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Abstract: Embedded Convolutional Neural Networks (ConvNets) are driving the evolution of
ubiquitous systems that can sense and understand the environment autonomously. Due to their
high complexity, aggressive compression is needed to meet the specifications of portable end-nodes.
A variety of algorithmic optimizations are available today, from custom quantization and filter
pruning to modular topology scaling, which enable fine-tuning of the hyperparameters and the
right balance between quality, performance and resource usage. Nonetheless, the implementation
of systems capable of sustaining continuous inference over a long period is still a primary source
of concern since the limited thermal design power of general-purpose embedded CPUs prevents
execution at maximum speed. Neglecting this aspect may result in substantial mismatches and the
violation of the design constraints. The objective of this work was to assess topology scaling as a
design knob to control the performance and the thermal stability of inference engines for image
classification. To this aim, we built a characterization framework to inspect both the functional
(accuracy) and non-functional (latency and temperature) metrics of two ConvNet models, MobileNet
and MnasNet, ported onto a commercial low-power CPU, the ARM Cortex-A15. Our investigation
reveals that different latency constraints can be met even under continuous inference, yet with a
severe accuracy penalty forced by thermal constraints. Moreover, we empirically demonstrate that
thermal behavior does not benefit from topology scaling as the on-chip temperature still reaches
critical values affecting reliability and user satisfaction.

Keywords: deep learning; convolutional neural network; dynamic voltage and frequency scaling;
thermal management; continuous inference; edge computing

1. Introduction

Recent advances in deep learning have enabled the deployment of Convolutional Neural
Networks (ConvNets) on tiny end-nodes powered by general-purpose cores. Embedded ConvNets
push human-like perception on ubiquitous devices producing highly informative data on the edge.
This is the keystone of several applications, e.g., context-sensing [1], health-monitoring [2], and object
tracking [3], for which uploading raw data to the cloud would be unpractical due to the high costs of
communication, uncertain response time, and privacy protection.

ConvNets are computing- and memory-intensive models that need aggressive compression to fit
low-power CPUs. Along with custom compression pipelines based on quantization [4], pruning [5]
and neural architecture search [6], a common trend today is to offer end-users a portfolio of pre-trained
models with the same back-bone topology but variable size and hence, a different latency–accuracy
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trade-off [7–11]. One can pick the implementation that best fits the available computing architecture
and the application requirements, therefore reducing the design time.

The assembly of such models encompasses the concept of topology scaling, where the re-scaling of
the ConvNet geometry is implemented by leveraging two design parameters, namely input resolution
and number of filters. The way the two knobs work is intuitive. Input patterns with a lower resolution
take faster to be processed, but they bring less information as some fine-grain detail may get lost,
resulting in a lower accuracy. A lower number of convolutional filters implies that some features
are dropped during the inference process, resulting in less memory and compute resources request,
but also weakened expressive power and hence, less accuracy. Figure 1 gives a pictorial example of
multiple implementations of the same ConvNet projected into the latency–accuracy space. The blue
dots are the available Pareto optimal implementations, each with a different setting of input resolution
and number of filters, represented by different radii. Under a given latency constraint, shown as the
dashed vertical line, the best option is the one with a higher accuracy, the blue dashed circle in the plot.

Latency

Accuracy

Target Latency

Sporadic Inference
Continuous Inference

Figure 1. Latency-Accuracy trade-off of Mobile ConvNets in sporadic and continuous inference.

Unfortunately, this optimistic choice ensures latency only for sporadic execution since it ignores
an important, yet often neglected aspect: the limited thermal design power of embedded systems
prevents the execution of intensive workloads at maximum performance for a long runtime. Indeed,
embedded systems (like mobile phones, for instance) integrate high-performance System-on-Chips
(SoCs) on a small form-factor with no room for heat spreaders or active cooling systems (e.g., fan).
When a power-demanding task, like inference, is run for a sustained period over continuous streams
of data, the on-chip temperature increases, overstepping the safety threshold just after a few seconds.
To avoid irreversible damages and ensure comfortable hand feeling, the operating system counteracts
the high generation of heat by lowering the voltage-frequency level of the active cores. The low-power
state is retained until the temperature gets back to safety and then left to recover speed. Known as
thermal throttling, this control mechanism has a significant impact on performance, becoming the
primary source of the latency mismatch compared to nominal operating conditions, as qualitatively
illustrated with the red dots in the plot of Figure 1.

Thermally induced performance degradation should be considered in the early design stages
through some form of over-design strategy and/or by implementing more efficient management
policies. The problem is well established in the literature of embedded systems, and different
thermal-aware hw/sw co-design techniques are available [12]. However, the interesting aspect here is
to understand and explore solutions that leverage the statistical nature of ConvNets. It is clear that
a more aggressive topology scaling is mandatory to ensure compliance with constraints under high
thermal stress, which leads to weaker configurations, as shown in the plot by the dashed red circle.
Therefore, the nominal accuracy often used as the main metric to assess the quality of an inference
model is much lower than expected.

This work aims to provide the assessment of the impact of topology scaling in power-constrained
systems over both functional (accuracy) and non-functional (latency and temperature) constraints. The
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objective is to understand whether there exists a topology that does match the requirements even in
continuous inference and, in case it does, to quantify the induced accuracy drop and whether it falls
within acceptable ranges or not. Moreover, it is natural to ask whether topology scaling improves
the power profile as well, and if it can serve as leverage to improve thermal stability. To address
these issues, we built a characterization framework validated and tested for a chip-set powered with
the ARM Cortex-A15 CPU that we used as a test bench to probe the performance of two state-of-art
ConvNets, MobileNet [7] and MnasNet [11]. The collected results reveal that the gap between sporadic
and continuous inference is large and that temperature-aware topology scaling is too weak a strategy
that affects accuracy severely without any further savings in terms of temperature reduction.

The remainder of this paper is organized as follows: Section 2 reviews state-of-the-art ConvNets
for mobile applications, topology scaling strategy of ConvNets, and thermal management on embedded
systems. Section 3 recalls previous studies on the performance of ConvNets on general-purpose
embedded systems. Section 4 introduces the characterization framework that we developed to conduct
our analysis. Section 5 describes the experimental setup and analyzes the collected results. Finally,
Section 6 discusses the main insights and guides the reader towards novel perspectives for the power
optimization of ConvNets.

2. Background

2.1. ConvNets for Mobile Applications: MobileNet and MnasNet

In the beginning, ConvNets were mainly optimized to improve accuracy. This led to deeper and
more complex models with increased size [13–15]. The growing demand for portable applications
drove the research towards more compact and fast ConvNets. Among the many existing ones, in
this work we picked two representative examples considered state-of-the-art: (i) MobileNet, which
introduces a convolution operator that decouples spatial and cross-channel correlations to reduce the
computational complexity of the network; (ii) MnasNet, which is built using an automated neural
architecture search based on reinforcement learning to identify the ConvNet topology that achieves the
best trade-off between accuracy and inference latency for designing mobile ConvNets. MobileNet is
designed by hand with the specific goal of reducing hardware resources. MnasNet can be considered
the latest evolution, where the design is automated through an intelligent algorithm that improves
over handcrafted solutions.

MobileNet [7]. As depicted in Figure 2a, MobileNet is based on a primitive block that
implements a convolution operation called depthwise separable convolution, originally introduced in [16].
The standard convolution is factorized as two consecutive stages: (1) a depthwise convolution, i.e., a
spatial convolution done independently over each input channel, followed by (2) a pointwise convolution,
i.e., a 1 × 1 convolution to map cross-channel correlations onto a new channel space. The result is an
approximation of the standard convolution with fewer arithmetic operations; indeed, the resulting
reduction factor w.r.t. standard convolution is 1

N + 1
D2

K
, where N is the number of output channels and

DK is the kernel size of the depthwise convolution. The MobileNet architecture is built on a sequence
of depthwise separable convolutions, except for the first layer, which is a full convolution. These layers
down-sample the extracted features through strided convolution. A final average pooling reduces the
spatial resolution to 1 before the fully connected layer that feeds into a softmax layer for classification.
Counting depthwise and pointwise convolutions as separate layers, MobileNet has 28 layers.

MnasNet [11]. MnasNet is a model generated automatically using a new strategy called neural
architecture search (NAS), which is a multi-objective problem optimized by means of a reinforcement
learning policy that concurrently optimizes accuracy and performance. Unlike previous NAS solutions
that adopted indirect metrics to account for the network complexity, e.g., the number of parameters,
MnasNet makes use of on-board latency, measured by deploying the generated models on the actual
device, as feedback to drive the optimization loop. As reported in Figure 2b, the MnasNet strategy
is built on the concept of a hierarchical search space. This methodology factorizes a ConvNet into a
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sequence of parametric blocks and then searches the best layer configuration within each block such
that constraints are met. MnasNet allows different layers to use different operators, e.g., standard
convolution, depthwise separable convolution, and inverted residual convolution [8], but forces all
layers in each block to share the same structure, offering a proper balance between search space size
and layer diversity.

D k
×

D k
Co

nv
 

Ba
tc

hN
or

m

Re
LU

D k
×

D k
De

pt
hw

ise
 C

on
v 

Ba
tc

hN
or

m

Re
LU

1 
×

1
Po

in
tw

ise
 C

on
v 

Ba
tc

hN
or

m

Re
LU

Spatial 
Correlation

Cross-channel 
Correlation

Standard Convolution Depthwise Separable Convolution 

(a) MobileNet basic convolution operation.
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(b) MnasNet Architecture.

Figure 2. (a)-left: Standard convolutional layer with batch normalization and relu. (a)-right: depthwise
separable convolution with depthwise and pointwise layers followed by batch normalization and relu
(from [7]). (b) Factorized hierarchical search space of MnasNet (from [11]).

MobileNet and MnasNet represent state-of-the-art ConvNets for mobile applications,
guaranteeing fast computation, and high accuracy thanks to their optimized architecture. Both support
the topology scaling strategy discussed in this work (more details in Section 2.2) to deploy models on
different hardware platforms, while other ConvNets do not. Furthermore, pre-trained models with
different topology configurations are freely available as part of open-source repositories, hence, their
use does not require time-consuming re-training stages and allows the replicability of the experiments.

2.2. ConvNets Topology Scaling

A modular re-scaling of a ConvNet topology is achieved by playing with the resolution of the
input, i.e., Input Resizing, and/or the total number of convolutional filters, i.e., Filter Pruning. Figure 3
provides a graphical definition of these two knobs. Input resizing affects the dimensions of data fed as
input to the ConvNet. A lower resolution lacks fine-grain details, thus leading to a lower accuracy,
yet, the overall number of operations to be executed during the inference dramatically drops along
the whole chain of layers. Referring to the picture, the inner features can be scaled by adopting an
image resolution ρ′ < ρ, where ρ is the input resolution of the baseline model. Specifically, the size of
the inner features gets lower, from DF to δ · DF for inputs and from D

′
F to δ · D′F for outputs, where

δ = ρ′/ρ. The scaled model is thereby unloaded by factor δ2. Although we referred to squared images
of size ρ, the technique can be adapted for rectangular images as well.
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Figure 3. Depiction of topology scaling knobs over a convolution layer: the input resolution ρ cuts the
size of the convolution input; the width multiplier α reduces the number of convolutional filters.

Filter pruning is implemented by tuning a hyper-parameter, named the width multiplier α, which
defines the ratio of input and output channels within each convolution layer. As shown in the picture,
the model can be scaled by setting α ∈ (0, 1], where α=1 denotes the baseline model. For a generic
convolutional layer with M input channels and N output channels, the scaled model counts α ·M
and α · N channels, respectively, reducing the number of multiplications and filter parameters by
roughly α2.

2.3. Thermal Design Power Management

Off-the-shelf SoCs implement a reactive thermal management mechanism that dynamically
controls the Voltage-Frequency (VF) operating point in order to reduce the power density and cool
down the core. Dynamic Voltage-Frequency Scaling (DVFS) is an effective strategy to ensure thermal
stability as the active power has a quadratic dependence from voltage and a linear dependence from
frequency, resulting in theoretical cubic scaling. The efficiency of DVFS can be pushed even beyond
these theoretical relationships through custom power distribution schemes, as shown in [17].

In order to match a target inference latency constraint (Lt), active cores operating for
high-performance are set to the highest voltage and the maximum frequency available, which we refer
to as VFmax. When the on-chip temperature reaches a critical threshold, Tmax, the operating system
invokes a safety mechanism—thermal throttling—leading cores towards a low-power mode with
a lower VF that restores thermal equilibrium. A qualitative analysis of this strategy is depicted in
Figure 4. Maximum performance pushes temperature on the critical threshold Tmax and forces the
SoC to throttle the performance, from VFmax to VFlow as reported in the middle plot. As soon as the
temperature falls below Tmax, the SoC switches back to VFmax, and the temperature starts rising again.
Fluctuations around the safety threshold continue until the end of the task, and so does the VF.

For sporadic inference, cores operating at VFmax ensures a latency meeting the constraint Lt,
as illustrated in the bottom plot of Figure 4 (green area, L1 < Lt). When inference is held for long
time intervals, two side effects do emerge: (i) working at VFlow introduces a performance penalty that
turns into multiple latency constraint misses (Li > Lt) within each inference run INFi (successive red
areas); (ii) the cyclic swapping among different VF levels makes latency prediction more uncertain
(Li different at each INFi).
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Figure 4. Qualitative analysis of temperature, VF and inference latency evolution over time under
reactive thermal management.

3. Related Works

Understanding the performance of ConvNets on general-purpose embedded systems is
paramount for the rapid diffusion of edge intelligence. In this regard, several studies [18–20]
investigated opportunities and limits offered by commercial off-the-shelf platforms for inference
with state-of-the-art ConvNets. However, they were mostly restricted to sporadic inference, neglecting
the thermal stability of the hosting hardware.

Profiling the thermal behavior of inference tasks is a much less explored field. Preliminary analyses
were conducted in [21], in which the authors compared the inference latency across different inference
engines. The results have shown that temperature has similar trends across different frameworks
and reaches critical value after few seconds of execution. In [22], it is shown that mobile GPUs also
experience performance reduction due to thermal throttling, even if with a smoother gradient than
CPUs. In our previous work [23], we conducted a parametric analysis to study the effects of two
thermal management strategies based on DVFS. Although a proactive thermal governor could reduce
thermal-induced latency degradation, it is not a viable solution for execution under tight constraints.

Dedicated co-processors would guarantee lower power consumption, hence lowering
temperature [24], but the lack of stable tool-chains and the high design cost still limit their diffusion on
a large scale. This aspect motivates the need for attacking the problem from a software perspective.
In this regard, our work aims to assess the efficacy of topology scaling on mobile CPUs considering
concurrent latency and temperature constraints.

4. Latency and Temperature Characterization

We developed an automated framework that profiles the execution time and the CPU temperature
during both sporadic and continuous inference. As illustrated in Figure 5, the framework includes two
main components: an online characterization flow compiled and executed on the hosting hardware
that collects the statistics, and an off-line procedure that returns the topology setting meeting a given
latency constraint.
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Figure 5. Schematic view of the proposed characterization framework.

The characterization flow integrates three software units: (i) an inference engine that processes
the ConvNet on-chip; (ii) a model benchmarking tool that measures the inference latency (L); (iii) a
monitoring routine that reads the CPU temperature from the on-chip sensors. The characterization
process takes as the input a pre-trained ConvNet topology and profiles all the available (α, ρ)
configurations under both sporadic and continuous inference. In our setup, we used TensorFlow Lite
(TFL), an inference engine optimized for mobile platforms. For the latency measurements, we adopted
a modified version of the TensorFlow Lite Model Benchmark utility integrated into TFL. Specifically,
our implementation enables us to register the execution time of each inference. For the temperature
measurements, the sampling rate was set to 10 ms.

The statistics collected by the characterization flow were screened by a procedure written in
Python that identifies the pair (α, ρ) meeting the latency constraint (i.e., L ≤ Lt).

5. Experimental Setup and Results

The objective of our analysis is threefold: (i) identify the topology configuration (if any) that meets
the latency requirements under continuous inference; (ii) quantify the accuracy degradation induced
by thermal management; (iii) assess the relationship between the thermal profile of the processing units
and topology scaling. In this section, we first outline the hardware specifications of the board used in
the experiments, together with the software environment adopted for the deployment. Secondly, we
introduce the ConvNets taken as benchmarks. Finally, we analyze the collected results, with emphasis
on both functional and non-functional metrics. Table 1 summarizes the notations used throughout the
text, together with their definitions.

Table 1. Table of notations.

Notation Description

α Width multiplier
ρ Input resolution
Lt Target latency
Tmax Safety temperature threshold
Tidle Idle temperature
VFmax Voltage-frequency level for maximum performance
VFlow Voltage-frequency level for thermal throttling
(αs, ρs) Solution meeting Lt in sporadic inference
(αc, ρc) Solution meeting Lt in continuous inference

5.1. Experimental Setup

Hardware and Software. The test-bench is the Odroid-XU4 platform [25] powered with a
Samsung Exynos 5422 chip-set [26] that integrates a quad-core ARM Cortex-A15 CPU with a 32 kB L1
data cache on each core, 2 MB of the L2 cache and 2 GB of LPDDR3 RAM. At maximum performance,
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the cores operate at VFmax = 1.3625 V @ 2 GHz. In our experiments, all four cores were active and
worked in parallel. Notice that the SoC also integrates a low-power ARM Cortex-A7 CPU, which
was disabled.

The board runs Ubuntu Mate 16.04, kernel Version 3.10.106-154, released by Hardkernel. The
built-in thermal governor scales the operating point of the A15 cores to VFlow = 0.8875 V @ 900 MHz
as soon as the temperature exceeds the threshold Tmax = 90 ◦C. The idle on-chip temperature is
Tidle = 65 ◦C. Even though the board is equipped with a cooling fan, we switched it off to emulate
fan-less systems deployed into mobile devices, e.g., smartphones and tablets.

As the inference engine, we adopted TensorFlow Lite 1.14 [27] by Google. The tool offers a
collection of deep learning routines optimized to run on the ARM Cortex-A architecture. Specifically,
the convolutional operators were compiled with SIMD instructions to leverage the parallelism offered
by the ARM NEON unit. TensorFlow Lite was cross-compiled using the GNU ARM Embedded
Toolchain (Version 6.5) [28].

ConvNet Benchmarks. As benchmarks, we used two representative ConvNets optimized for
embedded systems, namely MobileNet and MnasNet trained on the ImageNet dataset; both are
open-sourced through TensorFlow Hosted Models [29]. For MobileNet, the available topology
scaling options are α = {0.25, 0.5, 0.75, 1.0} and ρ = {224, 192, 160, 128}; MnasNet is provided with
α = {0.5, 0.75, 1.0} and ρ = {224, 192, 160, 128, 96}.

Table 2 reports the size of the models used in our analysis. As explained in Section 2.2, α modulates
the model size by cutting the number of convolutional filters, while ρ reduces the size of the activations
in the inner layers.

Table 2. MobileNet and MnasNet model size.

Model α ρ Size (MB)

MobileNet

1.0 224, 192, 160, 128 16.9
0.75 224, 192, 160, 128 10.3
0.5 224, 192, 160, 128 5.3
0.25 224, 192, 160, 128 1.9

MnasNet
1.0 224, 192, 160, 128, 96 17.0
0.75 224 12.0
0.5 224 8.5

Theoretically, topology scaling can be implemented by any value of α and ρ. However, in our
analysis, we only considered the pre-trained configurations available in the TensorFlow Hosted
Models repository (please refer to Figure 6). Fortunately enough, the available pairs of (α, ρ) cover
the worst-case scenario widely: the tiniest networks have a considerably low value of top-1 accuracy,
41.4% and 68.03% for MobileNet (α = 0.25, ρ = 128) and MnasNet (α = 0.50, ρ = 224), respectively.
Configurations with lower accuracy may be a critical choice as they would be of no practical use in
real-life applications.
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Figure 6. Latency–Accuracy trade-off of the selected benchmarks for sporadic inference.

Figure 6 shows the latency–accuracy trade-off offered by the selected benchmarks for all the
available (α, ρ) pairs. The reported values refer to sporadic inference and give the minimum latency
that can be achieved on the hosting hardware. Specifically, we measured the average execution time at
maximum performance (VFmax) over 100 inference runs, each of them interleaved by a two-second
pause to restore the idle temperature. We observed that not all the available topology configurations
are Pareto optimal. Indeed, optimality is strictly related to the hosting hardware [20], and those
reported in the plots only refer to our target CPU.

The plots also highlight (circled markers) the topology settings (αs, ρs) that satisfy the latency
constraint Lt for a sporadic inference. We analyzed three different targets: (i) Lmax (dashed line),
(ii) 0.75 · Lmax (dash-dotted line), (iii) 0.50 · Lmax (dotted line); Lmax denotes the latency of the
largest topology in sporadic execution, 160 ms and 130 ms for MobileNet and MnasNet respectively.
The selected constraints are arbitrary and may change depending on the application specifications;
however, they serve well the purpose of our characterization.

5.2. Results

To assess the latency mismatch induced by thermal throttling during continuous inference, we
measured the execution time of each inference during an overall runtime of 500 s, without any system
pause between the successive runs. The analysis was conducted for all the pairs (α, ρ) in order to
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identify the topology configurations (αc, ρc) that strictly satisfy the target latency Lt during the whole
500-s time window.

Figure 7a,b summarize the main results. For each latency constraint (horizontal dashed line),
the plots compare the latency curves for two different topology configurations: (αs, ρs), i.e., the
configuration selected for sporadic inference; (αc, ρc), i.e., the configuration meeting Lt in continuous
inference. The comparison aims to assess the performance gap between a trivial selection that would
use (αs, ρs) also for continuous inference with respect to a thermal-aware characterization. Specifically,
the analysis of the figures reveals three key observations. First, as topology scaling creates an additional
timing margin, operating at (αc, ρc) keeps the execution time under the horizontal line for most
cases. The only exception is MnasNet for Lt = 65 ms (right-most plot in Figure 7b), where even the
most compact configuration violates the constraints. Since our analysis only considers the available
pre-trained models, it is fair to assume that there exists at least one additional version that could meet
the target latency (e.g., with lower ρ). Secondly, the configurations (αs, ρs) miss the constraint after few
seconds of execution. For instance, MnasNet with (α = 1, ρ = 224) enters in violation after 2.37 s, i.e.,
18 continuous inferences. Moreover, for both sporadic and continuous inference, the latency reaches
a stable level defined by the thermal constant of the board. Third, thermal management generates a
significant latency variation across adjacent runs as the CPU continuously switches between VFmax

and VFlow, making latency unpredictable, as evident from the noisy curves.
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Figure 7. Latency trend of the ConvNet benchmarks running continuous inferences for 500 s.

Aggressive topology scaling decreases the computation requirements at the cost of lower
prediction quality. Table 3a,b quantify the penalty for the two benchmarks under analysis. Specifically,
for each Lt, the first row reports the top-1 classification accuracy at (αs, ρs), the second at (αc, ρc). In the
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worst case, MnasNet experiences an accuracy degradation of 4.99% under Lt = 65 ms, whereas for
MobileNet the highest loss is 6.2% under Lt = 80 ms. As expected, continuous inference induces a
larger accuracy loss. Although quite intuitive, this observation is neglected by current optimization
pipelines for embedded ConvNets that do not consider temperature.

Table 3. Top-1 Accuracy under latency constraint for sporadic and continuous inference.

(a) MobileNet v1. (b) MnasNet.

Lt (ms) Inference α ρ Top-1 (%) Lt (ms) Inference α ρ Top-1 (%)

160 Sporadic 1.0 224 71.0 130 Sporadic 1.0 224 74.08
Continuous 0.75 192 67.1 Continuous 1.0 160 70.63

120 Sporadic 0.75 224 68.3 97 Sporadic 0.75 224 71.72
Continuous 0.75 160 65.2 Continuous 0.5 224 68.03

80 Sporadic 0.75 160 65.2 65 Sporadic 1.0 128 67.32
Continuous 0.5 160 59.0 Continuous 1.0 96 62.33

Beyond accuracy and latency, the temperature is also a primary design concern. Indeed, high
temperatures harm the reliability of the device as they accelerate aging [30] and worsen the user
experience [31] as hand devices get hot. We used on-board temperature sensors to study the CPU
thermal profile during continuous inference. The plots in Figure 8 reveal that topology scaling has
negligible effects on power consumption since both (αs, ρs) and (αc, ρc) show quasi-overlapping
temperature profiles. In all the cases under analysis, the peak temperature reaches 90 ◦C after few
seconds, then, it stays almost constant until the end of the execution; fluctuations are due to the
continuous switching between VFmax and VFlow forced through the thermal governor.

0 100 200 300 400 500
Runtime (s)

60

70

80

90

T
em

p
er
at
u
re

(°
C
)

0 1 2

70

80

90

αs = 1.0, ρs = 224

αc = 0.75, ρc = 192

0 100 200 300 400 500
Runtime (s)

0 1 2

70

80

90

αs = 0.75, ρs = 224

αc = 0.75, ρc = 160

0 100 200 300 400 500
Runtime (s)

0 1 2

70

80

90

αs = 0.75, ρs = 160

αc = 0.5, ρc = 160

(a) MobileNet v1

0 100 200 300 400 500
Runtime (s)

60

70

80

90

T
em

p
er
at
u
re

(°
C
)

0 1 2

70

80

90

αs = 1.0, ρs = 224

αc = 1.0, ρc = 160

0 100 200 300 400 500
Runtime (s)

0 1 2

70

80

90

αs = 0.75, ρs = 224

αc = 0.5, ρc = 224

0 100 200 300 400 500
Runtime (s)

0 1 2

70

80

90

αs = 1.0, ρs = 128

αc = 1.0, ρc = 96

(b) MnasNet

Figure 8. Temperature profile of the ConvNet benchmarks running continuous inferences for 500 s.
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Moreover, Figure 9 reports the percentage of time spent at VFlow over the 500-s runtime to quantify
the amount of thermal-throttling. We recorded small differences between sporadic and continuous
inference, the highest was 3.9% (MobileNet for Lt = 160 s). Surprisingly, scaled MnasNets show higher
throttling percentage for Lt = 130 s and Lt = 97 s. Once again, our findings confirm the inefficiency of
topology scaling for power reduction.
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Figure 9. VF throttling time percentage.

Since the adopted benchmarks cover a wide selection across the accuracy–complexity space, the
observed trends suggest that thermal throttling is not only independent of the network topology
and/or complexity, but also unavoidable due to the massive workload of ConvNets. In other words,
exploring ConvNets with a larger number of parameters as additional benchmarks would not affect
the outcome of our analysis.

6. Discussion and Final Remarks

Our study demonstrates that topology scaling enables us to meet tight latency constraints, even in
systems with limited thermal design power at the cost of additional accuracy degradation. However, a
more accurate analysis of the temperature trends reveals that topology scaling represents a workaround
rather than a definitive solution. Indeed, topology scaling has no direct effect on the source of
performance degradation, that is, the high power consumption; instead, it just creates additional
timing slack, which is rapidly burnt by thermal management. The system temperature still remains
high around a critical value; hence, reliability and user satisfaction might remain open problems.

Topology scaling only reduces the number of operations, not their intensity. Even a lightweight
configuration still requires full utilization of the available resources, keeping the power consumption
near the peak value, as suggested by the collected temperature values.

Overall, our analysis opens up novel optimizations for energy-aware training of ConvNets.
Whereas state-of-art techniques focus on the energy savings achieved through latency reduction, an
effective deployment on embedded systems calls for power reduction. For this purpose, better
cooperation between hardware resources and software optimizations is paramount: from the
hardware side, with the development of more efficient thermal management policies, from the
software side, with the introduction of power consumption as direct optimization objective in the
compression/training pipeline.

The concept of run-time model adaptation gives another dimension to explore. As discussed in
this work, the profiling of the thermal behavior identified a set of ConvNets able to meet different
latency constraints under continuous inference. This might suggest a new form of topology scaling at
run-time: depending on the actual system/application requirement, the right model, among those
available, namely the one satisfying the constraint, can be deployed and run. This strategy would
imply the availability of a large set of models, which is memory-consuming. In fact, each scaled model
comes with its own set of weights learned for that specific geometry in order to maximize the accuracy.
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In other words, to jump from a configuration to another at run-time is not possible unless multiple
models are stored on-chip. Enabling this feature more efficiently is part of our active research.
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