverable, at least in the range of gate voltage investigated.
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Figure 11. Hysteresis observed in the ID–VGS curve for the Device A and Device B. Inset highlights
the increase of the hysteresis amplitude for raising maximum values of the gate voltage applied for the
devices A and B.

The results shown above were obtained in the microelectronics laboratories of the University of
Calabria. After the activity carried out by the two characterization methods mentioned before on a set
of devices, a trend in the graphics could be found, without significant variations between devices.

Figure 12 shows the mean values of the hysteresis amplitude evaluated at a fixed current level (ID
= 5 mA) against the mean values of ∆Vth (which were measured with the OSDD method) induced
by a PBTI stress (temperature at 150 ◦C and stress time = 1 s). The two phenomena exhibit similar
temperature dependence and are strongly correlated, suggesting that the same physical mechanism is
the main factor responsible for hysteresis and PBTI. A clear correlation between hysteresis and PBTI
was observed.
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Figure 12. Mean values of ∆Vth induced by a positive bias temperature instability (PBTI) stress (at a
fixed temperature, 150 ◦C and tstress = 1 s) and mean values of the hysteresis amplitude evaluated at ID
= 5 mA against those measured.

This information will be useful to understanding how the devices switch dynamics and improve
manufacturing, considering even the material and its quality. This information can be used for
recommendations to manufacturers. SiC has more instability than silicon.

A positive threshold voltage shift reduces the performance in the on-state. Due to this consequence,
the channel resistance of the devices is increased, which degrades the efficiency and the module
temperature. To relax the BTI effect, it has to be made sure that devices which are used in a certain
application show similarly narrow and predictable ∆Vth drifts. In the proposed case study, the devices
showed the same trend of the threshold shift that ranged from 0.36 to 0.8 V in the experimental tests.
The problem is a result of the interface and gate oxide quality of both devices.
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The threshold hysteresis is a measure of the switching dynamics of the interface traps (SiC/SiO2

interface or in the bulk SiO2), while measurements at stress times (PBTI) can show the role of an
additional interface degradation.

5. Conclusions

This paper presented the study of PBTI of SiC MOSFETs with SiO2 and as the gate dielectric.
For two commercially available SiC power MOSFETs, a positive ∆Vth is caused by an unification of
interface trap generation and electron trapping in pre-existing oxide traps. The hysteresis amplitude
exhibits a low sample-to-sample variability. Hysteresis amplitude at a fixed drain current is a function
of the maximum applied gate voltage in Device A and Device B samples in pulsed conditions. Similar
power law behavior was observed in the two similar types of SiC MOSFETs. Even if the devices from
two distinct companies differ in the absolute values of the ∆Vth, the identical tendencies of all traces
show that all noted threshold voltage instabilities are commonly a fundamental physical property of
the SiC/SiO2 system and not associated with, e.g., mobile ion contamination. Most of the ∆Vth does
not originate from an enduring deterioration of the interface, and is nearly fully recoverable.

Due to the applications of SiC, MOSFETs are not like logic integrated systems (IC) Si devices.
Typical applications for SiC MOSFETs require high power densities and blocking voltages. The
important part of this paper is the assessment of the impact and relevance of BTI for such applications.
In this article we discussed how a BTI-induced threshold voltage shift could possibly affect the reliability
and performance of such a high-power device. The positive shift of the threshold voltage reduces
the overdrive in the on-state. Therefore, the channel resistance of single devices is increased, which
degrades the efficiency.
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