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Abstract: This article presents a Model-Based Systems Engineering (MBSE) methodology for the
development of a Digital Twin (DT) for an Unmanned Aerial System (UAS) with the ability to
demonstrate route selection capability with a Mission Engineering (ME) focus. It reviews the concept
of ME and integrates ME with a MBSE framework for the development of the DT. The methodology
is demonstrated through a case study where the UAS is deployed for a Last Mile Delivery (LMD)
mission in a military context where adversaries are present, and a route optimization module
recommends an optimal route to the user based on a variety of inputs including potential damage or
destruction of the UAS by adversary action. The optimization module is based on Multiple Attribute
Utility Theory (MAUT) which analyzes predefined criteria which the user assessed would enable
the successful conduct of the UAS mission. The article demonstrates that the methodology can
execute a ME analysis for route selection to support a user’s decision-making process. The discussion
section highlights the key MBSE artifacts and also highlights the benefits of the methodology which
standardizes the decision-making process thereby reducing the negative impact of human factors
which may deviate from the predefined criteria.

Keywords: digital twin; model-based systems engineering; mission engineering; multi-attribute
utility theory

1. Introduction

The 4th Industrial Revolution (I4.0), also referred to as “Industry 4.0”, has changed the
way many industries work across the world in recent years. As described by Klaus Schwab,
founder of the World Economic Forum, I4.0 will be driven largely by the convergence of
digital, biological, and physical innovation [1]. One could understand I4.0 as the blurring
of boundaries between the digital, biological, and physical worlds. This is made possible
with rapidly increasing computing power and data transfer rates. It brings about great
potential to increase productivity, while communication will be easier and transportation
will be faster [2] thereby enabling the proliferation of technology in the fields of Internet-
of-Things (IOT), Artificial Intelligence (AI) and machine learning, 3D printing and genetic
engineering, to name a few [3].

Just as in other industries, I4.0 has made its impact on the military. There are three
drivers for military change: (1) pressure from senior leadership, (2) emulation of other
professional militaries, and (3) an external shock [4]. We argue that I4.0 is fueling all
three military change drivers with the pace and extent of I4.0 proliferating across different
technologies used by the military. For instance, the Department of Defense (DoD) was
reported to have increased its unclassified investments in AI from USD 600 million FY2016
to USD 2.5 billion in FY2021 [5]. In the same light, China was reportedly planning to
spend USD 21.7 billion by 2020 to develop a core AI industry [5]. Military operations
enabled by I4.0 technologies may transpire so fast that it requires humans to be out of
the decision-cycle [6]. In this regard, we expect I4.0 to also drive rapid development and
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adoption of Digital Twin (DT) and Mission Engineering (ME) in a Model-Based Systems
Engineering (MBSE) paradigm.

The United States (US) DoD has a track record of embracing new technologies and
incorporating them into DoD operational capabilities. In recent years, there has been much
more emphasis and communication on the digital transformation strategy. In June 2018,
the DoD released the Digital Engineering Strategy which laid out five goals including:
(1) formalize the development, integration, and use of models to inform enterprise and
program decision making; (2) provide an enduring, authoritative source of truth; (3) incor-
porate technological innovation to improve engineering practice; (4) establish a supporting
infrastructure and environment to perform activities, and collaborate and communicate
across stakeholders; (5) transform the culture and workforce to adopt and support digital
engineering across a system’s lifecycle [7]. Of note to this article is the first goal where
the Digital Engineering Strategy mentions formally developing and integrating models
to support engineering activities and decision making across the system lifecycle. With
more intelligent weapon systems such as autonomous robotics and unmanned vehicles
(including the entire System of Systems (SOS) of the remotely-operated vehicle, the control
station, etc.) being fielded, there is increased emphasis on the need for accurate models and
decision support algorithms that would enable users to better make use of these systems.

In this article, we argue that in a combat situation, with several operations happening
at any given time in a dynamic environment, the use of DT environment may enhance the
decision-making process for the mission planner. We suggest that the DT environment,
armed with the requisite data inputs, is able to support the mission planner and provide
valuable insights into the benefits and trade-offs for each route that are being assessed.

Specific Contribution

In this article, we propose a methodology that aids mission planners in the devel-
opment of a DT model that is able to provide quantitative decision support analysis for
Unmanned Aerial System (UAS) route selection. The method is based on Multiple At-
tribute Utility Theory (MAUT) [8], and uses portions of the MagicGrid framework [9]
and Bickford et al.’s framework, hereafter referred to as the Operationalized Digital Twin
Framework (ODTF) [10], each of which offers different methodologies for decomposing
stakeholder needs into system specifications through MBSE processes. We provide in-
sights on the steps and inputs required for the development of the DT model to support a
deployed DT that supports operations analysis and routing decisions for a system.

2. Background and Literature Review

This section discusses concepts and recent related work that are relevant to the method-
ology we propose in this article.

2.1. Digital Twin

In 2012, the National Aeronautics and Space Administration (NASA) defined DT as an
“integrated multiphysics, multiscale, probabilistic simulation of an as-built vehicle or system
that uses the best available physical models, sensor updates, fleet history, etc.” [11]. In other
words, a DT is a virtual representation of a physical asset, based on onboard data generated
within the asset and delivered to the DT, which assists stakeholders with maintenance,
planning, and operational decisions among other activities. More recent definitions for
Digital Twin from the American Institute of Aeronautics and Astronautics (AIAA) and
Digital Twin Consortium define a DT as “a virtual representation of a connected physical
asset” [12] and “a virtual representation of real-world entities and processes, synchronized
at a specified frequency and fidelity” [13].

The term DT, considered by some as a subset of a digital representation, has different
meanings to different communities with a wide range of use cases and levels of fidelity. Due
to the lack of a standard definition, the ODTF generalized the definition of a digital twin to
“a model that helps stakeholders answer specific questions by providing a readily available
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rapidly testable digital analog to the system of interest” [10]. It is important to note that
when fielding DTs, only a subset of the total parametric data generated throughout design,
manufacture, operations, and maintenance is used and an extensive digital shadow persists.
It should be noted that DTs can be co-developed with a system throughout the system
lifecycle including prior to the system being deployed. Further, DTs can be developed
for physical and software systems [10]. In this way, as system and DT complexity grow,
the DT can become a system in itself, and the DT-physical asset relationship a DT can be
considered a SOS.

DT can be characterized by the following features: (1) having a linked collection of rel-
evant digital artifacts including engineering data, operation data and behavior descriptions
via several simulation models [14]. The simulation models making up the DT are specific
for their intended use and apply suitable fidelity for the problem to be solved. (2) The DT
evolves along with the real system throughout the whole life cycle and integrates currently
available knowledge about the system. (3) The DT is not only used to describe behavior
but also to derive solutions relevant to the real system.

In many cases, the DT is connected to the real system (either a physical system, a cyber-
physical system, or a software system) during development, manufacturing, deployment,
operation, etc. In other words, a DT is connected to the real system throughout the entire
system lifecycle. Generally this includes some form of data synchronization between the
real system and the DT although the data synchronization may not be real-time depending
on a variety of factors such as bandwidth constraints between a forward-deployed real
system and its DT or a DT operating in an austere environment. In such cases, there may
be several DTs with varying levels of fidelity and synchronicity between the real system
and a maintenance facility or server farm [10].

Being in a virtual environment, a DT allows users the capability to test the system
beyond its physical limits which is something that often cannot be done easily and/or
inexpensively with the physical system. This enables the user to better understand how
the system behaves in different circumstances, and allows for further optimization of the
system components [15]. Due to these advantages, DT can be applied to a multitude of
applications. Examples include (1) a Prognostic and Health Management (PHM) methodol-
ogy that predicts reliability failure probabilities for a nuclear power plant [16], (2) a system
performance validation where a model is used to compare the performance of different
de-icing systems on an aircraft [17], (3) a list of applications for DT including those above as
well as: (3.1) provide decision support to users through what-if analysis, and (3.2) discover
new application opportunities and revenue streams through modifying and testing new
system features and improvements [18].

The benefits of DT go beyond conducting test and analysis; DT is valuable in enhanc-
ing decision support as argued by Madni [18]. This is especially true in complex systems
and challenging operating environments where multiple decisions have to be made by a
human, often within a compressed timeframe with limited or incomplete information. As
discussed by Kunath and Winkler, the quality of each decision depends on the experience
of the decision-maker and the available information [19]. In addition, if a decision is made
based on manual calculations, the accuracy can be very low [19]. DT is well placed to
overcome these issues. Marakas identifies three fundamental components of a decision
support system as: (1) a knowledge base, (2) a decision context (model), and (3) an interface.
DT meets all three criteria [20]. This is further evident in the many research and industry
applications where DT has been used. Some examples include enhancing decision support
for port operations [21] and improving the management of logistic systems [22].

DT stakeholders can include almost anyone involved in a system life cycle such as
sponsoring organizations, systems engineers and architects, subject matter experts, acquisi-
tions organizations, operators and system users, maintainers, logisticians, the communities
impacted by systems, national governments and elected leaders, the public, and even
adversaries. Because DTs can have so many uses, DT stakeholders can be an extremely
wide and diverse group, and similar to MBSE models, each stakeholder has a different
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use case or interest in the DT. Thus while generalizations can be made about different
groups of potential DT stakeholders, individual DT development processes will have
unique stakeholders.

2.2. Mission Engineering

ME is defined as the deliberate planning, analyzing, organizing, and integrating
of current and emerging operational and system capabilities to achieve desired mission
effects (warfighting, space mission scientific return, etc.) [23,24]. According to the DoD
ME guide, ME entails the employment of systems and SOS in an operational context to
provide information on system performance which can support decisions made by the
users in pursuit of achieving mission success. Notably, the guide [23] describes ME as a
data-driven approach to analyze key aspects of a mission to derive quantifiable trade-offs
and make decisions. This enables one to test new concepts or tactics that have not been
proven. Suffice to say, the concept of ME relies on I4.0 technology and the ability to exploit
DT modeling and simulations.

An earlier perspective on ME depicts a notional framework for ME [25]. The various
functions of ME (defining mission requirements, identifying mission concept of operation,
mission design, and mission architecture) are used to optimize the mission solution. The
mission solution serves to meet predefined stakeholder needs. While this definition is
broad, it is aligned to the definition that the DoD later standardized upon.

The amount of factors that could impact a mission outcome is practically infinite, thus
conducting an empirical study is an essential part of ME [23]. Hence, it is important to
note that the utility of the analysis is a function of the data accuracy input to the model.
Additionally, the practitioner must have a good understanding of the mission objective to be
able to define useful Measures of Effectiveness (MOE) and Measure of Performance (MOP)
which quantify and measure the success of the system. These elements are critical for
quantitative and subsequent qualitative assessment of the system being modeled.

2.3. Mission Planning

We use mission planning as an umbrella term to encapsulate several closely related
concepts such as mission routing, mission route planning [26], etc. In general, mission
planning sets objectives, allocates resources, develops perspective routes, and contingen-
cies. In this subsection we briefly review several of the closely related concepts that are
encapsulated within mission planning.

Mission routing is often considered to be a combinatorial optimization research topic
that has been extensively studied due to its application to many transportation chal-
lenges [27]. This is coupled with the rise in applications of autonomous vehicles such as
UAS in defense, aerospace, and other civilian industries. The deployment and recovery
of one autonomous marine vehicle [28] is nontrivial, and for a multi-vehicle fleet, the
challenge is compounded [29]. Each vehicle requires a specialized team to plan, launch
and recover it [28]. The same can be said for UAS.

Routing and planning decisions are important especially in contexts where systems
may be exposed to non-nominal conditions such as in a military context, a space explo-
ration context, etc. because the decisions analyze several priority variables such as the
potential for inclement weather and proximity of hazards that can impact the success of
the mission [30–33]. Notably, the cost of time for employing resources against the risk of
exposure to threats is a key criterion to consider. In this regard, using a constant route time
as an assumption can lead to poor route planning and inefficient use of resources [34]. A
mission planner must consider several factors to ensure that the UAS has the best chance
of completing the mission [35]. In a military operating environment, every sortie allocated
to the operator contributes to the overall chance of mission success. In a resource-tight
environment, the ability to deploy assets optimally increases operational effectiveness
contributing to the chance of mission success [36]. Beyond the cost of each flight, in a
military context, the survivability of an asset is often determined by the ability to avoid
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threats. Aircraft survivability modus operandi were developed during the emergence of
military helicopter operations in the 1950s; the procedures were based on two principles:
(1) avoid detection, and (2) if detected, avoid being hit [37]. Hence, the mission planner
ideally chooses a route that has the lowest threat probability. Considering all of the above,
one can appreciate the importance of mission planning.

2.4. Model-Based Systems Engineering and Digital Twin

International Council on Systems Engineering (INCOSE) defines MBSE as “the for-
malized application of modelling to support system requirements, design, analysis, verifi-
cation and validation activities beginning in the conceptual design phase and continuing
throughout development and later life cycle phases” [38]. Technological advancements
in computational capabilities on top of greater emphasis on key principles of Systems
Engineering (SE) have markedly increased the use of MBSE although the traditional SE
approach remains dominant in many industries [39]. The ODTF discusses that MBSE
and the vision of DT are closely aligned, and if system models can be integrated into the
operations and sustainment phase of a system’s lifecycle, the integrated models can become
a DT [10]. As such, a MBSE methodology can be employed to develop a system’s DT.

The decision process of architecting the DT can be mapped onto the MBSE and SE
processes [10]. In doing so, the system requirements can also be mapped across to drive the
development of the DT achieving synergy as much of this data is normally specified in the
system development process. Table 1 provides a view of the mapping of DT architecture
with the MBSE processes via the ODTF and a mapping to the MagicGrid process (discussed
below). The ODTF categorizes critical phases of the DT architecting process into: (1) concept
exploration, (2) preliminary design, (3) detailed design, (4) implementation, (5) test and
evaluation, and (6) operations and maintenance. The ODTF further goes on to present a
case study of an unmanned surface vessel to describe the process of building a DT for the
purpose of predicting failures, tracking reliability, aiding in maintenance planning, and
indicating the probability of a future failed mission. Note that while the ODTF examines
failure rates of major subsystems and components and how that may impact the probability
of future mission success or failure, the work presented in this article focuses on route
selection to balance the chance of mission failure against other mission parameters. While
we have observed in our professional practices many implementations of DT only occurring
after a system has been constructed and fielded, the ODTF and many other DT-related
articles suggest DT development happen in parallel with system development [10,40]. The
critical phases of system architecting that ODTF outlines mirrors the phases of a notional
system design process.

2.5. MagicGrid

There are many programming languages that are being used commercially such as
JavaScript, Matlab, etc. While these languages are versatile and capable of performing a
wide range of automation and visualization tasks, they lack several features that directly
support characterizing systems and supporting trade studies. Thus, a new dialect of
Unified Modeling Language (UML) (a modeling language) was developed into Systems
Modeling Language (SysML) by INCOSE and Object Management Group (OMG) [41].
SysML provides graphical representation of the data in a repository [42]. It supports
modeling, analysis, and verification of complex systems. It is considered by many as the
de facto modeling language for SE [41]. The MagicGrid framework is based on SysML and
is explained by the four pillars of SE: Requirement, Behavior, Structure, and Parametrics.
The pillars are broken down into nine corresponding diagram notations using SysML.

The Requirement pillar depicts stakeholder needs. Goals and objectives of the system
are defined under the system requirements. Component requirements are the subsystem
requirements needed for the system to perform its functions. The Behavior pillar covers
the use cases for the system. Use cases describe the user needs or the actor in SysML. The
inputs and peer systems required for the system to operate are expressed in the use case
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diagrams. Functional analysis describes the behavior of the system by decomposing every
function performed by the subsystem. Component behavior demonstrates the detailed
behavior of the subsystems. The Structure pillar includes the high-level interfaces required
for the system to connect with its peer systems. The logical subsystems communication
covers interactions between the various subsystems. The component structure depicts the
physical interfaces between the component and its sub-components. Finally, the Parametric
Pillar covers the MOE and physical characteristics of the system.

We assess that there are several similarities between the ODTF and the MagicGrid
framework (and other frameworks, standards, and handbooks [43–46]). Table 1 provides a
comparison of the ODTF against the MagicGrid Process. In other words, what the ODTF
describes using the SE process of Concept exploration stage to Detailed Design stage covers
a large part of the MagicGrid framework of modeling a system using SysML with some
disparities. Notably, we assess that MagicGrid specifically defines the system MOE as
a key component of the MagicGrid framework. In the ODTF article, it is highlighted
that DT developers should work with component subject matter experts to identify how
subcomponent performance is traceable to system-level performance in order to derive
suitable system performance indicators [10]. Having said that, the ODTF process is more
practical than the MagicGrid process in that they take into consideration the requirements
for data storage as well as the integration into a physical design. This is an important
consideration as the data are both a key resource and output for a DT.

Table 1. Comparison of the ODTF [10] and MagicGrid’s [9] processes for system architecture.

Systems Engineering Process ODTF Process MagicGrid Process

Identify primary purpose Stakeholder needs

Concept Exploration Identify DT algorithm
Identify DT data input types
Identify location of DT

System requirements
Component requirements

Preliminary Design

Define DT architecture
Define DT digital thread
Integrate DT requirement into physical design

Use cases
Functional analysis
Component behavior
System context
Logical subsystem comms
Component structure

Identify source data
Identify data storage requirement Not specifically covered

Not specifically covered Measure of Effectiveness
Component parameter

Thus, we argue that in a dynamic combat situation, using a DT may enhance the
decision-making process for the mission planner. We suggest that the DT environment,
armed with the requisite data inputs, is able to support the mission planner and provide
valuable insights into the benefits and trade-offs for each route that are being assessed.
Section 3 proposes a methodology to accomplish this goal.

2.6. UAS for Last Mile Delivery

Last Mile Delivery (LMD) in a military context is the distribution of supplies from
the last point of bulk disaggregation to dispersed forces in the theater of operations [47].
The nature of warfare today is increasingly complex and dispersed, hence autonomous
vehicles used for resupply are expected to make multiple stops on distribution missions to
scattered forces [47]. In a contested environment, the delivery system is also exposed to the
threat of being disrupted by adversaries which is in addition to system and environmental
limitations such as weather conditions, battery or fuel limitations, etc. All these factors
must be considered by the operator especially for a UAS platform where humans are not
constantly providing tactical judgment to system operations. Furthermore, the magnitude
of the challenge is exacerbated if one is considering the use of multi-UAS or swarming
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operations, which has been an area of research by United Kingdom (UK)’s Defence Science
and Technology Laboratory (DSTL) and Defense Advanced Research Projects Agency
(DARPA) [28], among others. Hence, a decision support module of the system in a DT
environment is valuable to the operator in managing multiple systems and multiple routes
in a dynamic environment similar to that of military operations. The case study (Section 4)
examines a LMD to demonstrate the proposed methodology.

2.7. Developing a System Model Through Multi-Attribute Utility Theory

In the case study, we use MAUT. This subsection provides information and equations
necessary to implement the case study.

MAUT is an established method for decision-makers to compare performance metrics
and to determine trade-offs between them [48]. As discussed by Dyer [49], MAUT provides
an axiomatic foundation for decisions that involves several criteria. The axioms impart
rationale for quantitative analysis of alternatives. In the LMD case study, the operator or
an AI software is expected to determine the most optimal route for the UAS based on a set
of criteria determined by the mission lead. These criteria serve to allow the UAS a higher
probability of success to complete the mission and return to base. The additive value model
is widely used by practitioners when conducting multi-objective decision analysis [50].
The following objective function is used to evaluate each alternative routes:

v(x) =
n

∑
i=1

wivi(xi) (1)

where v(x) is the alternative’s value function.i = 1 to n is the number of criteria (attribute).
xi is the alternative’s score on the ith criteria. vi(xi) is the single dimensional value of a
score of xi. wi is the weight for each of the ith criteria and ∑ n

i=1 wi = 1.
The additive value model evaluates the trade-offs for the objectives by calculating

the alternative’s contribution to the value measures. Each value function vi(xi) measures
returns to scale based on the range of the value of measure and calculates a score xi to
a value. A value scale with the minimum acceptable value of measure: lower threshold,
and the most desired value of the value of measure: upper threshold, should also be
determined [51]. Initial development of the threshold values generally occurs during the
requirements phase of a mission engineering process. Stakeholders that include military
planners, operators, and others will have knowledge of specific requirements, doctrine,
and issuances from their organizations which may factor into developing threshold values.
Further, prior experience and stakeholder preference factor into developing the thresholds
values. The process of developing the threshold values will be different for every unique
group of stakeholders and there is no one-size-fits-all approach that we can recommend.

The weights play an important role in the objective value of the function. As the
summation for all the criteria comes up to 1, this forces the operator to prioritize between
the criteria. For example, if the Time to Target is the most important aspect of the UAS
LMD mission, it should be given the highest weightage.

To obtain vi(xi), a scaled scoring for the particular criteria should be calculated, we
do this by using the following equation:

vi(xi), Scaledvalue =
ActualValue − Lowerthreshold

Upperthreshold − Lowerthreshold
(2)

Having a scaled value of 1 means that the alternative achieves the goal value while a
scaled value of 0 means that the alternative achieved the threshold value. The objective
function is calculated and compared for each route to determine the preferred solution
based on the weights or priorities set by the operator.

We note the additive value model may have its inherent weakness as it does not
take into account the variation of the scales of the criteria [50]. Not using swing weights
may result in the recommended alternative not being consistent with the stakeholders’
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preference [51]. While swing weights are important for the quality of the decision, our
focus is on demonstrating the methodology of creating a DT after stakeholder requirements
have been captured so specific details into swing weights will not be covered in detail as it
is assumed they have already been completed.

2.8. Route Selection Criteria

For the purpose of the case study, three criteria are evaluated to select the route with
the highest objective function. They are: (1) time to target, (2) remaining battery power,
and (3) threat probability. The subsequent subsections discuss each in turn.

2.8.1. Time to Target

For the purpose of LMD, it is reasonable to assume that the time to target is a key
criterion to determine the most optimal route. As highlighted by Thornton and Gallasch,
potential use cases of LMD may include delivery of emergency resupply of ammunition
or medical supplies [47]. As such, the utility curve for this criterion to the operator is
determined to be a decreasing Returns To Scale (RTS) concave; in other words, less is better.
The operator prefers to reach the target in the shortest possible time. Beyond a certain
time period, the case study assumes there is a steep drop in utility as the unit waiting for
resupply could have already been overrun by an adversary. The time to target is assumed
to be the straight-line distance divided by the speed of the UAS. The typical speed of UAS
based on current technology and is assumed to be 20 m per second [52].

2.8.2. Probability of Hit

In a hostile environment, it is likely that there are adversarial threats along the routes
to the target. The threats can impact the probability of success for the case study’s LMD
mission. In accordance with the Army Military Decision Making Process (MDMP), the
operator should select the course of action that minimizes risk to the force and to mission
accomplishment [53]. While the UAS is able to autonomously calculate potential routes,
for threat data the UAS requires access to external resources with real-time updated threat
information. The data of interest is the probability of hit, Ph. The probability of hit is the
probability that every process of the engagement sequence is successfully completed [54].
As the probabilities are not correlated, i.e., each step has to complete before the next can
begin, the probability of hit may be expressed as:

Ph = PWeapon × PCommand × PThreat (3)

The PThreat refers to the probability that the threat is active. PCommand refers to the
probability that the weapon has been commanded to engage the UAS. Finally, PWeapon
refers to the probability that the weapon is launched and detonates at the UAS. The utility
curve for this criterion to the operator is determined to be a decreasing RTS concave, in
other words, less is better. The operator prefers to keep the probability as low as possible
with a steep decrease in utility beyond a certain point.

2.8.3. Remaining Battery life

System recoverability is a key aspect of system survivability [55]. The operator wants
to ensure that the UAS has sufficient battery life to return to base regardless of the route
selected. As such, the utility curve of this criteria is determined to be linear RTS, in other
words, more is better.

The main demand of the battery comes from the UAS’s propulsion system. The per-
centage of battery energy remaining, BR can be determined by the following equations [56]:

Edemand = PM × Pl × t (4)

Esupply = Vbatt × Cbatt × 3600 (5)
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BR =
Edemand − Esupply

Esupply
(6)

where Edemand—energy demand is attributed to mechanical power to the propellers PM,
power loss Pl , multiplied by time of in operation. Esupply is obtained by multiplying the
voltage and capacity of the model of battery in use [56].

3. Method for the Development of a DT for Route Selection Decision Support

The following section describes the methodology for the development of the system
DT and the operations analysis. Figure 1 shows the proposed six steps of the methodology
for the creation of DT for route selection decision support.

S1: Define Stakeholder Needs

S2: Create Functional Model
or Digital Twin of the System

S3: Develop Para-
metric Equations

S4: Integrate Digital Twin with
Operations Analysis Software

S5: Define Risk At-
titude Weightage

S6: Perform Op-
erations Analysis

Figure 1. Flow chart of the proposed methodology. The proposed methodology is linear and starts at
Step 1 (S1).

3.1. Step 1: Define Stakeholder Needs

The stakeholders’ needs for DT should be clearly defined in two aspects. First, defining
the physical design. That is, the capabilities and functions of the system of interest should
be clearly defined. An accurate depiction of the sub-system interaction and use-cases
enhances the accuracy of the model and the results obtained from subsequent operations
analysis. Second, the goals of the operations analysis or the variable of interest should also
be stated upfront. This ensures that all sub-systems related to the particular variable are
captured upfront in the design of the DT. A similar approach is mentioned by Beery and
Paulo [57], where the need for two parallel processes of creating the operational design
and the physical design of the system is essential for a MBSE analysis process.

3.2. Step 2: Create a Digital Twin of the System

Having defined the requirements, the DT equivalent of the system can now be devel-
oped. This can be done in various MBSE software such as CORE or CAMEO Enterprise
Architecture. We recommend employing a software tool that is capable of using SysML.
SysML’s inclusion of Requirement and Parametric diagrams makes it more suitable for
modeling system requirement and performance than many alternatives [58]. One may also
use the Object Process Methodology (OPM) to represent the system architecture if one’s
organization is more accustomed to OPM. Both modeling languages are equally capable
with subtle differences such as the OPM having only a single integrated model with objects,
processes, and relationships instead of different views as in SysML [58]. As we used the
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CAMEO Enterprise Architecture software in the case study, we chose to use the MagicGrid
framework previously discussed in Section 2.5.

3.3. Step 3: Develop Parametric Equation(s) for the Variable(s) of Interest

This step is derived from a subset of the MagicGrid framework [9], where the quan-
titative characteristics of the system are defined. The parameters can be derived from
other subsystem parameters and mathematical expressions can be defined in the model.
The model can also be verified to ensure that it meets the system requirements. This step
is important as the defined variable of interest can subsequently be used for operations
analysis either within the architectural software or other suitable analytical software.

3.4. Step 4: Integration with Operations Analysis Software

After developing the DT model in a virtual environment, one can then proceed to
perform operations analysis with it. There are several types of analysis and the type of
analysis chosen depends on the system behavior one is interested in exploring. In general,
statistical analysis tools are used to observe interactions between variables and determine
which of them has more impact on system performance [59]. Certain analyses such as
Analysis of Alternatives (AoA) can be done within system architecting software. However,
for more elaborate analysis, many users turn to external simulation software packages such
as ModelCenter [60], ExtendSim [57], or OpenModelica [17].

3.5. Step 5: Define Risk Attitude Weightage

We next use MAUT as the basis for the operator’s decision support analysis. We
suggest that MAUT is suitable for this purpose as it takes into account the multiple-attribute
payoff which is often the challenge an operator faces in a dynamic environment [61]. The
consideration for the use of MAUT is further discussed in Section 2.7. Pertaining to the
case study in this article, the operator must pre-define the risk attitude towards criteria.
This is done prior to the route selection analysis to ensure consistency across the analysis.
The risk attitude towards the particular mission affects the weightage the operator gives to
each criterion used for route selection. Take, for example, if the operator has a high-risk
attitude, he/she will give a higher weightage towards criteria that supports the completion
of the mission as compared to safety or reliability-related criteria.

3.6. Step 6: Perform Operations Analysis

Now, the user is ready to conduct operations analysis with the DT through an external
simulation tool. For an operational system with a fully modeled DT, the DT can also be
integrated with AI capabilities which can help to enable autonomous decision-support
based on the selected risk-attitude weightage in Step 5.

4. Case Study Model Development

We now introduce a case study that will be used to illustrate the proposed method in
the subsequent sections. This section specifically outlines the system of interest and mission
scenario, and provides some information on model development. Section 5 provides a step-
by-step implementation of the proposed method and associated results of the case study.

In the following subsections, we shall demonstrate the methodology with the develop-
ment of a DT decision support module for a UAS on a LMD mission. The DT is developed
using the Cameo-Enterprise Architecture software using SysML. Refer to Figure 2 for an
illustration of a LMD mission for the UAS. In this case, the operator’s mission is to deliver
supplies to a forward-deployed soldier. However, the potential routes for a UAS may
entail exposure to adversary action. The case study shall demonstrate that the DT decision
support module shall be able to recommend the most optimal route which is based on the
operator’s risk attitude.
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Figure 2. A LMD mission for the UAS to distribute supplies to frontline soldiers. This Concept of
Operations shows that a UAS must move supplies to the target (frontline soldiers) in a conflict zone.
Potential routes for the UAS are shown in a subsequent figure.

Next, the MAUT is combined with the overall methodology shown in Figure 1. Refer
to Figure 3 for the expansion of Step 6. With the target location identified, the UAS shall
be able to calculate potential routes to the target location. Each route is expected to have
varying distance and threat probability, based on the MAUT described in Section 2.7, the
operations analysis software or AI software can calculate and recommend the most optimal
route. The equation below shows the overall function for the operator based on the mission
criteria for route selection in Section 2.8.

vmissionlead = w1TimetoTargetscore + w2Probabilityo f Hitscore + w3RemainingBattli f escore (7)

S6a: User Input
Target Location

S6b: System Cre-
ates Potential Routes

S6c: User Input Weigh-
tage for Criteria

S6d: System Collects
Supporting Data and

Performs Analysis

Remaining
Battery Life

Time to Target

ThreatOutput Recommendation

Data

Figure 3. Flow chart of implementing MAUT in the methodology. The MAUT is integrated into Step
6 and produces four sub-steps (S6a-S6d) to output the recommendation. A variety of data is taken
into the MUAT at Step S6d.

5. Results

This section presents the results of each step of the proposed methodology for the case
study and associated models laid out in the previous section.
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5.1. Step 1: Define Stakeholder Needs

First, we work with the stakeholders to understand their needs for the system. This
can be done through interviews or surveys. The system requirement specification should
be defined. To demonstrate the methodology, a simplified stakeholder requirement is
summarized in Figure 4.

Figure 4. Stakeholder’s needs captured in DT software (Cameo Enterprise Architecture).

5.2. Step 2: Create a Digital Twin of the System

The Cameo Enterprise Architecture software and the MagicGrid framework is used
to create a simplified architecture of the UAS used for the LMD mission. Similar to [60],
detailed modeling is minimized by excluding subsystems that do not directly impact the
route selection algorithm. As such, components such as a camera, a central computer,
etc., are not included. The block definition diagram in Figure 5 shows the UAS solution
architecture (in blue) that addresses the problem domain based on the stakeholder require-
ments. Notably, one may observe that the propulsion subsystem does not have a problem
domain abstraction. This is because the stakeholders do not explicitly specify the need for
a propulsion system during the development of the solution architecture as they are more
concerned with endurance. However, one could have included it as it supports the system
requirement of endurance and speed as well. Note that in Figure 5, the DT is within the
“Route Optimization Design” block.

Figure 5. UAS block definition diagram.
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Two key functions of the UAS (the UAS Motor and the Optimization Module) are
further decomposed to identify the system interactions and functions.

The route optimization subsystem’s activity diagram is further decomposed as shown
in Figure 6. The user “Turn[s] On” the system to activate the route optimization module.
As part of the “Initialization,” if an error is detected the module returns to the “Off Mode”.
Otherwise, it proceeds to “Optimizing Route” which is expanded on in Figure 7.

Figure 6. UAS Route Optimization Module State Machine Diagram.

When the route optimization module receives a signal to start route optimization,
it triggers the retrieval of threat data which corresponds to the Probability of Hit and
begins calculations for remaining battery life and time to target location. Upon completion
of the optimization, the route optimization module outputs the recommended route to
the operator in a semi-autonomous system or directly to the UAS in a fully autonomous
system implementation. A similar decomposition of the motor subsystem activity diagram
has been conducted but is not shown here as it is not a key function of interest for the
route selection.
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Figure 7. UAS Route Optimization Module Activity Diagram.

5.3. Step 3: Develop Parametric Equation(s) for the Variable(s) of Interest

It is important to note that the variable of interest required for the optimization should
be defined in the system MOEs as shown in Figure 8. This enables the operation analysis
software to identify the parameters of interest when it subsequently integrates with the
model. In the case study, the UAS’s maximum speed in meters per second is an important
variable of interest as it impacts the time to target and remaining battery life criteria. The
speed of the UAS can be derived from the speed of the motor.
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Figure 8. UAS route optimization module activity diagram.

5.4. Step 4: Integration with Operations Analysis Software

After building the functional model, the DT can then be integrated with other ana-
lytical software to demonstrate the route optimization capability. Notably, we observe
that while system architecture software has been enhanced with analytical capabilities
to perform system trade-offs and AoA, separate software is still generally required for
more elaborate operations analysis and simulations. Beery and Paulo made a similar obser-
vation albeit from a different perspective; they mentioned that “...utilization of analysis
procedure external to SysML modeling process prevents any oversimplication of system
performance... if detailed modeling of mission performance is not conducted” [57]. Bo-
nanne’s report [62] also cites the use of external tools such as Matlab or System Tool Kit
for simulation.

For this case study, we use ModelCenter to conduct the simulations by extracting input
data from a model—in this case, the UAS DT—and then perform the operations analysis
which in this case is route selection based on MAUT. We use ModelCenter due to the
nature of the case study simulation which demonstrates a particular function of the UAS
and performs what-if analysis based on a variety of scenarios. In addition, ModelCenter
has the capability to integrate with several modeling software packages including Cameo
Enterprise Architecture, Excel, Matlab, and many others. We chose to not use the Cameo
Enterprise Architecture program with the Simulink add-ins but this approach would be
useful if one is interested in performing trade-studies on the UAS architecture. An example
is discussed in Willemsen et al. [63], where different brake components are compared for a
vehicle brake system.

5.5. Step 5: Define Risk Attitude Weightage

In this step, the operator defines their weightage for each of the criteria. As the
weightage sums up to 1, the operator is forced to prioritize between the criteria. Refer to
Table 2 for the weightage defined for the case study. In this case, the operator is assumed
to take a balanced approach where there is equal emphasis between Time to Target and
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Probability of Hit. There is a lower priority for the Remaining battery power criteria as
there is the lower probability for an extended mission.

Table 2. User-defined weightage for each of the criteria.

Criteria Risk-Attitude Weightage

Time to Target 0.4
Remaining battery power 0.2

Probability of Hit 0.4
Sum 1.0

5.6. Step 6: Perform Operations Analysis

Figure 9 shows the input and output variables from ModelCenter. The green arrows
refer to the inputs that ModelCenter requires from the DT, while the red arrows represent
the outputs that are calculated. Using the Design-of-Experiment tool embedded within
ModelCenter, one can simulate a variety of route distances and threat levels, and validate
that the most optimal route with the highest objective value is selected. Figure 10 shows
an extract of the simulation result. A total of 720 runs are simulated based on a 6 factorial
design-of-experiments of the variables. The variables are Route distance A, B, and C, and
the Probability of Hit for each route.

The routes were evaluated based on the weightage criteria (shown in Table 2) where
the “Time to Target” and “Probability of Hit” weightages were most important. The most
preferred routes were those that were either fastest or lowest probability of hit. About 25%
of the scenarios resulted in routes selected not being the fastest or the lowest probability of
hit. These scenario occurs due to the equally high weightage given to both criteria, as such
the route selection appears to be sensitive to the variable changes.

Figure 9. Input and output variables in ModelCenter.
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Figure 10. Extract of ModelCenter simulations.

To validate the fidelity of the simulation result, we conduct further analysis of the
simulation outcome. Run 417 from Figure 10 is selected. We selected Run 417 as it
showcases one of the operator’s dilemmas in decision-making. That is, the operator’s
decision between a short and risky route compared to a longer but safer route. The
simulation determines Route A to be the shortest at 1000 m, yet with the highest threat
probability of 0.4 due to exposure to the adversary’s air defense assets. The remaining
battery life is a function of the route distance; hence, it is not simulated as a unique variable.
Route B, on the other hand, is the longest route at 15,000 m but has the lowest threat
probability at 0.001. Refer to Figure 11 for details. The simulation recommends Route B as
it has the highest objective function of 0.79569. In this case, Route B is selected despite the
UAS having to travel a significantly longer distance and with 1500 percent longer duration
compared to Route A. Refer to Figure 12 for validation of ModelCenter’s output in excel. If
the decision is left up to an operator without access to the proposed methodology described
in this article, one would not be surprised if the decision would have selected Route A or C
which will take a shorter period of time to complete the mission. However, as a result of
pre-defined thresholds and the fact that the same risk-attitude weightage is assigned to
both Time to Target and Probability of Hit criteria, the recommendation is different.

Figure 11. Potential routes A/B/C for the UAS to reach the frontline soldiers.
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Figure 12. Detailed analysis on Run 417 in Excel.

6. Discussion

We shall now touch on some of the key observations from the development of the
DT based on the methodology described in Section 3 and the results obtained in Section 5.
There are three key observations: (a) enhance consistency in decision-making, (b) utility
of MBSE software for operations analysis, and (c) importance of data quality. These are
explained in the following paragraphs.

First, on enhancing consistency in decision-making, the simulation not only validates
the capability of selecting the most optimal route; it also demonstrates an interesting result
from the case study. An operator may intuitively select Route A due to its short time to tar-
get when under pressure to complete the mission in a dynamic military scenario. However,
that may not have been the most optimal decision when evaluated over multiple criteria.
Through the definition of risk-attitude weightage prior to operations, the DT and MAUT
enhance the quality of decision making by making it more consistent and traceable. This is
especially important if we consider the nature of the threats that the military face today
with unconventional warfare which involves multiple and ever-changing targets that can
be unpredictable. As Figueira et al. state, decision support tools, such as the one described
in this research, contribute to solving conflicts and transforming contradictions [49]. The
case study demonstrates the strength and utility of a decision support algorithm.

Second, while MBSE tools today are capable of performing trade-studies within
their software environments, most users still rely on other analytical software to conduct
operations analysis on their models. We chose ModelCenter to conduct the design-of-
experiment simulations which were not available in the Cameo Enterprise Architecture
software. While it is not a limitation in the context of modeling the system, we opine that
it would make the process more efficient with the modeling and simulation all done in
one environment.

Finally, we assess that decision support algorithms will continue to play an important
role in today’s context with the proliferation of I4.0 technology such as AI and autonomous
systems. However, we note that the quality of data is fundamental to the success of these
capabilities. As seen in the case study, the algorithm would recommend the most optimal
route based on the data received, and if the data is erroneous, it would impact the decision
and thereby impact the mission outcome. As Kunath and Winkler also highlight for the
manufacturing industry (an area of study with many similarities to the military), the
data quality is low and can rarely be used for simulation-based analysis which affects the
realization of DT. To enable successful implementation of DT in the military context, we
should also focus on ensuring the quality of our data.

While our method makes use of multi-objective optimization with a group of stake-
holders who may have varying priorities, we have not addressed Arrow’s Impossibility
Theorem [64] and the potential impact on the outcome of optimization in the engineering
domain where multiple people are involved in a decision-making process [65]. In practice,
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many systems engineers conduct multi-objective optimization with multiple stakeholder
preferences. There has been push-back against the assertion that Arrow’s Impossibility
Theorem impacts engineering decision-making [66]. Thus rather than taking a side in
this long-running debate in the engineering community, we leave it to the practitioner
to make their own decision on if a unified preference can be established from a group
of stakeholders with competing and sometimes orthogonal priorities for multi-objective
optimization. However, we should note that in many but not all military situations there
is a clear chain of command which effectively reduces the number of stakeholders who
are involved in a decision-making process to one. In such cases, Arrow’s Impossibility
Theorem does not apply.

While we did not investigate the computational complexity of our method with respect
to large-scale analysis of a complex battle-space where multiple UAS are conducting many
parallel missions, we can report that the simulations we developed in the case study can
be executed in a few seconds on a reasonably priced personal computer. Increasing the
complexity and quantity of missions analyzed and increasing the complexity of the battle-
space is expected to lead to increased computation time. Similarly, increased fidelity of the
modeling will increase the computation time. Thus, it is imperative that practitioners who
operationalize and deploy this method must be cognizant of requirements that may exist
around method execution time and the impacts that the above-mentioned model inputs
may have.

The proposed method was specifically designed for UAS route selection and planning
from a mission planner selection. In other words, the method is intended to be used prior
to the start of a mission. However, during mission execution, an adapted version of this
method may be useful for UAS to execute autonomously as battlefield situations change.
Indeed, such autonomous system behaviors have been suggested in space systems contexts
in the past [30,31,67,68] although without the use of a DT.

While this article develops a method to use a DT to perform route planning, it does
not include details on how to integrate the DT and the proposed method into later parts
of the system design process where the as-built, as-delivered, and as-operated physical
system provides input on further maturing the DT. The Boeing Model-Based Engineering
Diamond [69] provides an example of how a DT and a physical system are integrated on
the right side of a notional system Vee model. We suggest that practitioners ensure that
DTs are updated with new information throughout the entire system life cycle, as many
DT articles recommend.

The case study in this article, while representative of and inspired by real-world
data, we purposefully have ensured that no real-world data is included in this work. The
purpose of this article is to propose a method for enhancing mission engineering route
selection through a DT support method and is not to provide real-world data of a specific
system. Instead, the case study demonstrates the potential usefulness and feasibility of
the proposed method as an initial validation step. Further validation should be conducted
by practitioners using real UAS assets in field exercises before wide-scale deployment of
the method.

It should be noted that the definition of DT is still unsettled. As discussed in an earlier
section of this article, there are competing definitions of DT in the literature and in practice.
Further, while we believe DT should be used throughout a system’s lifecycle, this is not the
way DT has been implemented in many real-world settings. Indeed, some early adopters
of DT originally used DT for sustainment rather than across the lifecycle, and many DTs
we have seen in our professional practices are only implemented for specific phases of a
system lifecycle (design, acquisition, O&M, etc.) and at times we have observed multiple
DTs constructed for specific phases of a system lifecycle and/or for specific subsystems
without any thought to connecting the DTs together to allow for full end-to-end verification
and validation of the DT and the physical system. In the context of our article, the specific
definition for DT a person uses may mean that this article is focused on DT or that we have
not done anything with a DT. We suggest that we have in fact focused on using a DT to
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enhance mission engineering route selection. Implementation of the method throughout
a system design lifecycle using a fully integrated DT is left to the practitioner as such an
implementation will require tailoring the method to the specific system circumstances.

It should be noted that the use of a DT in the method proposed in this article is one
of many potential approaches to implementing a decision support system. We observe
that one of the primary benefits to using a DT in the implementation of a decision support
system within a UAS or similar system is that many of the models necessary to develop
a decision support system are likely already exigent within a DT that is being developed
as part of a systems development process. However, if a DT is not part of the system
development process, we suggest that other approaches such as developing specific models
for a decision support system may be less costly for the overall system development [70–73].

While in our professional capacities, we advocate that system architecture models
be incorporated into DTs to provide end-to-end verification and validation, there is some
recent disagreement in the MBSE community over using system architecture models within
a DT. One of the goals of incorporating system architecture models into DTs is to directly
link system requirements to system performance, and enable continuous verification and
validation of the requirements throughout a system’s life cycle. However, some in the
MBSE community suggest this may not be effective. Future work may include analyzing if
building a DT from system architecture models is more or less effective than building a DT
from scratch.

It should be noted that a DT solution to the problem of route selection decision
support as described above may not be appropriate for all situations and the practitioner is
advised to carefully evaluate if implementing the above-proposed method is appropriate
for their situation. Other methods of model development may be more appropriate if a
DT is not already being developed or has not already been developed as part of a larger
system design and fielding effort. It is beyond the scope of this paper to develop a method
to determine when the proposed method is more appropriate than alternative methods.
However; such an endeavor may be a useful pursuit for future work.

The proposed method may be used both during system design before a physical asset
has been fielded and during system operations when a system is deployed. We suggest the
development of the DT occur throughout the system design to take advantage of models
developed during system architecture and later. When the proposed method is used with
an operational physical system, then the DT should be connected to the physical system’s
data streams through the PHM subsystem [10].

It should be noted that we advocate that defining the stakeholder needs (which are
turned into requirements) for the DT be done in parallel with defining the needs and
requirements for the real system. This is in line with the ODTF’s suggestion to conduct a
parallel DT and real system development process. However, development of the DT can
occur more rapidly than the real system if needed to support analysis conducted using
the method proposed in this paper. For instance, systems engineers may wish to do route
planning optimization testing for various mission concepts using the DT well in advance
of fielding any UAS hardware on a test range or in a combat situation.

Future Work

As shown in this article, we have demonstrated that the proposed methodology for
developing a DT based on MAUT is feasible. Using ModelCenter software as an external
toolkit, one is able to conduct simulations to validate the route selection capability of the
UAS. Building on this, more complex systems can be developed using the architecture
software. This is useful as capabilities are increasingly being fielded as SOS. Thus, we
suggest developing DT with more sub and peer systems. Being able to integrate with
external analysis software is also beneficial as one would be able to perform more elaborate
analysis beyond system architecture issues. This would be useful as one is interested in ME
studies which may involve studying system behavior as a function of threat outlook and
mission progress. Having said that, system architecting software such as Cameo Enterprise
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Architecture have also become more capable over the years as they can be integrated with
add-in software packages to perform more elaborate studies. Hence system architecting
software could also have the potential for detailed simulation capabilities in the future.

7. Conclusions

This article proposes a MBSE method to develop a DT of a system using to enhance
mission engineering through a route selection algorithm with a ME focus. We demon-
strate that the use of a MAUT algorithm to support operators’ decision-making processes
enhances the consistency of the decision. This is valuable in dynamic military scenarios
when one may have to manage several concurrent LMD missions with an ever-changing
threat situation. The DT can be used for mission engineering studies by integrating it with
other simulation and analytical software packages. This can support the war-gaming and
strategic studies as system behaviors can be simulated based on the user’s inputs. As
systems become more complex and interconnected in I4.0, the ability for humans to match
the speed and capability of computers and machines is being stretched. Thus, the concept
of DT and decision support algorithms to assist humans in conducting their mission is
one that is valuable and should be further explored. In summary, we suggest that in
dynamic combat situations with multiple underway operations, a DT may enhance the
decision-making process for mission planners working with UAS. We suggest that the DT
environment populated with requisite data inputs is able to support the mission planner
and provide valuable insights into the benefits and drawbacks for each potential route that
is being assessed.
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Abbreviations and Glossary
The following abbreviations and selected glossary are used in this manuscript:

AI Artificial Intelligence
is software that attempts to act rationally and mimic human responses [74]. In some
communities, machine learning is preferred over artificial intelligence unless speaking
about a general artificial intelligence that passes the Turing test [75].

AIAA American Institute of Aeronautics and Astronautics
AoA Analysis Of Alternatives

is defined by Georgiadis et al. as “... an analytical comparison of multiple alternatives
to be completed prior to committing and investing costly resources to one project or
decision” [76].
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DARPA Defense Advanced Research Projects Agency
DoD Department of Defense
DSTL Defence Science and Technology Laboratory
DT Digital Twin

is a digital representation of a system, either under development or deployed, that can
be used for many purposes throughout a system’s lifecycle [10]. See Section 2.1 for a
detailed discussion of DT.

I4.0 4th Industrial Revolution
is a convergence of digital, biological, and physical innovation. It can be seen as the
blurring of boundaries between these domains, and spurs the proliferation of a wide
array of technologies including IOT and AI among others [1–3].

INCOSE International Council on Systems Engineering
IOT Internet-of-Things

is defined by Atzori et al as “ a conceptual framework that leverages on the availability
of heterogeneous devices and interconnection solutions, as well as augmented physical
objects providing a shared information base on global scale, to support the design of
applications involving at the same virtual level both people and representations of
objects” [77].

LMD Last Mile Delivery
in a military context is the distribution of supplies from the last point of bulk disaggre-
gation to dispersed forces in the theater of operations [47].

MAUT Multiple Attribute Utility Theory
is a method for decision-makers to compare performance metrics and to determine
trade-offs between them [48]. As discussed by Dyer [49], MAUT provides an axiomatic
foundation for decisions that involves several criteria. The axioms impart rationale for
quantitative analysis of alternatives. The MAUT additive value model is widely used
by practitioners when conducting multi-objective decision analysis [50].

MBSE Model-Based Systems Engineering
is defined by INCOSE as “the formalized application of modelling to support system
requirements, design, analysis, verification and validation activities beginning in the
conceptual design phase and continuing throughout development and later life cycle
phases” [38].

MDMP Military Decision Making Process
is an analytical process that uses time-sensitive logical sequences to analyze a tactical
situation to develop a range of potential options, compare the options, and down-select
to the best option for the tactical situation. The selected option then becomes the tactical
plan a commander implements via arranging forces (both people and machines such as
UAS) both in time and space [53,78].

ME Mission Engineering
is defined as the deliberate planning, analyzing, organizing, and integrating of current
and emerging operational and system capabilities to achieve desired mission effects
(warfighting, space mission scientific return, etc.) [23,24].

MOE Measure of Effectiveness
is a way of establishing how well a system achieves its intended purpose and the
system’s needs statement. Generally, an MOE looks at how a system performs exter-
nally. [79].

MOP Measure of Performance
is a way of how well a system achieves internal performances characteristics [79].

NASA National Aeronautics and Space Administration
ODTF Operationalized Digital Twin Framework

is a proposed framework that categorizes critical phases of the DT architecting process
into: (1) concept exploration, (2) preliminary design, (3) detailed design, (4) implemen-
tation, (5) test and evaluation, and (6) operations and maintenance [10].
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OMG Object Management Group
OPM Object Process Methodology

is a method and modeling language to represent systems [80].
PHM Prognostic and Health Management

is an approach to managing maintenance for a system using system data from embedded
sensors and other system data streams, and algorithms to detect, assess, and monitor
degrading health of a system; and predicts failure progression before it occurs so that
condition-based maintenance can be scheduled [16,81].

RTS Returns To Scale
is a mathematical description of long-run returns as the scale of production in-
creases [82].

SE Systems Engineering
SOS System of Systems

is two or more systems that work together in some manner to achieve a common goal
or mission [83].

SysML Systems Modeling Language
is a modeling language and method derived from UML to represent systems especially
for SE processes [84].

UAS Unmanned Aerial System
is a flying system such as a quad copter, a fixed wing propeller driven aircraft, or other
machine capable of sustained flight that is unmanned and generally contains some
degree of autonomy.

UK United Kingdom
UML Unified Modeling Language

is a modeling language used to represent systems (primarily software) [85].
US United States
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