Journal of K
m Low Power Electronics M D\Py

and Applications

Article

Energy-Efficient Architecture for CNNs Inference
on Heterogeneous FPGA

Fanny Spagnolo !, Stefania Perri 2, Fabio Frustaci ! and Pasquale Corsonello *

1 Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria,
87036 Rende, Italy; f.spagnolo@dimes.unical.it (F.S.); f.frustaci@dimes.unical.it (F.F.)

2 Department of Mechanical, Energy and Management Engineering, University of Calabria,
87036 Rende, Italy; stefania.perri@unical.it

* Correspondence: p.corsonello@unical.it; Tel.: +39-0984-494708

Received: 6 December 2019; Accepted: 21 December 2019; Published: 24 December 2019

Abstract: Due to the huge requirements in terms of both computational and memory capabilities,
implementing energy-efficient and high-performance Convolutional Neural Networks (CNNs) by
exploiting embedded systems still represents a major challenge for hardware designers. This paper
presents the complete design of a heterogeneous embedded system realized by using a Field-
Programmable Gate Array Systems-on-Chip (SoC) and suitable to accelerate the inference of
Convolutional Neural Networks in power-constrained environments, such as those related to IoT
applications. The proposed architecture is validated through its exploitation in large-scale CNNs on
low-cost devices. The prototype realized on a Zynq XC7Z045 device achieves a power efficiency up
to 135 Gops/W. When the VGG-16 model is inferred, a frame rate up to 11.8 fps is reached.

Keywords: Convolutional Neural Networks; heterogeneous FPGAs; embedded systems

1. Introduction

Nowadays, Convolutional Neural Networks (CNNs) are exceptionally popular for being able to
exceed human accuracy in plenty of applications, ranging from recognition tasks [1] such as face
detection [2], object classification [1], text understanding [3] and speech recognition [4], to
autonomous driving electric cars [5] and Internet of Things (IoT) devices [6]. In such a scenario,
researchers have recently focused their attention on the design of hardware accelerators for deep
CNNs able to operate in real time with limited power consumption and costs. However, state-of-the-
art deep CNNs [7-10] perform hundreds of millions of operations on a considerable amount of data,
thus leading to several computation and memory issues that leave the design of hardware
accelerators still a challenge.

With the aim of saving energy consumption and resources occupancy without significantly
penalizing the overall quality, several studies [1,11-14] have proposed the quantization of both
network parameters and feature maps for many state-of-the-art CNN models. The benefits of such a
strategy are impressive. Just as an example, let us examine what the consequence is of reducing data
precision on basic arithmetic building blocks. An 8-bit fixed-point adder dissipates 33% (3.4%) of the
energy consumed by a 32-bit fixed-point (floating-point) adder, requiring 3.8 x (116x) less area. The
advantages offered by the reduced precision are even more evident in the case of multiplications. In
fact, an 8-bit fixed-point multiplier consumes only 6.45% (5.4%) of the energy dissipated by a 32-bit
fixed-point (floating-point) multiplier, spanning 12.4 x (27.5x) less area [15,16].

Exploring quantization and approximation strategies makes it possible to design efficient
accelerators suitable for both Application-Specific Integrated Circuits (ASIC) [17] and Field-
Programmable Gate Array (FPGA) [18] hardware platforms. Although the efficiency of FPGA

J. Low Power Electron. Appl. 2020, 10, 1; doi:10.3390/jlpea10010001 www.mdpi.com/journal/jlpea

J. Low Power Electron. Appl. 2020, 10, 1 2 of 17

platforms in the implementation of artificial neural networks has already been proven [19,20],
modern heterogeneous FPGA Systems-on-Chips (S0Cs) are often preferred when dealing with deep
convolutional neural networks, since they offer a good balance in terms of performance, cost and
power efficiency. Indeed, both Xilinx [21,22] and Intel [23,24] SoC-FPGAs merge the flexibility of
software routines running on a general-purpose processor with the advantages of special-purpose
parallel hardware architectures. The former can be developed by exploiting optimized software
libraries, as well as the support of an operating system, to manage communication with possible
system peripherals. The latter are typically needed to implement time- and/or energy-critical
operations, which represent an overhead for the application. This allows energy efficiencies higher
than traditional GPUs to be achieved [25]. In the literature, several FPGA-based designs have been
presented to accelerate the inference of 16- [26-29] and 8-bit [30,31] fixed-point quantized CNNs.
However, while some of them [28-31] were optimized to achieve high performanc by directly
increasing the level of parallelism with which feature maps are processed, others [26,27] were mainly
oriented towards low-power applications.

This paper presents a power-efficient heterogeneous embedded system purposely designed for
real-time inference of large-scale CNNs. The proposed architecture is structured to be implemented
within virtually any FPGA-based SoCs, enabling competitive speed and energy performances to also
be achieved when targeting low-end devices. As a case study, two prototypes were realized based on
the SoCs of the Xilinx Zyng-7000 family. They mainly differ from each other with respect to the
adopted computational parallelism level. The cheapest design uses 220 DSPs and performs 95.5
Gops/s at the 150 MHz running frequency. Conversely, the high-performance implementation
achieves an effective power efficiency of 135 Gops/W at the 167 MHz running frequency by using 880
DSPs. It shows a more favorable speed-power trade-off than several recent competitors. Both
implementations were validated in accelerating the large-scale VGG-16 [7] CNN. In this case, the
novel embedded systems exhibited end-to-end frame rates of 2.65 and 11.8 fps, which significantly
outperform state-of-the-art implementations based on the same embedded platforms and well suit
pervasive low-cost IoT applications.

2. Background and Motivations

One of the most representative examples of the application of deep CNNSs is the task of image
classification, which allows the extraction of features from images and their classification into a
certain group of categories. Generally speaking, a deep CNN consists of a certain number of cascaded
convolutional layers (CONVs), each structured as shown schematically in Figure 1a. The generic
CONYV layer receives a set of M 2D arrays of input data, named input feature maps (ifmaps), and
produces a set of N 2D output feature maps (ofmaps). It is worth noting that, to furnish the generic
ofmap, each ifmap is filtered using a distinct 2D convolution kernel, and the M results obtained in this
way are combined by means of a pixel-wise addition. The N intermediate ofmaps are further processed
by applying a non-linear function, such as the rectified linear unit (ReLU) [32], which sets negative
values to zero, while keeping positive values unchanged. Afterwards, normalization or quantization
and sub-sampling are optionally performed. The resulting N ofmaps are then inputted to the
subsequent CONV, which will produce its own set of ofmaps. The Mc ofmaps produced by the last
convolutional layer are finally processed by the classifier, and typically implemented by the so-called
fully connected (FC) layers. As schematized in Figure 1b, the generic FC layer also applies filters on
the ifmaps, but, in this case, the filters and the ifimaps have the same size. For each ifmap a matrix
product (MP) is computed; the resulting Mc matrix products are added and then processed by the
ReLU module to furnish one element of the 1 x 1 x Nc ofmap.

Each deep CNN model exploits differently cascaded CONV and FC layers to achieve even
greater accuracy [7-10]. However, as discussed in [33], in state-of-the-art deep CNNs, CONVs
consume most of the computational time, thus becoming one of the most critical tasks responsible for
limiting reachable speed performances. For this reason, the design of hardware parallel convolutional
engines suitable for the inference of deep CNNSs in high-performance low-power applications has
recently received a great deal of attention [26-31,34]. The most exploited design techniques aim to

J. Low Power Electron. Appl. 2020, 10, 1 3 of 17

boost the achievable performances by increasing the level of parallelism with which data is processed
[28-31,34]. Indeed, as is visible in Figure 1a, most of the computations involved in a convolutional
layer are independent from each other, offering the possibility of parallelizing the operations within
the kernel and across both ifmaps and ofmaps. Although such an approach leads to a significant
increase in speed, it also introduces a detrimental effect on the area occupancy and the power
consumption that, in some cases, leads the hardware design effort to be in vain [30,34]. Conversely,
hardware accelerators oriented towards minimizing energy dissipation typically exhibit low
performances [26,27].

Optional operations

A

Normalization [—] Subsampling [

N intermediate N
ofmaps ¢

N-1
kernely_7

Normalization | Sibmtns >
(a)

{Pucs ifo, {Pres ifpo

B e
/ MP / MP| °°°° MP MP
kernellyc=t kernel§e1 kernelyy._, kernel)
ReLU
1x1xNc ofmaps

(b)

Figure 1. Computations performed by: (a) a convolutional layer; (b) a fully connected layer.

The exploitation of fixed-point representation and quantization techniques to improve
throughput and power performances of hardware CNN accelerators has been widely discussed [11-
14]. Previous works have variously exploited the 16- [26-29,34] and 8-bit [16,30,31,35-37] reduced
precisions on both feature map values and parameters to realize efficient FPGA-based designs. The
energy-efficient CNN accelerator proposed in [27] adopts a 16-bit representation to enable on-chip
storage of parameters and partial results and to reduce power consumption associated with data
transfers to/from the external memory. In such a case, a dynamic power less than 500 mW is
dissipated at the 150 MHz clock frequency, but the frame rate is limited to just 0.61 fps when running
the VGG-16 model [7]. This drawback mainly comes from the strategy adopted to employ DSP slice

J. Low Power Electron. Appl. 2020, 10, 1 4 of 17

resources. Indeed, in [27], each DSP slice was used to perform just one multiplication, leading to the
internal accumulator being unused and performing the sum of products by a further adder tree
structure. Conversely, in [28], 16-bit quantized precision was exploited to save DSPs and to map one
product within the 18 x 18-bit embedded multiplier (EM) available within the Stratix [23] and Arria
[24] FPGA SoC devices. Despite this optimization, the accelerator presented in [28] required a
massive increase in parallelism levels, and also introduced unrolling and tiling operations to achieve
a frame rate of 23.1 fps using over 1500 EMs and 2200 on-chip block RAM.

The NullHop accelerator presented in [29] aimed to reduce on-chip memory requirements and
to speed up the inference of large-scale CNNs by means of an efficient compression technique. The
latter exploits the sparsity of neuron activations in a CNN to produce compressed ifimaps that can be
represented with the 16-bit fixed-point format. Therefore, the complete embedded system proposed
in [29] benefits from such a quantization for reducing the power consumption related to the data
transfers. However, the coding/decoding scheme required on each ifinap limits the overall
performances. As an example, when applied to the VGG-16 model [7], only 0.66 frames per second
are processed.

Even lower bit-precision can be exploited to further improve speed and/or power performances.
In [30] and [31], 8-bit fixed-point representation was used to reduce, respectively, the area occupancy
and the amount of on-chip memory required to store the network parameters and intermediate
feature maps produced by the various CONV layers. While the approach described in [30] allows the
reduction of the power consumption to just a few Watts, that presented in [31] exhibits a frame rate
of 12.2 fps when running the VGG-16 [7]. However, both of these designs are standalone, and they
do not take into account the interactions with auxiliary modules always required in embedded
systems based on heterogeneous SoCs.

Appropriately reducing the data precision to 8 bits also allows the high-performance DSP blocks
to be exploited to realize fast double [16,35-37] MAC architectures. Unfortunately, the latter require
auxiliary operations to correct the output of each DSP block used to perform multiplications, thus
causing detrimental effects on speed performances, resources requirements and power consumption.
Furthermore, the architecture proposed in [36] uses a memory access policy that does not allow
exploitation of high-performance continuous data streaming for input and output data transfers.
Thus, this kind of accelerator cannot be easily integrated within real-time heterogeneous embedded
systems.

In [34], a complete embedded system targeting FPGA-based heterogeneous SoC was presented
to accelerate both CONV and FC layers through a custom hardware accelerator, implemented within
the fabric and the CPU, respectively. This partitioning strategy enabled a frame rate of 5.5 fps to be
achieved, along with a power dissipation of about 10 W for the VGG-16 inference. However, in order
to feed the convolution engine with a large set of inputs at each clock cycle, on-chip buffers are
required. Moreover, to fully exploit the data width of the bus available for communication with the
external memory, the authors in [34] doubled the number of DSP slices used, thus furnishing two
outputs at once. However, the resulting processing unit appears to be very inefficient. In fact, it
performs 169 Gops per second at the 140 MHz running frequency, with the average number of
operations per DSP slice equal to just 1.4.

In this paper, we present an efficient embedded system dedicated to the inference of large-scale
CNN models and suitable for integration within modern heterogeneous SoCs. In contrast to previous
works, the design proposed here focuses on both micro- and system-level aspects to achieve high
performance and low power consumption. The designed system architecture is structured to support
the efficient Single-Instruction-Multiple-Data (SIMD) paradigm for computing both CONV and FC
layers. With this aim, we realized an on-purpose designed buffer architecture able to feed the CONV
computing unit properly. Furthermore, specialized software routines exploiting NEON multimedia
engine have been developed to accelerate the FC layers elaboration. This approach allows fully
exploiting the processing capabilities of such heterogeneous FPGA SoC, significantly improving the
overall performance over state-of-the-art CNN accelerators implemented on similar embedded
platforms. The design proposed here is highly flexible and portable, and very promising when

J. Low Power Electron. Appl. 2020, 10, 1 5 of 17

moving to the next generation of multi-processor SoC (MPSoC) devices, making available more
powerful hardware-configurable and software-programmable units.

3. The Proposed SIMD CNN Accelerator

The top-level architecture of the proposed accelerator is depicted in Figure 2. It consists of two
main parts: the programmable logic (PL) that accommodates the custom modules performing all the
operations involved in a CONV layer, and the processing system used to run software control
routines and to execute the FC layers. The SIMD paradigm is exploited to process Tu ifmaps in parallel
and to produce T~ ofmaps contemporaneously. Thus, the generic K x K CONV layer, receiving M
ifmaps and producing N ofmaps, is completed within ns = (M/Tum) x (N/Tn) computational steps
performed as follows. The SIMD buffer receives input data through an AXI-stream (AXIS) [38] and,
after a latency depending on the number of columns W in the ifmaps, it prepares Tm K x K convolution
windows for the subsequent SIMD Convolution Engine (CE). The latter is designed to perform
double MAC operations by enabling a further intra-feature map parallelism based on a new efficient
processing strategy. In the meantime, the module Store Kernels reads the K x K x Tm x Tn kernel
coefficients from the external memory through AXI-Full transactions [38] and delivers them to the
SIMD CE, which performs the Tux Tnplanned convolutions in parallel. The Accumulate module then
accumulates the obtained results by exploiting a local memory buffer and finally outputs the
intermediate ofmaps. The finite state machine (FSM) orchestrates the activities of all modules,
considering the current layer information provided by the PS through an AXI-Lite interface [38], and
the intermediate steps already performed. For this purpose, the bidirectional CTRL bus is used. As
soon as all the intermediate ofmaps are accumulated, the ReLU & Quantization module is activated;
the quantized ofnaps are optionally sub-sampled by the Pooling module and then outputted. Input
data and kernel coefficients are 8-bit unsigned and signed fixed-point numbers, respectively. To
efficiently exploit the SIMD paradigm, two couples of 8-bit values belonging to two different ifinaps
(i.e., ifprand ifps1 with t =0, 2,..., M — 2) are accommodated within one 32-bit word, ensuring that two
adjacent elements of ifp: are interleaved with two adjacent elements of ifpr1. Data packed in this way
are stored in the external memory in the raster order. It is worth pointing out that the proposed
architecture is designed to output ofmaps already packed as described above. Therefore, no specific
data re-adjustment is required between consecutive convolutional layers. A slightly different strategy
is used to store the K x K convolution kernels, which are indeed packed within 64-bit words, ensuring
that the coefficients having homologous positions within eight distinct kernels are packed in the same
word and transferred from the external memory at the same time.

- SIMD |y SIMD | Pooling b=
fmaps Buffer Convolution Engine & ’ l”fmal’s

l Intermediate |
S ofmaps
ReLU &

Accumulate Quantization

Configuration

L

ofmaps from the I PS
last CONV layer Software routines for configuration,
FC layers and SoftMax

Figure 2. Top-level architecture of the proposed accelerator for CNNs.

3.1. Architecture of the SIMD Buffer

The proposed hardware accelerator is made to be able to process in SIMD fashion two adjacent
values of each of the Tu ifmaps received as input, and to furnish two adjacent values of distinct Tn
ofmaps. To this end, a window consisting of K x (K + 1) values must be patched over each ifmap to

J. Low Power Electron. Appl. 2020, 10, 1 6 of 17

accommodate two adjacent convolution windows. This requires an unconventional buffer stage
design. The SIMD reconfigurable buffer depicted in Figure 3 uses Tu instances of the internal buffer
IBuff, each consisting of K — 1 FIFOs and K X (nr + 1) + nr + 2 registers, with nr = % being the

radius of the convolution window. Each IBuff internally splits the incoming 16-bit data into two
pieces of 8-bit data that feed two different pipes: the former consisting of the nr + 1 registers R, ...,
Rnr+1, and the other composed of the nr +2 registers Rur+, ..., Ronr2 and Raux. Such an additional register
is required to correctly pair incoming values when nr is odd. To better explain why this is necessary,
let us consider the example of Figure 4a, which shows the case in which the generic IBuff receives a
4 x 8 ifmap and arranges 3 x 3 convolution windows. It is important to note that, due to the zero
padding, the first incoming pair of adjacent values A1 and B1 does not appear in the correct relative
position for parallel operation in the two highlighted convolution windows. In fact, A1 in the brown
window corresponds to the padding zero value in the blue one, whereas B: in the brown window
corresponds to Az in the blue one. To guarantee that the incoming data will be multiplied by the
correct kernel coefficients, they must be properly recoupled before reaching the FIFO:. This is done
through five registers, Ri, Rz, R3, R+ and Raux, as shown in the timing diagram illustrated in Figure 4b.
It is easy to verify that, when nr is even, incoming data are already correctly paired. In this case, the
register Raux has no effect. The data-path then goes on through the subsequent FIFOs and registers
that furnish data depending on nr, as summarized in Figure 4c, where the symbol ‘&’ is used to
indicate concatenations of two 8-bit registers.

The module Recognize Borders, shown in Figure 3, establishes whether the central values within
the current convolution windows belong to the borders of the ifmaps and, if necessary, as required by
the zero padding, it masks appropriate values of the current convolution windows with zeros before
being streamed out. It is worth noting that the proposed reconfigurable SIMD buffer also adapts itself
to the different ifmaps sizes as they occur when moving from one CONV layer to another. To do this,
FIFOs are realized by means of dual-port RAM blocks that are accessed in read and write modes at
the addresses RAddr and WAddr, respectively. Both of these addresses are furnished by the module
Address Generator, taking into account that the required effective FIFOs depth varies depending on
the current CONV layer, based on the FS parameter provided by the external FSM and set as half the
ifmap width W. Finally, the output stream to be dispatched to the SIMD CE is generated, taking into
account the latency introduced by the buffer and the stride required by the current CONV layer.

Input BN oo m - LBy
Stream oy o o e e e e e e e e e e e e e] T Eliﬁ' 1
3 N
! Skh R, R c|MBuffy 1
1 - P S ’m—l I(\I) 16 I 1 1
1 / Lls cH=—q !
[T Rapep R JUR L ST) 10
b
: WE T 3 b T] : :
|
FSI WAddrl 16 b
» + Address = FIFO, / Rs Ry 1 : 1
i Generator mip 4 B | > d
RAddr |
I WE b
I wAddr 16 1 I
! = FIFO R M
1 RAddr k1 [bk*m‘*k E(kﬂmwm i 1]
| (|
1 R, R[kfl)'ukkﬂ Rox : (]
1 ‘r_ | 1_1
1 Recognize borders Counters — 4
] 2 5
__________________ i_ _ = M
Qutput stream
Control signals of
. —_—
the input stream Generate Out Stream Window Ready

Figure 3. Architecture of the reconfigurable SIMD Bulffer.

J. Low Power Electron. Appl. 2020, 10, 1 7 of 17

0 0 0 0 0 0 0 0 0]0
0N Al | BI || A2 I B2 | A3 | B3 | A4 | B4 [0
0 B6 | A7 | B7 | A8 | B8 [O
0 [A9 | B9 [Al0 | BI0O | AIT | BITl | Al2 | BI2 | 0
0 | A3 | BI3 | Al4 | BI4 | Al5 | BI5 | Al6 | BI6 | 0 Data provided when 77 is odd
0 0 0 0 0 0 0 0 0 0 Rz & e o2 & Raux
Rl nr nr+1
(@) Ronrt3 ... Rsnrr2 R3nr3
Input AI&BI A2&B2 A3&B3 A4&BA AS&BS A6&B6 AT&BT7 -- Rictnrtkl [... | Raernrk [Raerhnrske1
R O Al A2 A3 A4 AS A6 AT Data provided when nr 1s even
1 Rnrﬁz & e Ronrr1 & RﬁHZ &
4 1 nr nr+1
Al A2 A3 A4 A5 A6 -
Rz ® Ronrt3 oo Rinr2 Rinr3
R 0 Bl B2 B3 B4 BS B6 B7 - e
3 Rictnrtkt1 [... [Rry*nrtk | Rty nrtk+1
R 0 Bl B2 B3 B4 B3 B6 --
4
(0)
R 0 Bl B2 B3 B4 BS __
aux
Window 0 0&A1 (BI1&A2 (B2&A3, B3&A4 (BA&KAS) B5&A6--

Line

(b)

Figure 4. Dispatching two adjacent windows by the proposed buffer architecture: (a) example on a 4
x 8 input; (b) the strategy used to recouple input data; (c) data provided by the registers depending
on nr.

3.2. Design of the SIMD CE

The SIMD CE represents the computational core of the system. It is designed to perform parallel
MAC:s on the convolution windows formed by the buffer. In modern FPGAs, such elaborations can
be synthesized on high-performance DSP slices, on reconfigurable logic elements, or by using both
resources. However, concatenating DSP slices through dedicated fast interconnections allows the
highest speed—power efficiency to be achieved. As an example, we observed that the fastest 9-input
MAC unit realized by means of reconfigurable resources was 140% slower and consumed 50% more
energy than the DSP-based counterpart.

The proposed architecture can be realized using any kind of DSP slice, providing at least one b
x d multiplier and one u-bit accumulator (with b > 25, d > 8 and u > 33). However, making the DSPs
able to perform parallel MACs operating in SIMD fashion is not a trivial task. Let’s indicate with A =
ifpi(h,w) and B = ifpu(h,w + 1) two adjacent packed unsigned elements uploaded from the generic ifmap.
With C being the generic signed kernel coefficient, for the above-mentioned purpose, two
independent products A x C and B x C have to be computed in parallel. As schematized in Figure 5,
the inputs A and B are re-arranged within the b-bit input Y of a DSP interposing eight zero bits to
each other and zeroing the remaining MSBs of Y to guarantee that the operand A is always treated as
an unsigned value. Conversely, the d-bit operand Z is used to input the sign extended 8-bit coefficient
C. When the latter is negative, the DSP applies the 2s complement notation to the overall result
instead of the two separate products, thus necessitating an increment by one of the product A x C to
compensate the introduced error. Due to the different data arrangement used, the designs of double
MAC (DMAC) engines presented in [16,36,37] address this issue through logic resources external to
the DSPs that perform multiplications. This approach negatively affects the computational time, since
it breaks the chain of DSPs cascaded along dedicated fast routing resources. In the SIMD CE proposed
here, as shown in Figure 5, the products A x C and B x C are accommodated within the (b + d)-bit
output of the multiplier occupying the (b + d — 16) MSBs and the 16 LSBs, respectively. Due to this,
the correction is done by adding one auxiliary u-bit operand X by using the accumulator internal to
the same DSP slice that performs the multiplication. To increment by one the product A x C while
leaving B x C unchanged, when C is negative, X must be set to 216, thus asserting only its 17-th bit.
Conversely, when C is positive, X must be set to zero. In this way, the cascaded DSPs used to perform
the DMACs can complete their operations without encountering breaks along their dedicated fast
chain.

J. Low Power Electron. Appl. 2020, 10, 1 8 of 17

(b—24) bits 8 bits 8 bits 8 bits
y=[00.00] A [00,00 | © 1 x
(d—8) bits 8 bits
Z= [Sign extension| — C | =
| AxC I BxC |
(b+d-16) bits g 16 bits
| X |
5
Xan =1 if C<0

Figure 5. SIMD multiplication with a common operand C and no guard-bit.

The design of the proposed SIMD CE is depicted in Figure 6. It consists of Tn Processing
Elements (PEs) that compute distinct Tn ofimaps in parallel by processing K x K x Twm pairs of 8-bit data
transferred by the SIMD buffer and the kernel coefficients provided by the module Store Kernels. The
module SEPARATE routes the data streamed by the SIMD Buffer to the PEs, whereas the module
Generate Out Stream arranges the results as ruled by the AXI4-Stream protocol. As can be seen in

Figure 6, the generic PE consists of Nomac DMACs, each responsible for processing W b-bit data
DM

through as many DSP slices configured to perform SIMD operations. Each DSP receives one packed
b-bit operand and one kernel coefficient C as inputs and computes two parallel 16-bit products A x C
and B x C. To perform the subsequent accumulations correctly, each SIMD result is re-arranged over
u bits by the module INSERT GUARD BITS. The latter sign extends the 16-bit product B x C to % bits,
and left-shifts the 16-bit product A x C by (;-16) positions. In this way, ¢-16) guard-bits are

)

u
introduced between the two independent products, thus allowing up to 2&™*® accumulations to be

performed in SIMD fashion. The K;K—XTM u-bit data obtained in this way are then dispatched to the
KXKXTy pumac
2XNpmac

the results produced in parallel by the DMACs involved in the generic PE. If u < 64, the two adjacent
(%)-bit packed values outputted by the generic PE are separately sign extended to 32 bits; re-arranged

subsequent DSPs configured as accumulators. Further cascaded DSP slices then accumulate

within one 64-bit word; and streamed out with the results coming from the other PEs.

R IO H—) —

Valid | Generate Out
- Stream Output

1 1
i | PE|PE |!
I i P DMAC PE -
1 3 1
: et —— !
1 il 1
: SRR g;% DMAC —E?_* !
. e moals [0 2 : :
! E:] INSERT [*EH ° e :
X ;w—' GUARD v DMAC > :

R ° = S S 1
/f\ : 3 - o . DMAC I E
E R PO - £ !

= 1

] 1

1

1

1

i

1

Figure 6. Architecture of the proposed SIMD CE.

J. Low Power Electron. Appl. 2020, 10, 1 9 of 17

Then, as can be seen in Figure 2, either the Accumulate or the ReLU & Quantization module
performs further operations. The FSM manages the accumulation of partial results furnished by the
SIMD CE at the generic computational step and their storage within on-chip Dual Port RAMs. As the
last step, ofmaps are delivered to the ReLU & Quantization module. The latter processes Tw ifinaps in
parallel, as established by the chosen rectified activation function. The quantized results are finally
streamed out towards either the external memory or the Pooling module, which can perform the
downsampling by applying either the Max Pooling, or the Average Pooling, or the Stochastic spatial
sampling. Such a choice can be dynamically modified via software. The Pooling module produces
the first valid result after FS + 1 clock cycles and then furnishes a new output every clock cycle until
two consecutive rows of the received ifimap are processed. During the subsequent FS cycles, the circuit
just waits for the next downsampling window. Then, a new output value is produced at each clock
cycle until two further rows have been processed, and so on.

3.3. Implementation of the Fully Connectd Layers

Most CNN models require a certain number of fully connected layers to produce classifiers. In
the proposed system, the FC layers are executed by means of purpose-designed software routines
run by the PS. The pseudo code reported in Figure 7 was written exploiting the NEON multimedia
engine [39], which supports SIMD and vector floating-point instruction sets. This capability is
available within Zyng-7000 [21], Zyng-UltraScale+ [22], Stratix 10 [23] and Arria 10 [24] devices. SIMD
and vector instructions, as well as data types, supported by the NEON library, allow eight different
computations to be performed in parallel. As an example, it can be seen that type int32 x 4_t is used
to define a 128-bit packed word (e.g., vecsum), in which four 32-bit signed integer numbers can be
accommodated to be processed in SIMD fashion. The generic FC layer computes the Nc-element array
simdsum. To calculate its j-th 32-bit element, the proper kernels coefficients are transferred from the
external memory to the 64-bit variable Coeff through the appropriate reading instruction. The
uploaded data is re-arranged as eight distinct 8-bit signed coefficients through the instruction
vreinterpret_s8_s64. Analogously, the ifmaps values are prepared in the variable Ifmap8 x 8. The
instruction vmull_s8 is then used to multiply corresponding elements in the packed words Coeff8 x
8 and Ifmap8 x 8 within only a single clock cycle, thus assigning the eight 16-bit results to the
corresponding elements of the variable prod_q. To complete the FC layer, the above operations must
be repeated nPC times, as many as the 64-bit packets containing the kernels coefficients that must be
read from the external memory. Each resulting prod_q must then be accumulated to the previous
ones. Obviously, more than 16 bits are required to correctly represent the accumulations results.
However, at most, eight 16-bit data can be packed within the largest supported 128-bit word-length.
Therefore, in order to perform the subsequent accumulations correctly, the instructions
vget_high s16 and vget_low_s16 are preliminarily executed to split prod_q into two different
variables sum16 x 4 and sum2_16 x 4, each consisting of four 16-bit signed data. The instruction
vaddw_s16 is then executed to perform two separate accumulations each providing four 32-bit signed
results packed within the variables vecsum and vecsum2. The eight 32-bit results obtained in this
way are summed together, providing the result simdsuml(j]. The latter is then linearly rectified and
quantized to 8 bits. Finally, the packed variable simdsums$ is ready to be stored in the PS on-chip
memory. The next FC layer is then carried out, executing the same instructions, except that for
reading ifmaps from the external memory, which is required only when the first FC layer is
performed. Conversely, for any FC layer following the first one, the results of the previous layer
contained in the variable simdsum8 must be used as the input values. For the i-th element of the array
simdsum8 outputted by the last FC layer, the classification likelihood is computed by applying the
softmax equation given in (1), where nf is the number of fractional bits used in the fixed-point
representation. It is important to underline that, in order to do this, as is visible in Figure 7, the NEON
floating-point instructions vaddq_f32 and vmulq_n_£32 are exploited.

J. Low Power Electron. Appl. 2020, 10, 1 10 of 17

) . _ exp ((simdsum8l[i]) /2nh)
L(simdsum8i]) =]N=C13 exp ((simdsum8][j]) /2f) M

uint64x1_t Ifmap;

int64x1_t Coeff;

uint8x8_t Ifmap8x8;
int8x8_t Coeff8x8;

int16x8_t prod_g;

int16x4_t sum16x4, sum2_16x4;
int32x4_t vecsum={0,0,0,0};
int32x4_t vecsum2={0,0,0,0};
int32 simdsum[Nc];
int8x8_t simdsum8[Nc/8];
ulé nPC=Mc*Kc*Kc/8;

for (1=0; j<N; j#+) |
simdsum[j]=0;
for (i=0; i<nPC; i=i+1){
Read Coeff from the external memory
Coeff8x8=vreinterpret_s8_s64(Coeff);

//Required only the first FC layer
Read Ifmap from the external memory
Ifmap8x8=vreinterpret_u8_u64(Ifmap);

prod_q=vmull_s8(Coeff8x8,Ifmap8x8);

suml6x4=vget_high_s16(prod_q);

sum?2_16x4=vget_low_s16(prod_q);

vecsum=vaddw_s16(vecsum,sum16x4);

vecsum2=vaddw_sl6(vecsum2,sum2_16x4);
}

simdsum[j]=simdsum[j]+vecsum[0]+vecsum[1]+vecsum[2]+
+vecsum[3]+vecsum?2[0]+
+vecsum?2[1]+vecsum?2[2]+vecsum?2[3];

//IReLu and Quantization
if (simdsum[j] < 0)
simdsum8[j/8][j%8]=0;
else simdsuma8|[j/8][j%8]=simdsuml[j]>>24;

}

//Softmax applied to the output simdsum8 of the last FC layer

float32x4_t vexp[125], L[125];

float32x4_t vexp2[125], L2[125];

float32x4_t sumexp;

float totsum=0;

for (=0; j<125; j5+1){

for (i=0; i<4; i=i+1){

vexplj][i]=exp((simdsum8[j][i])>>nf);
vexp2[j][i]=exp((simdsums8][j][i+4]) >>nf);

sumexp=vaddq_f32(vexp[j],vexp2[j]);
totsum=totsum+sumexp[0]+sumexp[1]+sumexp[2]+sumexp[3];

}

for (u32 j=0; j<125; j=j+1){
L[jl=vmulq_n_f32(vexp[j],1/totsum);
L2[jl=vmulq_n_f32(vexp2[j],1/totsum);

}

Figure 7. The pseudo-code used to accelerate FC and softmax layers.

4. Implementation of the Proposed CNN Accelerator on Heterogeneous FPGAs

The proposed design is platform independent. However, without loss of generality, in this
section, a specific implementation of the accelerator for uniform kernel size CNN models is detailed
referring to Zynq-7000 devices. Figure 8 illustrates the block diagram of the complete heterogeneous
embedded system. The SoC device is formed by the PS, depicted on the right of the illustration, and

J. Low Power Electron. Appl. 2020, 10, 1 11 of 17

the PL on its left. PS-PL communication interfaces are also shown. The PS uses the Master General
Port M_GPO0 to configure all the modules realized in the PL. The latter directly accesses the DDR
memory controller available within the PS by means of the four 64-bit bidirectional High Performance
(HP) ports. Furthermore, the Accelerator Coherency Port (ACP) makes the PL able to perform 64-bit
coherent accesses to the DDR memory space by means of a Snoop Control Unit (SCU). The four HP

ports manage the ifinap/ofmap data flow from/to the external DDR memory by means of four DMAs,
while the ACP is used to transfer kernels coefficients to a Central-DMA (CDMA). Specifically, the
system runs as follows:

the software running on the PS uses the port M_GPO to configure the DMAs and the CDMA
IP cores through the AXI4-Lite protocol. Each module receives an appropriate task to transfer
a certain amount of data from/to a specific area within the external DDR memory. The port
M_GP0 is also used to configure the custom accelerator, by setting the stride, the number and
the size of ifmaps and ofmaps for each layer of the accelerated CNN, as well as the type of
pooling to be applied, and finally to start its operations;

the AXI-Streams coming out from the four DMAs are synchronized by the AXIS-Combiner
within a single data stream; contemporaneously, the CDMA transfers the kernels coefficients
related to the current convolutional layer from the DDR to the Store Kernels module;

the combined stream is purposely split by the AXIS-Broadcastero into Tm separate streams to
sustain the parallelism level on buffered ifmaps delivered to the custom accelerator;

the output stream produced by the custom accelerator is then separated into four 32-bit
streams by the AXIS-Broadcaster: and moved to the external DDR by DMAs, thus properly
preparing the ifmaps for the next convolutional layer;

the software routine run by the PS finally performs the FC and softmax layers.

1
1 1
1| HP!

| AXIS | DMA, 0
i Broadcaster 1 | |
1 1
1 — '
1 4p1 DDR
: e=>| DMA; |« Memory External
i AXIS i *™ Memory
i Combiner | DMA, : HP2 | controller
| ! I_.
1 1
: DMA; e
1 : HP3
!) NEON
! Start | Config ! Media
i] AXIS , FS | processing

| — 1
| Broadcaster 0 I SIMD Buffer 1 ngne
| FSM . : R0 Dual core
| l l l |- Cortex A9
1 1
1 a . |
: Fs Pool SIMD Convolution Engine Store CDMA T SCU
! type Kernels :
i En En | '
1 > ReLU & 'l Processing System
. Sel - l
: Quantization | !
1 Accumulate ;
i Programmable |
1 1
: Pooling |4 %% Logic 1 FPGA SoC device
' type ,
e 1

AXI-Full s AXI-Stream — AXI-Lite ™= Internal control signals "~ Internal data

Figure 8. The proposed embedded system on Zynqg-7000 devices.

Two implementations were characterized. They differ with respect to the adopted parallelism
level and the used FPGA SoC device. The prototype based on the cheaper XC7Z020 device,

J. Low Power Electron. Appl. 2020, 10, 1 12 of 17

characterized for K = 3, sustains a parallelism level Tu= 8 and Tn= 2. In this case, the total memory
bandwidth requirement is 2.9 GB/s, which is well below the 4.16GB/s supported by the DDR memory
controller [40]. The second implementation exploits the wider XC7Z045 device. Its higher resource
count allows the parallelism level to be increased to Tn= 8. In this case, the 5.2GB/s maximum memory
bandwidth dictates the maximum clock frequency to 167 MHz.

Table 1 summarizes the behaviors achieved by the implementations presented here and by
several state-of-the-art competitors when executing the VGG-16 model. It is divided into two
portions: in the former, architectures realized on low-cost devices are collected; whereas the latter
summarizes the behaviors of prototypes implemented on mid-range devices. All the competitors are
characterized in terms of resources requirements, number of operations performed per second
(Gops), Density Efficiency (DE), times required to execute CONVs, FC and Softmax layers, and Power
Efficiency (PEff). For the sake of fair comparison, it is worth underlining that the architectures
presented in [27,30,31] are proposed as standalone accelerators. Thus, they do not take into account
either the hardware resources required for the integration within a complete embedded system, or
the time needed for transferring data from/to an external memory and the latency needed for
properly buffering input data.

Table 1. Comparison results.

Design Freq. Gops DSPs o Resoume;{ AMs Gl?)f)s / C,f,)i::s S:ff;:ax PEff
(Device) [MHZz] LUTs FFs [Mb] DSPs) [ms] Time (Gops/W)
[ms]

New (XC7ZE(332:) ngy 10 955 2200100%) (;3;‘;2/5) 1(?812? (;6402) 0.434 376.3 48 385
30] (xc7§$2 ; pgy 10 843 190(63%) %:62/63 ?3342? (613% , o 364 NP ¢ 24.1
el (xc7zg§o ngy 125 483 220000%) NA* NA NA 0.22 633 NP 277

New (xc7zgis gy 167 42532 88007.8%) 8226/1) (%23/2) ’ 617259 w048 845 48 135
27] (XUZSO/ZS gy 10 %68 17@Ls%) (18855;? 8049 (1.84%) (()47/7? 0186 16393 NP 707
30l (xc7z%25 ngy 241 780866%) 12233)6 127,653 (29%) (187738) 0175 246 NP 142
120 (chngS pgy 12 19581 855(95%) NA NA NA 0.182 2495 NP 38.8
[31] (xc7zs<’)125 ggy 10 7498 900(100%) 1(1532'5/07)2 240,640 (55%) (1301/6) 0416 82.03 NP NA
oy M0 10 seosn G0l TO0 ey 05 W8 26169
29 (xc7z]i§o agy 172 12863% 2(289330)0 107,000 (19%) (511%1'30) 0134 2269* included 27.4
28] " 200 7159 1518(100%) 141,312 NA 43.6(82%) 0.47 432* *included NA

(GX1150 [21]) (32%)

! Embedded system; ? Standalone accelerator; Not available; * Not performed.

In both sets of competitors, the proposed architecture shows the most favorable performance-
power trade-off, reaching the highest PEff. Moreover, it is important to note that our system
architecture is structured to manage continuous streams for both input and output feature maps. This
is made possible by smartly exploiting the available bandwidth to support the selected parallelism
level. On the contrary, the designs in [29,34] do not allow continuous streaming operations, thus
achieving significantly lower speed performances. In particular, in [29], the streamed compressed
input feature maps incoming from the external memory lead to interleaved transfers of sparsity map
and non-zero values. Similarly, multiple clock cycles are required to process a single convolutional
window, thus slowing also the ofmap stream. The embedded system design presented in [34] makes
use of a single DMA for input and output feature map transfers, which dispatches proper data
to/from the convolution engine using a custom logarithmic interconnect block coupled to a set of on-
chip BRAMs. To improve the number of parallel MAC operations, in [34], the amount of consumed
DSPs is proportionally increased. In contrast, our strategy, which exploits the SIMD paradigm, as
shown in Section 3.2, allows a significantly higher DE to be achieved.

J. Low Power Electron. Appl. 2020, 10, 1 13 of 17

The accelerator presented in [28] reaches the lowest execution time among competitors. This is
due to the massive parallelism in computing ofmaps obtained by implementing loop unrolling and
tiling strategies. However, the consequent high number of external memory transactions requires
specific memory buffers to serialize data transfers. Block convolutions were also exploited in [31] to
design a CNN architecture that completely avoids memory accesses for writing/reading intermediate
data. However, it is characterized as a stand-alone module. The architecture proposed here is placed
in the middle among the above two solutions.

The standalone accelerator characterized in [27] trades speed-performance for reduced resource
utilization, and it exploits data re-use and a special set of instructions for parameter configuration.
Despite of the efforts to minimize power consumption, the architecture presented in [27] is x19.4
slower than our proposal, and its power efficiency is about x1.7 lower. Compilation tools for
automated CNN design generation are the main contribution provided in [26,30]. While such
flexibility is greatly desired, the efficiency of the resulting architectures is quite low, especially when
moving from a low- to a mid-range platform. As an example, the XC7Z020 design proposed in [30]
achieves a frame rate similar to ours, but it dissipates ~28% more power. The XC7Z045
implementation improves its GOPs by 38.4%, but achieves a PEff ~41% lower than the XC7Z020 one.
Conversely, the approach demonstrated here always ensures higher PEff when moving from a low-
to a mid-range platform.

As detailed above, in the proposed accelerator, FC and Softmax layers are performed by the PS.
The 666 MHz ARM Cortex A9 processor, provided with the NEON multimedia engine, performs
these operations within an overall time of ~48 ms. It has been proven that the SIMD approach detailed
in Section 3.3 requires a computational time ~47% lower with respect to the conventional non-SIMD
implementation. From Table 1, it can be observed that, among the compared designs, only the
implementations presented in [28], [29] and [34] include fully connected layers. However, while in
[28] the hardware convolution engine is re-used to perform also fully connected layers, [29] and [34]
make use of the ARM processor available within the Zynq-7000 chips, and [34] also exploits the
NEON vectors engine to benefit from SIMD acceleration. Due to the data representation used in [34]
(i.e., 16-bit fixed-point), the computation of the three fully connected layers required in the VGG-16
model takes about 72 ms, which is 34% slower compared to our software implementation.

As a further characterization of the proposed architecture, a design space exploration is
presented to analyze resources requirements versus the computational parallelism (i.e., Tm and Tn)
and the convolution kernel size (K). Figure 9a and Figure 9b plot the results related to the XC72020
and XC7Z045 device, respectively. In order to become familiarized with information contained in the
diagrams, let’s examine the leftmost portion of Figure 9a. There, several kernel sizes (K=3, 5,7, 9, 11)
are considered, with Tm= 1. Obviously, the wider the convolution kernel, the higher the number of
DSPs used by a single PE. This means that the maximum number of ofmaps computed in parallel
(MaxTn) by the CE is limited by the amount of available resources. Referring to the cases in which Tm
=1, the number of DSPs used by each PE ranges from 15 to 183 for K varying from 3 to 11, respectively,
while up to 14 ofmaps can be processed in parallel. Of course, the larger XC7Z045 device allows
convolution kernels wider than 11 to be also used in the PE. Figure 9 clearly shows that generally a
theoretical speed-up (SU = Tum x Tn) with respect to the case in which Tm= Tn=1 can be obtained with
various configurations. As an example, SU = 16 can be achieved for different values of Tm and Tn (e.g.,
Tu=8 and Tn=2, Tm=16 and Tn=1, and so on). Each of the implementable solutions offers its own
benefit, depending on the actually exploitable parallelism, which is bounded by the limited capability
of DMAs and HP ports. Indeed, when AXI transactions wider than 64-bit are required, they are
performed over more than one clock cycle. In such cases, the actual speed-up is consequently reduced
with respect to the above-mentioned theoretical level.

Referring to Figure 9b, all configurations with either Tm or Tn above 16 are influenced by such
an effect. As an example, the configuration (Tm= 17, Tn= 3, K= 3) shows an actual speed-up of 24 over
the theoretical SU = Tm x Tn=51. Due to this limitation, several possible configurations that can be
accommodated in the XC7Z045 device do not actually benefit from the increased parallelism.

J. Low Power Electron. Appl. 2020, 10, 1 14 of 17

However, they can be efficiently exploited in high performance Ultrascale™ devices. In such cases,
frame rates up to 55 fps can be achieved for the inference of VGG-16.

Finally, to demonstrate that the proposed embedded design can also be adapted to accelerate
CNN models characterized by non-uniform kernel sizes across layers, we implemented the VGG-S
model [8], since it uses cascaded layers with 7 x 7, 5 x 5 and 3 x 3 convolutional kernels. In such cases,
the number of convolution windows prepared by the buffer is a function of the current CONV layer
and its kernel size. This leads to an effective ifinaps parallelism level that scales as the kernel size K
increases. The proposed accelerator processes the input stream as above detailed. Due to the reduced
number of convolution windows, some of the DSPs available within the DMAC blocks are not used
as MAC operators. Indeed, they are exploited to perform auxiliary accumulations, thus reducing the
overall latency. The PS, dispatching the required information to the FSM, manages the runtime
reconfiguration of the above modules. Through the performed tests, we observed that the XC7Z020
and XC7Z045 implementations complete all the convolutional layers within just ~44.6 ms and ~10 ms
respectively.

18 250
BTM OMaxTN e #DSP per ofmap
16 218
— 153 189 200
12 Described solution *
. 149 »2 150 %
z1
b 123 114 o
© 8 o]
2 100 &,
26 75 77 3
6
4
39 § 2 L 50
2
1E
ool IT)
3 5 7 9 11/3 5 7|3 5|3 5|3 5 3
k
()
68 BTM OMaxTN e #DSP per ofmap 1000
64 93
60 869 §52 884 s > 900
26 19 800
52 737 /Y
h 663 R71 700
44 =
602
2 10 %2 s 600 9
236 527 488 b4
= e 516 ‘ 500 B
S 32 434 2
§28 | 400 %
= 365 334 319326 5
302 = 85 ‘
20 255 264 . ¥k 300
D
12 Described splution s 177 04 200
! ds 110 123
8 100
<o e TEHLL
0 = ﬂ Wl ' IR 5 n ul —] n ﬂ SN IR IN 1N GH 5 0
31323(31117/3 5 7 913 5 7(3 5(7(7(3|713(5/3 5|3 |53 (513 (53131311313
k
(b)

Figure 9. Analysis of the computational capabilities achievable within: (a) the XC7Z020 device; (b) the
XC72045 device.

J. Low Power Electron. Appl. 2020, 10, 1 15 of 17

5. Conclusions

In this paper, an efficient heterogeneous SoC design was proposed to accelerate the inference of
reduced precision CNNs. The novel architecture exploits an effective hardware/software
partitioning, in which the computational-intensive CONV layers are performed by a specialized
hardware architecture, whereas the memory-intensive FC layers are executed by a software routine
running on the processor. Both the hardware and software computations support the efficient SIMD
paradigm for processing multiple data in parallel. In the custom hardware design, the number of
executed MACs is doubled by mapping two independent products A x C and B x C within a single
DSP slice, thus allowing the parallel computation of adjacent convolutional windows. The software
design was developed to enable the NEON multimedia engine for high-performance vector-based
elaborations. Two implementations of the proposed embedded system were characterized for large-
scale CNNs on the Xilinx Zyng-7000 SoC family. Such prototypes exceed the capabilities of state-of-
the-art implementations realized on the same embedded platforms, reaching a power efficiency
significantly higher than competitive prior works and, therefore, becoming good candidates for the
realization of power-constrained high-performance intelligent systems. The proposed strategy allows
the accelerator to be easily configured for various kernels sizes and parallelism levels. As an example,
when it is used for accelerating the large-scale VGG-16 model, our design reaches a computational
time as low as ~376 ms and ~84 ms on the XC7Z020 and XC7Z045 devices, respectively. Of course,
simplified CNN models, such as the VGG-S, allow further higher-speed performances. In such cases,
the proposed architecture exhibits a frame rate of up to 100 fps.

Author Contributions: Conceptualization, F.S., S.P., F.F. and P.C,; formal analysis, F.S., S.P., F.F. and P.C,;
investigation, F.S., S.P., F.F. and P.C,; validation, F.S,, S.P., E.F. and P.C.; writing—review and editing, F.S., S.P.,
F.F. and P.C. All authors have given approval to the final version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sze, V. Chen, H,; Yang, T.J.; Emer,]. Efficient Processing of Deep Neural Networks: A Tutorial and Survey.
Proc. IEEE 2017, 105, 2295-2329.

2. Ranjan, R.; Patel, V.M.; Chellappa, R. HyperFace: A Deep Multi-task Learning Framework for Face
Detection, Landmark Localization, Pose Estimation, and Gender Recognition. IEEE Trans. Pattern Anal.
Mach. Learn. 2019, 41, 121-135.

3. Jaderberg, M.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Reading Text in the Wild with Convolutional
Neural Networks. Int. |. Comput. Vis. 2016, 116, 1-20.

4. Zhang, Y.; Chan, W,; Jaitly, N. Very deep convolutional networks for end-to-end speech recognition. In
Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), New Orleans, LA, USA, 5-9 March 2017.

5. Wang, X,; Zhang, W.,; Wu, X,; Xiao, L.; Qian, Y.; Fang, Z. Real-time vehicle type classification with deep
convolutional neural networks. |. Real Time Image Process. 2019, 16, 5-14.

6. Du, L;Du, Y,;Li Y,; Su, J.; Kuan, Y.; Liu, C.; Chang, M.F. A Reconfigurable Streaming Deep Convolutional
Neural Network Accelerator for Internet of Things. IEEE Trans. Circ. Syst. 2018, 65, 198-208.

7. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. 2014.
Available online: https://arxiv.org/abs/1409.1556 (accessed on 14 November 2019).

8. Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the Devil in the Details: Delving Deep
into Convolutional Nets. Available online: https://arxiv.org/pdf/1405.3531.pdf (accessed on 14 November
2019).

9. He, K; Zhang, X;; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, June 2016;
pp- 770-779.

10. Szegedy, C.; Liu, W,; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going Deeper with Convolutions, In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Boston, MA, USA, 26 June-1 July 2015; pp. 1-9.

J. Low Power Electron. Appl. 2020, 10, 1 16 of 17

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Judd, P.; Albericio, J.; Hetherington, T.; Aamodt, T.; Jerger, N.E.; Urtasun, R.; Moshovos, A. Proteus:
Exploiting precision variability in deep neural networks. Parallel Comput. 2018, 73, 40-51.

Gysel, P.; Motamedi, M.; Ghiasi, S. Hardware-Oriented Approximation of Convolutional Neural Networks.
2016. Available online: https://arxiv.org/abs/1604.03168 (accessed on 14 November 2019).

Wu, S.; Li, G,; Chen, F.; Shi, L. Training and Inference with Integers in Deep Neural Networks. 2018.
Available online: https://arxiv.org/abs/1802.04680 (accessed on 14 November 2019).

Rodriguez, A.; Segal, E.; Meiri, E.; Fomenko, E.; Kim, Y.J.; Shen, H.; Ziv, B. Lower Numerical Precision Deep
Learning Inference and Training. Available online: https://software.intel.com/en-us/articles/lower-
numerical-precision-deep-learning-inference-and-training (accessed on 14 November 2019).

Horowitz, M. Computing’s energy problem (and what we can do about it). In Proceedings of the 2014 IEEE
International Solid-State Circuits Conference, San Francisco, CA, USA, 9-13 February 2014; pp. 10-14.
Lian, X,; Liu, Z.; Song, Z.; Dai, J.; Zhou, W.; Ji, X. High-Performance FPGA-Based CNN Accelerator with
Block-Floating-Point Arithmetic. IEEE Trans. VLSI Syst. 2019, 27, 1874-1885.

Chen, Q.; Fu, X,; Song, W.; Cheng, K,; Lu, Z; Zhang, C.; Li, L. An Efficient Streaming Accelerator for Low
Bit-Width Convolutional Neural Networks. Electronics 2019, 8, 371.

Zhang, M.; Li, L.; Wang, H.; Liu, Y.; Qin, H.; Zhao, W. Optimized Compression for Implementing
Convolutional Neural Networks on FPGA. Electronics 2019, 8, 295.

Tlelo-Cuautle, E.; Rangel-Magdaleno, J.; Gerardo de la Fraga, L. Engineering Applications of FPGAs; Springer
Book: Basel, Switzerland, 2016.

Pano-Azucena, A.D.; Tlelo-Cuautle, E.; Tan, S.X.D.; Ovilla-Martinez, B.; Gerardo de la Fraga, L. FPGA-
Based Implementation of a Multilayer Perceptron Suitable for Chaotic Time Series Prediction. Technologies
2018, 6, 90.

Zyng-7000 SoC Technical Reference Manual, UG585 (v1.12.2). 1 July 2018. Available online:
www.xilinx.com (accessed on 14 November 2019).

Zynq Ultrascale+ Device Technical Reference Manual, UG1085 (v. 1.8). 3 August 2018. Available online:
www.xilinx.com (accessed on 14 November 2019).

Stratix 10 GX/SX Device Overview. Available online: www.intel.com (accessed on 14 November 2019).
Arria 5/10 SoC FPGAs. Available online: www.intel.com (accessed on 14 November 2019).
HajiRassouliha, A.; Taberner, A.].; Nash, M.P.; Nielsen, P.M.F. Suitability of recent hardware accelerators
(DSPs, FPGAs, and GPUs) for computer vision and image processing algorithms. Signal Process. Image
Commun. 2018, 68, 101-119.

Venieris, S.I.; Bouganis, C.S. fpgaConvNet: Mapping Regular and Irregular Convolutional Neural
Networks on FPGAs. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 326-342.

Chen, X.; Yu, Z. A Flexible and Energy-Efficient Convolutional Neural Network Acceleration with
Dedicated ISA and Accelerator. IEEE Trans. VLSI Syst. 2018, 26, 1408-1412.

Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J. Optimizing the Convolution Operation to Accelerate Deep Neural
Networks on FPGA. IEEE Trans. VLSI Syst. 2018, 26, 1354-1367.

Aimar, A.; Mostafa, H.; Calabrese, E.; Rios-Navarro, A.; Tapiador-Moralese, R.; Lungu, I.A.; Milde, M.B.;
Corradi, F.; Linares-Barranco, A.; Liu, 5.C.; et al. NullHop: A Flexible Convolutional Neural Network
Accelerator Based on Sparse Representations of Feature Maps. IEEE Trans. Neural Netw. Learn. Syst. 2018,
30, 644-656.

Guo, K;; Sui, L.; Qiu, J.; Yu, J.; Wang, J.; Yao, S.; Han, S.; Wang, Y.; Yang, H. Angel-Eye: A Complete Design
Flow for Mapping CNN onto Embedded FPGA. IEEE Trans. CAD Integr. Circuits Syst. 2018, 37, 35-47.

Li, G; Li, F.; Zhao, T.; Cheng, J. Block Convolution: Towards Memory-Efficient Inference of Large-Scale
CNNs on FPGA. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition,
Dresden, Germany, 19-23 March 2018; pp. 1163-1166.

Jin, X;; Xu, C,; Feng, J.; Wei, Y.; Xiong, J.; Yan, S. Deep learning with S-shaped rectified linear activation
units. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12-17
February 2016.

Cong, J.; Xiao, B. Minimizing computation in convolutional neural networks. In Proceedings of the 24th
International Conference on Artificial Neural Networks, Hamburg, Germany, 15-19 September 2014; pp.
281-290.

J. Low Power Electron. Appl. 2020, 10, 1 17 of 17

34.

35.

36.

37.

38.

39.

40.

Meloni, P.; Capotondi, A.; Deriu, G.; Brian, M.; Conti, F.; Rossi, D.; Raffo, L.; Benini, L. NEURAghe:
Exploiting CPU-FPGA Synergies for Efficient and Flexible CNN Inference Acceleration on Zynq SoCs.
ACM Trans. Reconfig. Technol. Syst. 2018, 11, 18.

Spagnolo, F.; Perri, S.; Frustaci, F.; Corsonello, P. Designing Fast Convolution Engines for Deep Learning
Applications. In Proceedings of the 25th IEEE International Conference on Electronics, Circuits and
Systems, Bordeaux, France, 9-12 December 2018.

Kouris, A.; Venieris, S.I.; Bouganis, C.S. Cascade”CNN: Pushing the Performance Limits of Quantisation
in Convolutional Neural Networks. In Proceedings of the 28th International Conference on Field
Programmable Logic and Applications, Dublin, Ireland, 27-31 August 2018.

Lee, S.; Kim, D.; Nguyen, D.; Lee,]. Double MAC on a DSP: Boosting the Performance of Convolutional
Neural Networks on FPGAs. IEEE Trans. CAD Integr. Circuits Syst. 2018, 38, 888-897.

AMBA AXI4, AXI4-Lite, and AXI4-Stream Protocol Assertion User Guide. Available online:
www.infocenter.arm.com (accessed on 14 November 2019).

Cortex-A9 NEON Media Processing Engine Technical Reference Manual, rev. r3p0. Available online:
www.infocenter.arm.com (accessed on 14 November 2019).

Xilinx Zyng-7000 External Memory Interfaces. Available online:
https://www xilinx.com/products/technology/memory.html#externalMemory (accessed on 14 November 2019).

© 2019 by the authors. Licensee MDP]I, Basel, Switzerland. This article is an open access
@ @ | article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

