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Abstract: Ultra low power circuits require robust and reliable operation despite the
unavoidable use of low currents and the weak inversion transistor operation region. For
analogue domain filtering doubly terminated LC ladder based filter topologies are thus highly
desirable as they have very low sensitivities to component values: non-exact component
values have a minimal effect on the realised transfer function. However, not all transfer
functions are suitable for implementation via a LC ladder prototype, and even when the
transfer function is suitable the synthesis procedure is not trivial. The modern circuit designer
can thus benefit from an updated treatment of this synthesis procedure. This paper presents
a methodology for the design of doubly terminated LC ladder structures making use of the
symbolic maths engines in programs such as MATLAB and MAPLE. The methodology is
explained through the detailed synthesis of an example 7th order bandpass filter transfer
function for use in electroencephalogram (EEG) analysis.

Keywords: analogue filter; doubly terminated LC ladder; gyrator substitution; synthesis
procedure; symbolic maths

1. Introduction

Despite the rise of digital filters, analogue domain filters are still an essential part of many electronic
systems; for example in high frequency circuits where high frequency and high resolution ADCs are
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costly [1]. Increasingly analogue filters are also being used in low frequency applications such as in
analogue signal processing units in wearable physiological sensors; see [2–4] as examples. For such
battery powered physiological monitors power efficiency is essential, and the use of analogue signal
processing allows the low dynamic ranges and signal-to-noise ratios of many biological signals to be
exploited. It is well known that analogue filters are potentially much more power efficient than their
digital counterparts in such circumstances [5,6].

At the circuit level, many different analogue filter topologies are available, with cascades of second
order sections [7] and orthonormal ladder filters [8] being popular choices for on-chip implementation.
However, at both very high and very low frequencies parasitic components become significant in the
circuit design of the filter. Also, for low power and low voltage circuits the use of transistors operating in
the weak inversion region is unavoidable (due to the intrinsically low drain currents provided), although
this comes at the cost of decreased transistor current matching. For robust analogue filters in these
situations it is essential that the sensitivity of the filter transfer function to non-exact component values is
minimised: device mismatch and parasitic components should not change the shape of the implemented
frequency response.

Filters based upon LC ladder prototypes, where the filter transfer function is implemented by
lossless inductor and capacitor elements connected between terminating resistances (see Figure 1), are
known to have very low sensitivities to non-exact component values [9]. Indeed [9] notes that doubly
terminated LC ladders with equal terminating resistances are “very nearly an optimum realization for
filter functions”.

Figure 1. A generalised doubly terminated LC ladder filter. Doubly terminated LC ladder
filters consist of inductors (L) and capacitors (C) connected in series and in shunt between
a source resistance (Rs) and a load resistance (Rl). Doubly terminated networks with equal
terminating resistances have the lowest sensitivity to non-exact component values. Singly
terminated networks have only one of the terminating resistances present and act as a starting
point for the synthesis of a doubly terminated network.
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Unfortunately, not all transfer functions can be implemented as doubly terminated LC ladder
topologies. Even when these topologies are possible, the synthesis procedure—moving from the wanted
s domain transfer function to a suitable ladder structure and component values—is not straight-forward.
This is particularly true when the filter response is not one of the standard filter approximations
(Butterworth, Chebyshev, Bessel and similar). Whilst fundamental ladder synthesis procedures were
established in the early twentieth century [10] and a number of reference texts and software tools exist
(for example [9,11–16]) the modern circuit designer can benefit from an updated treatment of the subject,
particularly for cases where automated design software does not give a satisfactory solution, or a solution
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at all. For example, ladder optimisation techniques have recently been proposed [17,18], but can only be
used once a suitable starting network is available.

This paper re-visits and reviews the synthesis procedure for the generation of doubly terminated LC
ladders. In particular we focus on the use of symbolic maths engines in programs such as MATLAB

and MAPLE and their ability to solve non-linear simultaneous equations. For the review this allows
more insight into the synthesis procedure as opposed to using MATLAB to automate the insertion loss
method of classical LC synthesis [19], or implementing known recursion formulae for the standard
filter approximations [16]. The procedure considered here can handle non-standard filter approximation
transfer functions.

Inevitably it is not possible to consider all possible design cases and issues in one article; instead a
refreshed overview of the topic is provided. To keep the description here clear and concise the main body
of the paper presents the detailed design of a non-trivial, high order, real-life LC ladder filter transfer
function. The example used here takes the previously reported transfer function from [20]:

T (s) =
Vout

Vin

(1)

=
−6.88 × 10−3s2

2.34 × 10−8s7 + 1.34 × 10−6s6 + 3.70 × 10−5s5 + 6.79 × 10−4s4 + 8.67 × 10−3s3

+ 0.075s2 + 0.40s + 1 (2)

and finds a doubly terminated LC ladder filter that implements the transfer function. This particular
function is chosen for the example case as it is one for which popular synthesis programs [21,22] are not
capable of finding a doubly terminated LC ladder topology for, although one is possible. The transfer
function itself is of interest as it corresponds to a 7th order bandpass filter with a centre frequency of
2.1 Hz and has been used in [23] for the automated processing of electroencephalogram (EEG) signals
in portable recorders. For completeness we also briefly present the procedure for moving from the
synthesised LC ladder prototype to a gmC topology that simulates the found LC ladder and that is
suitable for on-chip implementation. In addition, a detailed summary of the method used is provided to
aid in the design of other transfer function cases.

The remainder of this paper is structured as follows. Section 2 presents some prerequisites of
circuit theory necessary for the synthesis procedure. This is to ensure that there is no confusion in
terminology used in future sections. Section 3 then presents a design procedure for a singly terminated
LC ladder network as the starting point to obtain a doubly terminated network. The generation of
a doubly terminated topology is then given in Section 4. The derivation of both of the singly and
doubly terminated topologies are given for the minimum capacitor case, and the minimum inductor
counterpart is considered in Section 5. The topologies are also derived assuming terminating resistors
of 1 Ω. Section 6 presents the component scaling to give values that are more realistic for on-chip
implementation and Section 7 presents the gyrator substitution for the inductors which cannot be
implemented on-chip. This gives an end gmC filter suitable for on-chip implementation. Finally, a
summary of the methods used in this paper is given in Section 8.
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2. Prerequisites

An amount of terminology is essential for the LC ladder synthesis procedure. This will already be
familiar to most readers, in which case it may be skipped, but nevertheless the needed terminology is
re-defined here to ensure that only consistent and clear terminology is used in the remainder of the paper.

2.1. Even and Odd Functions

An even function is one that satisfies the condition

f(x) = f(−x) (3)

In general an even polynomial is of the form

f(x) =
m∑

i=0

a2ix
2i (4)

= a0 + a2x
2 + a4x

4 + · · · + a2mx2m (5)

where 2i will always be an even number. In contrast an odd function satisfies the condition

f(x) = −f(−x) (6)

and odd polynomials are of the form

f(x) =
n∑

i=0

a2i+1x
2i+1 (7)

= a1x + a3x
3 + a5x

5 + · · · + a2n+1x
2n+1 (8)

where 2i + 1 will always be an odd number.
Given a polynomial f(x) it is thus possible to separate it into a sum of odd and even parts by separating

the odd and even powers of x.

2.2. Hurwitz Polynomials

A Hurwitz polynomial is one that has all of its poles in the open left hand plane of the s = σ + jω

axis. That is, poles can occur in positions for which σ = 0 or σ < 0. A strictly Hurwitz polynomial is
one for which all of the poles are in the closed left hand plane, those with σ < 0.

2.3. Transmission Zeros

Given a transfer function T (s) the transmission zeros are the values of s for which T (s) = 0. If T (s)

is of the form

T (s) =
N(s)

D(s)
(9)

transmission zeros occur at the zeros of T (s), that is the roots of N(s). Also, if the order of D(s) is
greater than N(s), T (s) → 0 as s → ∞ and so transmission zeros are also present at s → ∞.
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2.4. y Parameters

y parameters (short circuit admittance parameters) provide a method for describing a two port network
purely by functions of the input and output. The overall behaviour is described as[

y11 y12

y21 y22

][
V1

V2

]
=

[
I1

I2

]
(10)

and the y parameters can be derived as

y11 =
I1

V1

∣∣∣∣
V2=0

(11)

y12 =
I1

V2

∣∣∣∣
V1=0

(12)

y21 =
I2

V1

∣∣∣∣
V2=0

(13)

y22 =
I2

V2

∣∣∣∣
V1=0

(14)

For a passive network y12 = y21. It is also possible to define z parameters (open circuit impedance
parameters) to describe a network as[

V1

V2

]
=

[
z11 z12

z21 z22

][
I1

I2

]
(15)

where [
z11 z12

z21 z22

]
=

[
y11 y12

y21 y22

]−1

(16)

In general a yij or zij is known as an immittance parameter and the procedure for generating a LC ladder
is to derive the required forms of the immittance parameters from the wanted transfer function and then
to find LC ladder topologies that realise these functions.

For a given circuit it is possible to find the y parameters by writing down the nodal analysis matrix:
diagonal elements are given by the sum of the admittances attached to a node and off-diagonal elements
aij are always negative and given by the admittance between nodes i and j. The pivot operation in
MAPLE can then be used to perform Gaussian elimination and reduce the nodal analysis matrix to a
2 × 2 form, giving the y parameters. An example of this is given in Section 3.3.

2.5. Private Poles

In general all four y parameters are functions of the same circuit and so have the same poles. However,
it is possible for poles to be present in y11 and y22 that are not present in y12. These correspond to elements
at the ports of the network such that when y12, for example, is found with V1 = 0 they have no effect on
the circuit being analysed and so do not appear in y12. For example, when V1 = 0 for the determination
of y12, any shunt component at port 1 will be shorted and so cannot affect the circuit operation. When,
and in general, V1 ̸= 0 the shunt components will affect the nodal equations and so they do appear in
y11. Poles which are present in y11 and/or y22 but not y12 are known as private poles.
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2.6. Realisability Criteria

The core constraints on an arbitrary transfer function to be realisable as an LC ladder structure are
that its numerator must be a purely even or odd function of s and that its denominator must be a strictly
Hurwitz polynomial. This latter condition is somewhat obvious in the fact that it corresponds to the
transfer function being stable in the open loop.

3. Singly Terminated LC Ladder Synthesis

3.1. y Parameter Generation

Based upon classical synthesis procedures [9,12,13] the starting point for the generation of a doubly
terminated LC ladder network is the generation of a suitable singly terminated network as illustrated in
Figure 2. For both cases in Figure 2 the input is Vin(s) and in case (a) the output is a voltage, while in
case (b) the output is a current, but otherwise the two set-ups are identical. Considering case (b) (case (a)
is similar but in terms of the z parameters) the input voltage to output transfer function is given by

A(s) =
y12

Rsy11 + 1
(17)

For simplicity a design is considered for the case Rs = 1 Ω. From this prototype the end component
values can then be scaled to match the wanted terminating resistor, see Section 6. The obtained A(s) is
thus of the form

A(s) =
y12

y11 + 1
(18)

Figure 2. Two singly terminated two port networks with the output (a) as a voltage and
(b) as a current.
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In comparison, the wanted transfer function, (2), is of the form

T (s) =
N(s)

D(s)
(19)

where N(s) is an even function and D(s) is a strictly Hurwitz polynomial. Separating D(s) into its odd
(Do(s)) and even (De(s)) parts

T (s) =
N(s)

De(s) + Do(s)
(20)

=

N(s)
Do(s)

De(s)
Do(s)

+ 1
(21)
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Comparing (18) and (21) it is thus seen that

y11 =
De(s)

Do(s)
(22)

and

y12 =
N(s)

Do(s)
(23)

From this, analytic forms for the required y parameters can easily be found. If the wanted transfer
function is

T (s) =
−as2

bs7 + cs6 + ds5 + es4 + fs3 + gs2 + hs + 1
(24)

where

a = 6.88 × 10−3

b = 2.34 × 10−8

c = 1.34 × 10−6

d = 3.70 × 10−5

e = 6.79 × 10−4

f = 8.67 × 10−3

g = 0.075

h = 0.4

the required y12 and y11 are then

y12 =
−a′s

b′s6 + d′s4 + f ′s2 + 1
(25)

y11 =
cs6 + es4 + gs2 + 1

hs(b′s6 + d′s4 + f ′s2 + 1)
(26)

where

a′ = a/h

= 1.72 × 10−2

b′ = b/h

= 5.85 × 10−6

d′ = d/h

= 9.25 × 10−5

f ′ = f/h

= 2.17 × 10−2

From (18), for a singly terminated network the form of y22 is not significant.
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3.2. Transmission Zero Realisation

The design procedure now proceeds by examining the form of y11 and y12. y11 has a private pole
(one that is not present in y12), given by hs. This results in a transmission zero at s = 0. y12 has six
transmission zeros: one at s = 0 due to the numerator a′s; and five at s → ∞ due to the difference in
order between the numerator and denominator.

The key to LC ladder synthesis is realising the correct positions of all of these zeros using suitable
arrangements of components and then choosing the values of the components so that y11 is numerically
satisfied. The realised y12 can then differ by at most a constant gain factor from the wanted y12,
which corresponds to the LC ladder matching the wanted filter shape, but not necessarily the gain.
However, this can be readily compensated for by the presence of an ideal transformer, amplifier, or
simply compensating for the expected values in the next part of any end system.

A transmission zero at the origin can be realised by one of the arrangements in Figure 3a—a series
capacitor or a shunt inductor. A transmission zero at infinity corresponds to one of the elements in
Figure 3b—a series inductor or a shunt capacitor. For completeness, although it is not required in the
example here, it is possible to realise zeros at arbitrary frequencies through the use of one of the elements
in Figure 3c which realise a zero at ω = (LC)−1/2. Also, it is possible to shift the position of zeros
through the use of a partial pole removals [12], but this is not explored further here.

Figure 3. Realising transmission zeros. (a) Two alternative elements that realise a
transmission zero at s = 0; (b) Two alternative elements that realise a transmission zero
at s → ∞; (c) Two alternative elements that realise a transmission zero at ω = (LC)−1/2.
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To realise the network it is simply a matter of arranging the potential elements from Figure 3 so that all
of the transmission zeros are provided and the combinations of elements do not cancel out. For example,
in principle two transmission zeros at s = 0 could be realised by a cascade of capacitors as illustrated in
Figure 4. In practice of course this is not possible, the two capacitors in series are equivalent to just one
capacitor of a different value and so only one transmission zero is realised.



J. Low Power Electron. Appl. 2011, 1 28

Figure 4. In principle two cascaded capacitors realise two transmission zeros but do not
in practice.
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Ideally combinations of the networks illustrated in Figure 5 are used to order the elements to give
the required poles. These networks correspond to Foster 1, Foster 2, Cauer 1 and Cauer 2 realisations
and are used as the resulting component values can be readily found by simple manipulations of the
wanted immittance function. For a Foster 1 realisation the component values are given by the partial
fraction expansion

Z(s) = Kinfs +
K0

s
+

K1s

s2 + w2
1

+
K2s

s2 + w2
2

+ · · · + Kns

s2 + w2
n

(27)

while for the Foster 2 form the values are given by the alternative partial fraction expansion

Y (s) = K ′
infs +

K
′
0

s
+

K
′
1s

s2 + w
′2
1

+
K

′
2s

s2 + w
′2
2

+ · · · + K
′
ns

s2 + w′2
n

(28)

For the Cauer 1 realisation the component values are given by a continued fraction expansion
around infinity

Z(s) = Kinfs +
1

K2s +
1

K3s + · · ·

(29)

and the Cauer 2 values are given by a continued fraction expansion around zero

Z(s) =
K

′
1

s
+

1

K
′
2

s
+

1

K
′
3

s
+ · · ·

(30)

Unfortunately, due to the arrangements of zeros needed a Cauer based network does not give a
satisfactory result (see Section 3.4). We utalise an alternative method based upon the solution of
non-linear simultaneous equations to provide the wanted network.

3.3. Network Synthesis

It is clearly seen that the network to be synthesised needs two elements from Figure 3a to realise the
transmission zeros at the origin and five elements from Figure 3b for the transmission zeros at infinity.
Furthermore one of the zeros at the origin must be private to y11 and so must be realised at port one of the
network, not in the middle. A network that satisfies these requirements without any elements cancelling
is given in Figure 6. This has the nodal matrix (31) and the y parameters (32), (33).
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

1
sL3

+ 1
sL4

0 − 1
sL3

0 0

0 sC1 0 0 −sC1

− 1
sL3

0 1
sL2

+ 1
sL3

+ sC3 − 1
sL2

0

0 0 − 1
sL2

1
sL1

+ 1
sL2

+ sC2 − 1
sL1

0 −sC1 0 − 1
sL1

1
sL1

+ sC1




V1

V2

V3

V4

V5

 =


I1

I2

I3

I4

I5

 (31)

y12 =
−C1s

(C1L1C2L2C3L3)s6 + (C1L1C2L3 + C1L1C2L2 + C1C3L2L3 + C2L2C3L3 + C1C3L1L3)s4

+ (C1L3 + C1L2 + C1L1 + C2L3 + C2L2 + C2L3)s
2 + 1 (32)

y11 =1 + (C1L1C2L2C3L3 + C1L1C2L2C3L4)s
6

+ (C1L1C2L3 + C1L1C2L2 + C1C3L2L3 + C2L2C3L3

+ C1C3L1L3 + C1L1C2L4 + C1C3L2L4 + C2L2C3L4 + C1C3L1L4)s
4

+(C1L3 + C1L2 + C1L1 + C2L3 + C2L2 + C2L3 + C1L4 + C2L4 + C2L4)s
2

sL4[(C1L1C2L2C3L3)s6 + (C1L1C2L3 + C1L1C2L2 + C1C3L2L3 + C2L2C3L3

+ C1C3L1L3)s
4 + (C1L3 + C1L2 + C1L1 + C2L3 + C2L2 + C2L3)s

2 + 1] (33)

From these it can be seen that y11 and y12 are indeed of the correct form (have the same structure in
terms of the number of poles and zeros). It is noted that due to the series connection of an inductor and
capacitor to port two of the network, for the derived y parameters to be valid it is necessary to draw a
current through this branch of the circuit. The transfer function implemented thus has to be of the form
in Figure 2b.

From (32) and (33), and introducing βL3 = L4 to allow the equations to be written in a more compact
form, the coefficients of the implemented y parameters can be extracted as

a′ =C1 (34)

b′ =C1L1C2L2C3L3 (35)

c =(1 + β)(C1L1C2L2C3L3) (36)

d′ =C1L1C2L3 + C1L1C2L2 + C1C3L2L3

+ C2L2C3L3 + C1C3L1L3 (37)

e =C1L1C2L2 + (1 + β)(C1L1C2L3 + C1C3L2L3

+ C2L2C3L3 + C1C3L1L3) (38)

f ′ =C1L3 + C1L2 + C1L1 + C2L3 + C2L2 + C2L3 (39)

g =C1L2 + C1L1 + C2L2 + (1 + β)(C1L3 + C2L3

= + C2L3) (40)

h =L4 (41)
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Figure 5. Foster and Cauer network realisations. These allow simple determination of the
required component values by continued and partial fraction expansions.
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Figure 6. A prototype network with the desired y parameters for a singly terminated ladder.
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Comparing the coefficients of (25), (26), to (34)–(41) a series of multiplicative simultaneous equations
are thus formed. To find the required component values it is simply a matter of solving this set
of equations:

a′ − a′ = 0 (42)

b′ − b′ = 0 (43)

c − c = 0 (44)

d′ − d′ = 0 (45)

e − e = 0 (46)

f ′ − f ′ = 0 (47)

g − g = 0 (48)

h − h = 0 (49)



J. Low Power Electron. Appl. 2011, 1 31

Note that there are only seven component parameters, but eight equations. An exact solution is thus
not possible. In general, the first equation, (42), corresponds only to the passband gain of the filter. By
ignoring this equation, it is possible to solve for the other equations. Again, this gives the wanted filter
shape and the passband gain can be corrected for elsewhere as discussed previously.

The multiplicative simultaneous equations are readily solved using the MAPLE or MATLAB fsolve

tool for the solution of non-linear simultaneous equations. Based on convergence issues however, (and
due to the potential presence of local and global solutions) an initial guess at the component values needs
to be provided. Based upon this different solutions may be found and it is not guaranteed that all the
component values will be found exactly, or will be positive.

If a starting guess that gives only positive component values cannot be found it is possible instead to
view the solution of the equations as a constrained minimisation problem which can be solved via the
fmincon function. In brief, the equations to be solved, (42)–(49), are rearranged into a cost function.
Typically this is of the form of a sum of the square of the residuals:

F (x) =
h∑

x=b

(x − x)2 (50)

where x represents each simultaneous equation (b–h) and each equation is a function of the
component values

x = f(C1, C2, C3, L1, L2, L3, L4) (51)

Alternative cost functions, such as using l1 and Huber norms, rather than the l2 norm, are also possible
and could be used if desired, as could any desired optimisation technique. Ideally F (x) = 0, and it
cannot be negative, so the optimisation problem is now simply a matter of minimising F (x) subject to
the constraint that 0 < x < ∞ for all of the arguments of x.

Solving these equations for the singly terminated LC ladder gives the required component values. The
best approximation found is given by

C1 = 24.1 mF

C2 = 60.6 mF

C3 = 48.6 mF

L1 = 364.5 mH

L2 = 123.4 mH

L3 = 18.3 mH

L4 = 400 mH

which gives a network with a centre frequency gain 1.4 times the wanted gain, which would need to
be compensated for elsewhere. The full form of the singly terminated LC ladder filter is thus shown in
Figure 7 where it is noted that the input signal is voltage mode while the output signal is current mode.
The resulting Bode magnitude response is shown in Figure 8. The 1.4 gain factor between the wanted
and implemented responses is clearly seen, as is the correct response shape.
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Figure 7. The final singly terminated LC ladder filter with component values.
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3.4. Alternative Networks

At this point it is noted that the alternative network illustrated in Figure 9a is also a viable singly
terminated one which gives the wanted transfer function form when the load is a short circuit and it is
driven by a Thevenin source with resistance of 1 Ω. This network is readily seen as the cascade of a 2nd
order Cauer high pass section which provides two transmission zeros at s = 0 and a 5th order Cauer low
pass section which provides five zeros at s → ∞. (For ease of comparison the prototype Cauer stages
are illustrated in Figure 9b and Figure 9c.)

The Cauer network from Figure 9a in theory gives the same response as the original network from
Figure 6 and being simply a cascade of simpler elements perhaps has a more obvious design procedure.
The original network from Figure 6 is essentially derived from the fact that a shunt inductor is required
at port 1 to give y11 the private pole that it requires, but the series capacitor realising the second
transmission zero at s = 0 is free to be placed anywhere in the network, that is, in series with any
of the floating inductors.
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Figure 9. (a) An alternative singly terminated network based around a cascade of Cauer
stages; (b) Cauer network topologies: (1) a 2nd order high pass; (2) a minimum capacitance
5th order low pass network.
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All of these networks (with the series capacitor in series with each different inductor) will give
the correct form of the transfer function, but the simultaneous equations that need to be solved to
derive the component values will be slightly different in each case. Indeed, for the case illustrated in
Figure 9a no exact solution to the simultaneous equations has been found. The best solution found has
component values:

C1 = 133.3 mF

C2 = 68.5 mF

C3 = 504.1 mF

L1 = 400 mH

L2 = 18.3 mH

L3 = 48.3 mH

L4 = 13.4 mH

The resulting Bode magnitude plot is also shown in Figure 8. Here it is noticed that the curvature
of the magnitude response just below the passband is not the same as that for the wanted T (s) or that
provided by the network of Figure 6. It is thus concluded that although the Cauer based network is
feasible, and has a clearer design process, it is a less desirable arrangement. In principle, all of the
different singly terminated networks could be generated and a further optimisation procedure used to
select between networks, for example selecting the network with the most dynamic range [17], or the
least component spread.

4. Doubly Terminated Design Procedure

To achieve the lowest sensitivity LC filter network a doubly terminated ladder, as illustrated in
Figure 10, should be used. For the best results the source (Rs) and load (Rl) resistances are equal, and
at this point are still assumed to be 1 Ω. The transfer function of this generic network is given by [12]

A(s) =
−y12Rl

∆yRsRl + y11Rs + y22Rl + 1
(52)
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where
∆y = y11y22 − y2

12 (53)

Realising the correct transfer function thus now depends on realising the correct y22 in addition to
y11 and y12.

Figure 10. A doubly terminated two port network with voltage mode transfer function.
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It is possible to derive the required form of y22 using the Feldtkeller relation [12] but this is not
considered in detail here. Instead the design proceeds by considering the singly terminated network and
noting that the order between y11 and y22 can differ by at most one, due to the private pole at port 1.
Also, to achieve the 7th order transfer function where all transmission zeros are at either zero or infinity
the realisation of each y parameter will require no more than seven reactive elements.

Thus there can be at most one component to be added to port 2 of the network to realise the
required transfer function. Given the form of the singly terminated network (Figure 6) there are four
possible components:

1. A series inductor;

2. A shunt inductor;

3. A shunt capacitor;

4. No extra component required.

A series capacitor would simply alter the effective value of C1 and so is not suitable. Given these four
possibilities, by finding the resulting transfer function of each case, simple elimination shows that in the
case considered here no extra components are required. The required form of y22 is already satisfied, it
is simply a matter of realising it numerically.

All four y parameters of the network of Figure 10 are thus now found and substituted into the transfer
function (52). This results in generating the following parameters for the transfer function coefficients:

a =RlClL4 (54)

b =C1C2C3L1L2L3L4 (55)

c =RsC1C2C3L1L2L3 + RsC1C2C3L1L2L4

+ RlC1C2C3L2L3L4 (56)

d =RlRsC1C2C3L2L3 + C1C3L2L3L4

+ RlRsC1C2C3L2L4 + C1C2L1L3L4

+ C2C3L2L3L4 + C1C3L1L3L4 + C1C2L1L2L4 (57)
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e =RsC1C3L1L3 + RsC2C3L2L4 + RlC1C2L2L4 (58)

+ RsC1C3L2L3 + RsC1C3L1L4 + RsC1C3L2L4

+ RsC1C2L1L4 + RlC1C2L3L4 + RsC1C2L1L3

+ RsC2C3L2L3 + RsC1C2L1L2 + RlC1C3L3L4

f =RlRsC1C3L4 + C1L1L4 + C1L2L4 + RlRsC1C2L4

+ RlRsC1C2L2 + RlRsC1C2L3 + C2L2L4 (59)

+ C1L3L4 + C2L3L4 + C3L3L4 + RlRsC1C3L3

g =RsC3L3 + RsC1L4 + RsC3L4 + RlC1L4 + RsC2L4

+ RsC1L2 + RsC2L2 + RsC2L3 + RsC1L1

+ RsC1L3 (60)

h =C1 + L4 (61)

where for the minimum sensitivity implementation Rl = Rs = 1 Ω. Solving these equations with respect
to the numerical values from (24) gives the component values

C1 = 15.3 mF

C2 = 60.9 mF

C3 = 50.0 mF

L1 = 500.7 mH

L2 = 135.6 mH

L3 = 19.1 mH

L4 = 384.7 mH

The resulting doubly terminated network is illustrated in Figure 11 and the Bode magnitude response
in Figure 12. This network is exactly the same as Figure 7 but with a second terminating resistor and
different component values. The wanted value of the centre frequency gain is again not realised and it
is now found to be approximately −6 dB. Note that the maximum possible gain would be −3 dB due
to the potential divider action of two resistors connected via a lossless LC network. A negative sign,
corresponding to a 180◦ phase factor, is also introduced due to the parameter a not being found exactly.

Figure 11. A minimum capacitor doubly terminated LC ladder realising the desired
transfer function.
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Figure 12. Bode magnitude responses for the doubly terminated LC ladder networks. All
the proposed networks match the wanted response well: the minimum capacitor network
(Figure 11); the minimum inductor network (Figure 14); the alternative minimum inductor
network (Figure 16); and the final gmC simulation of the LC ladder (Figure 17) assuming
ideal transconductor elements.
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5. Minimum Inductor Topology

The network of Figure 11 is canonical and a minimum capacitor realisation in that it forms a 7th order
filter with three capacitors and four inductors. It is a minimum capacitor realisation as the core of the
network is the 5th order Cauer low pass network illustrated in Figure 9b which has three inductors and
two capacitors. In principle it is possible to replace this with a minimum inductor Cauer network as
illustrated in Figure 13.

Figure 13. A minimum inductor 5th order Cauer low pass network.

This is done by repeating the network synthesis procedure, but now in terms of the z, rather than y,
parameters. These parameters are derived in terms of open circuit tests and so the private pole at port 1
becomes a series capacitor rather than a shunt inductor. This gives the minimum inductor implementation
of the desired transfer function which is illustrated in Figure 14. Note that in principle L3 could be placed
in parallel with any of the shunt capacitors and the same transfer function will be derived, subject to the
satisfactory solution of the simultaneous equations. It is placed at the end of the network here to provide
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a direct dual to the minimum capacitance network of Figure 11 which has reasonable component values.

Figure 14. A minimum inductor doubly terminated LC ladder realising the desired
transfer function.
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Analysing the network of Figure 14 by writing the nodal equations, performing Gaussian elimination
using the pivot function in MAPLE to derive the y parameters, inverting this matrix to give the z

parameters, and substituting these values into the the z parameter equivalent of (52):

A(s) =
z12Rl

∆z + z11Rl + z22Rs + RsRl

(62)

where
∆z = z11z22 − z2

12 (63)

shows that the network does indeed have the correct transfer function. Solving the resulting simultaneous
equations results in component values of

C1 = 384.7 mF

C2 = 19.1 mF

C3 = 135.6 mF

C4 = 500.7 mF

L1 = 50.4 mH

L2 = 60.9 mH

L3 = 15.3 mH

and the resulting Bode magnitude response is again shown in Figure 12.
Note that in on-chip implementations inductors generally cannot be realised directly. Instead they

are simulated using gyrators (see Section 7). These are the only active elements in an otherwise passive
network. The number of inductors is thus ideally minimised to reduce the power consumption, and so
only the the minimum inductor topology of Figure 14 is now considered.

6. Scaled Component Values

The component values for the network of Figure 14 have been derived for load resistances of
Rs = Rl = 1 Ω. The resulting capacitor values are in the range of milli-Farads and inductances
in the range of milli-Henrys. Obviously these values are impractical for circuit implementations. To
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overcome this the load resistances are now scaled to a value R. The capacitors and inductors required to
realise the same transfer function then scale as

C → C

R
(64)

L → L × R (65)

To make the maximum capacitance value equal to 30 pF, readily achievable on-chip, the value of R

required is 16.7 GΩ. This corresponds to a conductance of 60 pS, which is challenging, but possible to
make on-chip [24,25]. The required capacitor and inductor values then become

C1 = 23 pF

C2 = 1.14 pF

C3 = 8.1 pF

C4 = 30 pF

L1 = 841.2 MH

L2 = 1.016 GH

L3 = 255.4 MH

However, these inductor values are still not suitable for on-chip implementation, and have to be
simulated with gyrators.

7. Gyrator Substitution

A final gmC filter structure is obtained simply by element substitution where each inductor in the LC
network is replaced by a gyrator. It is noted that the alternative approach, operational simulation, is just
a mathematical formalisation of the element substitution procedure, and the end results are in principle
the same [26].

Many alternative gyrator circuits could potentially be used to replace the inductors in the circuit.
For example, a floating inductor can be made with four single ended transconductors [13] or three
single-ended transconductors [27]. The four transconductor version consumes more power, but has
superior performance in the presence of noise and parasitic components [28]. Alternatively, a floating
inductor can be made using two differential transconductors and a common mode feedback circuit [29],
again giving a different power–performance trade-off.

Here the three transconductor variation is used and is illustrated in Figure 15a,b. For the grounded
inductor the identity of Figure 15c from [30] is used as it applies the input voltage to two transconductors
simultaneously. This provides an effective doubling of the input voltage and compensates for the
unavoidable 3 dB passband attenuation that occurs between the two matched resistors. In all three cases

R = 1/gm (66)

and
L = C/g2

m (67)
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Figure 15. Gyrators simulating inductors [27,30]. (a) A three transconductor gyrator
simulating a floating inductor; (b) A three transconductor gyrator simulating a floating
inductor and a shunt resistor; (c) A three transconductor gyrator providing input voltage
doubling, voltage source to current source conversion and simulating a shunt inductor
and resistor.
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Unfortunately, the network form of Figure 14 developed so far cannot utilise the voltage doubling
identity of Figure 15c as the source end is a capacitive potential divider and so no inductor is available to
form the required gyrator. To overcome this the LC network is modified to the form of Figure 16 where
the un-scaled component values are:

Rs = 1 Ω

Rl = 1 Ω

C1 = 31.6 mF

C2 = 24.8 mF

C3 = 148 mF

C4 = 39.4 mF

L1 = 187.8 mH

L2 = 260.4 mH

L3 = 104.8 mH
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This topology provides both the required transfer function (see Figure 12) and the inductor at the input
node, and is a simple rearrangement of the existing network. Note, however, that there is no longer
an explicit private pole at port 1. This was a requirement of the singly terminated network but is not
essential for the doubly terminated network. Removing it though comes at the cost of introducing
the series LC tank C2 and L2. The high Q of this network branch can be problematic to simulate
and implement, occasionally leading to peaking in the filter transfer function. This is accepted here
however, especially as the modified network has the advantage of having a reduced capacitance spread
and increased transconductance compared to the original network (see below).

Figure 16. The final doubly terminated LC ladder implementing (2). This is rearranged
from the network of Figure 14 to provide a shunt inductor at port 1 of the network so that the
voltage doubling identify of Figure 15c can be used.
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Substituting the identities into the network of Figure 16 the final gmC filter is shown in Figure 17.
For all transconductances set at 100 pS the end capacitor values are:

C1 = 3.16 pF

C2 = 2.48 pF

C3 = 14.8 pF

C4 = 3.94 pF

CL1 = 18.8 pF

CL2 = 26.0 pF

CL3 = 10.5 pF

which can readily be achieved on-chip. Again, due to the low 2.1 Hz centre frequency of the transfer
function considered the transconductance required is low, at 100 pS, but can be realised [24,25]. Higher
centre frequency filters will require higher transconductance values.

Figure 17. gmC filter simulating the LC ladder of Figure 16 and suitable for on-chip
implementation. The Bode magnitude response of this circuit is shown in Figure 12.
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The Bode magnitude response of the gmC network is shown in Figure 12 and the centre frequency
gain of the filter is again changed and is now found to be a factor of −1.3511 larger than the wanted
value. This gmC topology completes the synthesis of a doubly terminated LC ladder based filter that is
suitable for on-chip implementation.

8. Conclusions and Algorithmic Summary

Filters based upon ladders of inductors and capacitors show inherently low sensitivity to non-exact
component values; an essential design parameter for low power devices where robust operation is
mandatory. For example, battery powered physiological monitors must be reliable, and must also
operate at the very low frequencies associated with bodily phenomena whilst consuming very little
power. Low frequency operation results in the presence of significant parasitic components and design
in weak inversion for low power results in increased levels of device current mismatch, both making low
sensitivity circuit design key.

Through the use of a detailed, high order, design example this paper has reviewed the procedure of
LC ladder synthesis, making use of symbolic maths engines that can solve the non-linear simultaneous
equations. Inevitably, in the space available it is not possible to consider and address all possible design
issues that would potentially be of interest, but a clear overview has been provided. To conclude, the
procedure considered in this article is summarised in Table 1 to aid in the design of other transfer function
cases. This is presented for the minimum capacitor network case; the procedure for the minimum
inductor network is identical, but based upon the z rather than y parameters.

Table 1. Summary of the core procedure used in this article to aid in the design of other
transfer function cases.

Step Text
Section

Procedure

1 3.1 From the wanted transfer function, T (s) = N(s)/D(s), separate the denominator into odd and
even parts Do(s) and De(s) respectively.

2 3.1 Hence find the required forms of y11 and y12. For even N(s): y11 = De(s)
Do(s) and y12 = N(s)

Do(s) .

For odd N(s): y11 = Do(s)
De(s)

and y12 = N(s)
De(s)

.

3 3.2 From y11 identify any poles private to port 1 of the required network. These are poles present
in y11 but not in y12.

4 3.2 From y12 identify the transmission zeros required in the network. The positions of these
transmission zeros are given by the zeros of y12. In addition, if the denominator of y12 is order
m and the numerator of order n and m > n, there are m − n transmission zeros at s → ∞.

5 3.2 Select suitable elements from Figure 3 to form the needed transmission zeros.
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Table 1. Cont.

6 3.2 Arrange these elements to form a ladder structure. Any private poles from y11 must be placed
at port 1 of the network. Otherwise the elements can be placed in any order provided there are
no two capacitors directly in series or inductors in parallel. Note that each alternative network
may have different properties, for example in terms of the component values required. It may be
desirable to investigate the properties of more than one potential network in the following steps.

7 3.3 For the ladder structure formed, perform nodal analysis and find the analytical expressions for
the y11 and y12 parameters. Ensure that these have the same form (have the same structure in
terms of the number of poles and zeros) as the parameters derived in step 2.

8 4 Find y22 for the ladder structure formed. Assuming that Rs = Rg = 1 Ω, substitute the three
y parameters into the equation below to find the realised transfer function:

A(s) =
−y12Rl

∆yRsRl + y11Rs + y22Rl + 1
(68)

where ∆y = y11y22 − y2
12.

9 3.3, 4 Compare the form of the wanted T (s) to the realised A(s). If the two transfer functions are of
the same form proceed to step 11, otherwise go to step 10.

10 4 T (s) and A(s) are not of the same form because the current network does not have the correct
form for y22. Additional components from Figure 3 thus need to be added to port 2 of the
network. Simple elimination of the possible components can be used to find the appropriate
arrangement so that A(s) has the same form as T (s).

11 3.3, 4 There are now two transfer functions: T (s) which is the numerical function to be realised, and
A(s) which is an algebraic transfer function from an LC ladder network. By comparing the
coefficients of these two transfer functions a series of non-linear simultaneous equations can be
formed. Solve these equations (for example using the MATLAB fsolve command) to generate
the required component values.

Note that there will generally be more equations than free parameters (component values) and
so an exact solution is not possible. A scaling factor, representing the passband gain of A(s),
can be introduced as an additional free parameter to increase the number of free parameters
present (or to allow one of the equations to be neglected). The implemented passband gain can
be corrected for by the presence of an ideal transformer, amplifier, or simply compensating for
the expected values in the next part of any end system.

12 6 Scale the terminating resistances (Rs, Rl) to the wanted values or to give values for the inductors
and capacitors that are realistic to implement. The components scale as: C → C

R ; L → L × R.

13 7 The LC ladder has now been formed and the required component values found. This is then
used to give the final doubly terminated network. If required, gyrators can be used to form an
inductor-less circuit. Some example gyrators are given in Figure 15.
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