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Abstract: In the face of the rapid growth in the scale and complexity of multidisciplinary systems,
being able to develop reliable systems under ever-faster changing and more individual market
requirements is becoming more and more challenging. The Model-Based Systems Engineering (MBSE)
approach has already been researched heavily, and started to be introduced for the management
of complexity, maintaining consistency, and reducing development costs and the time-to-market.
However, a major drawback of the current MBSE methodologies is the lack of capability to integrate
with domain-specific simulation models to investigate design concepts in the early phases of the
development process. In order to address this issue, we propose a holistic system modeling approach
that allows system engineers to link descriptive system models with domain-specific simulation
models. In this paper, the Systems Modeling Language (SysML) is used as the standard architecture
modeling language. A system modeling approach in SysML based on the system’s functional
architecture for system design and validation is defined. The approach was developed to integrate
domain-specific models into the system model using a SysML modeler with the capability of running
and reusing simulation tasks via the coupling of external tools, which helps to bridge the existing
gap between models on the system level and detail level. The feasibility of the proposed approach
will be evaluated based on the case study of a wind turbine (WT) system. The study shows that our
approach has the potential to enable the consistent, parameter-based interlinkage of domain-specific
models based on always-up-to-date data, and to assist engineers in making design decisions to meet
the system requirements accurately and rapidly in different engineering fields.

Keywords: model-based systems engineering; wind turbine system; simulation models; seamlessness
development process

1. Introduction

For many years, engineers have used models to represent their real-world systems for
cost-effective and timely development. Normally, these models are created for a certain
purpose, and thus not capturing all of the attributes of the represented system, but rather
only certain specific aspects of a single domain [1,2]. As various models are used to
describe the aspects of complex systems, the information of the system is dispersed in
different models, and there is no information that represents the role of the model in
the system. However, customer goals need to be considered within the overall design,
and the system information should remain on a consistent level over all of the stages of
the development. As communication between the different stakeholders plays a crucial
role, an efficient communication method is needed. Nowadays, the communication in
traditional approaches to system development still relies more upon document-based
information exchange [3,4]. With the increasing complexity of the system, it is difficult
to guarantee that the models and model input data are up-to-date and have a unified
definition across disciplines.
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As a modern approach that differs from the document-based approach to systems
engineering, Model-Based Systems Engineering (MBSE) describes a system in models
that are linked in an object-oriented, graphical, and visual system modeling language to
describe the aspects of the system development process, such as the system’s requirements,
design, and validation in the system models [5]. MBSE aims to enhance the complexity
management, specification, communication, and traceability in the product development
process (PDP). Over the entire life-cycle of a product, MBSE thus focuses on supporting
domain models by means of information exchange between engineers. The support dur-
ing the product development is enabled using a central system model [6]. The system
model can be used as an abstract digital representation of the physical, digital or cyber-
physical product under development. Aiming to connect the domains via the linkage of
the domain-specific models instead of deriving and sharing documents during the develop-
ment process, the consistency of data flows between models can be improved significantly.
Besides the management of the requirements [7,8], this also improves development [7] and
validation [9–11].

Even though MBSE is emerging as an important practice in multiple industries [12],
several challenges need to be addressed to realize its full potential in systems design. One
of the challenges is that there is a huge leap of abstraction between domain-specific models
and abstract multi-disciplinary system models [13]. The current MBSE methodologies
are mainly focused on high-level architecture, as well as behavior modeling and the
qualitative analysis of the system, but they lack the ability to describe the details of the
design and maintain consistency among domain-specific models, which makes it difficult
to ensure the accuracy of the system’s design. In addition, each domain involved in the
development process established its own methods and optimized tools to meet domain-
specific challenges [14]. Although there are many object-oriented modeling languages that
try to address this issue, the current interface techniques (e.g., Functional Mock-up Interface
(FMI)) [15] are not enough to fully support the data consistency between all of the aspects
in multi-domain models. The strategies to maintain the consistency between models of
mechanical engineering are always tool-dependent and might lose the system data among
the different tools. Moreover, a number of studies only consider the consistency checking
of models and model management focusing on the software engineering domain [16].

A solution to the aforementioned challenge is a systematically built, integrative system
model that provides links among the different domain-specific models and describes the
system with more detail. The Object Management Group defines a model as “a selective
representation of some system whose form and content are chosen based on a specific set
of concerns” [17]. In this case, such a system model is linked with the domain-specific
models, and it maintains data consistency by providing a central data structure and the
linking parameters of the domain-specific models to the central database. This system
model acts as a data source as well as data storage for the tools used in the development
process. By successively building model-based system architecture upon a consistent
base of parameters, the system model can perform high-precision simulation tests on the
system during the system validation phase, thereby solving potential conflicts in the system
development process [18].

In this paper, a Systems Modeling Language (SysML) modeler as a platform to inte-
grate the models from the different domains is used. An integrated system model with
different layers of abstraction is created, thereby adding a conceptual description of the
system with increasing comprehensiveness, accuracy, and consistency. Specifically, a sys-
tem modeling approach based on the classic method of functional decomposition will be
applied, which is found in design methodology [19–21], to create a system model for wind
turbine (WT) systems that contains significant information about the system during the
development process, including the system requirements, functions, specific parameters,
and so on. This paper explores the way in which to integrate the existing domain-specific
models in engineering software with the system model in SysML. Finally, the proposed
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approach is applied to the design and validation phases of the WT systems to demonstrate
its availability and efficiency.

Our research illuminates the ways in which the strongly linked nature of the informa-
tion in the system model enables comprehensive traceability analyses and decision making
on solution design, which allows us to meet the system requirements throughout the
redesign process more accurately and faster, even with complex systems [4]. Our contribu-
tion is an approach for the development of system models with integrated domain-specific
models as an enhancement to the established MBSE approach. The proposed approach
enables consistency across multiple models along with the product development (e.g.,
modeling and validation) process and increases the data exchange between the different
domains. Furthermore, the proposed approach is demonstrated in a specific engineering
use case involving the development of WT systems.

This paper is organized as follows. Section 2 considers the state of the art and the
related work of systems engineering. Section 3 presents the overview of our modeling
concept and approach. Next, the proposed approach is detailed through the WT use
case in Section 4, which enables systems engineers to design the multidisciplinary system
based on SysML. We evaluate the approach in the case studies of WT systems in Section 5.
Finally, Section 6 discusses the findings, the superiority, and the remaining challenges of
the proposed approach, and prospects for future research. Section 7 concludes the paper.

2. Background

With the increase of the complexity in the later stage of system development, there are
more and more implicit dependencies between designs in the multi-disciplinary system.
In order to design and optimize a cost-effective system, it is becoming more and more
important to maintain the seamlessness of data between the different domains. Refer-
ence [22] worked on a co-design approach to enhance engineering creativity and achieve
optimal designs. Reference [23] provided an optimization framework to solve multidis-
ciplinary design-optimization problems. For instance, to further reduce the cost of wind
energy, modern WTs increasingly require co-design methods [24] between the mechan-
ical and control domains. Reference [25] developed an integrated toolset to design and
optimize WT systems in a more integrated manner. However, the proposed method still
relies on close communication between designers in various domains, which is usually
a challenge for the handling of more complex systems. A system development method
with closer interdisciplinary cooperation must continue to evolve. MBSE is an interdisci-
plinary collaborative approach to developing, testing, and optimizing systems that meet
customer expectations [3]. It provides a central platform for stakeholders from a range
of different disciplines that enables us to improve communication efficiency during the
co-design process.

Several methods of MBSE are described in a complete survey by Estefan [26]. The
Object-Oriented Systems Engineering Method (OOSEM) [27] utilizes a model-based ap-
proach to represent the system, using SysML as the modeling language. It mirrors the
classical “Vee” lifecycle development model of system design, which enables the system
engineer to define, specify and analyze the system among various system views throughout
the development process. In the case of complex mechatronic systems across multi-domain
models, the Cyber MagicGrid approach was proposed by NoMagic [28]. Cyber Magic-
Grid is an extension of MagicGrid [29], which is defined with three layers of abstraction
(Problem, Solution, Implementation) and four pillars (Requirements, Behavior, Structure,
Parameters). The detail layer and completeness of Cyber MagicGrid allow every team
member to share information about their tasks during the development process.

MBSE, in these established methods, is employed to define the requirements, system
physical structure, data flows, system behaviors, and test activities in most applications [4,30].
However, with the development of technology, the physical architecture of the system will
be further developed, such that it is difficult to ensure the reusability of the system model
architecture. In [31], the need for function-oriented system modeling and the necessity
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of defining system functions through SysML elements was observed. However, there is
still no standardized top-down modeling method to ensure that the high-level designs
(e.g., requirements, functions) of the system can be completely inherited in the underlying
solution design of the system, so as to perform high-precision simulation analysis.

A general modeling language SysML is widely used for the centralized modeling
of systems engineering problems [32]. The Object Management Group developed the
SysML to create and manage models of systems using well-defined blocks, diagrams, and
other visual constructs [33]. The system model, as defined with SysML, has language
elements to present a complete view of the interdisciplinary system under development,
including its various requirements, structures, behaviors, activities, parameters, and their
interactions [6,34]. The use of SysML can manage a large number of aspects and abstract a
domain-specific language to a level that permits its interaction with other system models.
However, although engineers can already achieve the simple coupling between some
specific models [35,36] (such as FMI and commercial integration tools like ModelCenter)
and the SysML model, SysML is still difficult to integrate with complex engineering domain-
specific models, such as a Multibody Simulation (MBS) for Noise, Vibration and Harshness
(NVH) analysis. This can lead to errors of design and worthless modeling for real-world
engineering problems. More importantly, most integration standards [37] (e.g., OSLC) are
only widely used in the development of software coding, or just staying in the early stage
of PDP. The system developers, having a background in mechanical engineering, feel that
it is difficult to implement MBSE methods. The reason is the lack of a top-down system
development approach, and traceability links not being clearly established between system
functions and real-world physical components in the presented approaches.

3. Concept and Approach

In this section, some significant SysML elements that are used in this paper will be
introduced. The details on the approach for functional system modeling linked to multi-
domain models will be provided, which focuses on the system design and validation
processes based on the functional architecture of the SysML model.

3.1. System Modeling Elements

The requirement analysis needs to be made before and during the architecture design
process of the system. The complex system exhibits a large number of requirements, and
therefore each requirement has a unique ID and a textual representation of the requirement.
In this study, the requirements are typically classified into two types at different stages in
the development process. A functional requirement describes the functions and behavior
information required for the system [38]. The non-functional requirement specifies the
conditions or the constraints under which the solution must remain effective. In SysML,
requirements are associated with other SysML elements (e.g., the value property) using
various relationships, such as the satisfy and validate relationships. The non-functional
requirements can be expressed through a glossary library to enable the connections. A
glossary contains the prearranged definition of the names or abbreviations that translates
the text description into mathematic expressions [39]. In this paper, the non-functional
requirements are satisfied by the property values contained in the solution. The functional
requirements are validated through functional testing based on the corresponding solutions.

The SysML block is a modular unit that can represent an element of a system, such as
a component, a function, or a testing process. The blocks collect the properties or behaviors
of a system, and several relationships (e.g., Association, Generalization) are specified
that enable the designer to relate the blocks to one another. The blocks with a hierarchy
relationship between different system levels can be presented in the block definition
diagrams (BDDs), and the internal block diagrams (IBDs) describe the internal structure of
a block in terms of properties and connectors between properties [40]. Therefore, the block
representation of the system provides a way for system engineers to break an entire system
down into a range of interacting objects.
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SysML provides constructs for the depiction of a system with more details. It enables
the engineer to model mathematical constraints in a system, which can be used to identify
critical performance parameters and their relationships to other parameters [40]. In this
study, the “SysML constraints” elements connected with the system parameters will be
used to support the simulation of the system. The so-called “SysML constraints” can not
only be specified by a mathematical expression (e.g., F = m × a) but also by a group of
statements in a programing language (e.g., Matlab, Python). In this study, the constraints
which are specified by the Matlab function scripts serve as an interface to transfer param-
eters (Inputs/Outputs) between the system model and domain-specific models for the
system simulations.

SysML has the ability to model continuous workflows in terms of the flow of inputs,
outputs, and control using an activity diagram. It is normally used for the depiction of
the behaviors of system parts or the development process with a high-level view. In this
paper, the sequential SysML actions are used to provide a modeling method for workflows
to verify the specific simulation results and send feedback with the continuous workflow.
Actions are the primary properties of the activity diagram that describe how the activity
executes and transform its inputs to outputs. There are several different actions, such as
“call actions” and “read actions”. Call actions allow the properties of blocks to be accessed
in complex systems with hierarchies. Read actions allow the activity model to obtain
properties’ values from structural aspects of the system [6].

3.2. System Modeling Based on Functional Architecture

In order to improve the applicability of MBSE and transfer the established methods of
developing engineering systems to MBSE, we aim to develop a function-oriented system
modeling approach. Therefore, the method of functional decomposition found in classical
design methodology is applied to the system modeling approach [41]. In our modeling
approach, the system function can be encapsulated as an element of the system by SysML
blocks. The system elements can be decomposed into sub-elements. Similarly, functions
can be decomposed into sub-functions.

The top function element can be decomposed into sub-functions which serve as
the parts of one higher-level function. A system function element, or a part of it, can
be delimited by a boundary, through which physical quantities can enter and leave the
function as functional flows. These flows can be energy flows, material flows, or signal
flows. The function of the delimited system transforms the quantities of the incoming flows
to other quantities of the outgoing flows (see (1) of Figure 1). Functions are referred to as
elementary functions if the transformation of the flows they represent does not physically
decompose further. This decomposition approach seeks to reach down to the elementary
functions [42]. A solution will inherit the functional flows from the function it fulfills. The
solution describes a general effect that fulfills a function. In addition, a solution consists
of the physical effect element, geometry element, logical element, material element, and
further elements like cost elements [42]. These elements are defined at the parameter level
and share parameters with internal and external design or analysis models (see (2) of
Figure 1).

A simulation from the specific-domain model can be integrated with the system
model by the constraints block, as we mentioned in Section 3.1. We explored the method
of the integration of these domain-specific development models with a system model
based on a SysML modeler. The SysML modeler allows us to evaluate expressions by
using a programming language such as Matlab, and then the domain-specific models
are incorporated using interfaces provided by the Matlab script in the meantime. Above
all, the relevant parameters are associated with each other, so that the system can be co-
developed in various development models from different domain-specific tools. In this
paper, the system model is also regarded as the central platform for linking and managing
the information of various aspects of the system.
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The adopted architecture of the system model provides a sequential procedure to
reduce the complexity of the system, and closes the gap between the system architecture
model and domain-specific models. The functional architecture makes it possible to
validate the system, and to reuse existing solutions and knowledge that support the
development and technology evolution of the system. Due to the realization of functional
modularization, any function and solution can be reused or replaced easily, which supports
the technology evolution and increases the system development efficiency.

3.3. Functional Requirement Testing in the Activity Diagram

The SysML activity diagram can be used to represent the sequence of the actions
(e.g., simulation actions) using control flows. In this work, the activity diagram will be
used to manage the functional testing process of the system, including the simulation of
domain-specific models in the related solutions, validation, and feedback (see Figure 2). In
this research, the testing process is based on the functional architecture. The testing process
described in actions is allowed to be sequenced according to the hierarchical architecture of
system functions. A set of actions can be grouped into an activity diagram partition (also
known as a swim lane) that is used to indicate responsibility for the execution of those
actions [6].

As we mentioned in Section 3.2, the solutions characterize the ways in which a
physical effect with a certain geometry and material properties fulfills a function. Therefore,
designers need to go through a comprehensive validation of the solution at the parameter
level to ensure that the selected solution satisfies the function of the system. When the
testing starts, the activity diagram runs the simulations by triggering the corresponding
solution with the defined system parameters. After the simulations, the significant results
will be used to compare with the required values from the non-functional requirements in
the validation actions. When one or more non-functional requirements are not satisfied,
the corresponding solutions will be judged as not meeting the function, and the validation
result of the function will be assigned as false. Finally, the validation result is saved as a
property of the function, which can be used to judge whether we need to send the feedback
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or continue the testing of the following functions directly. The decision node (the hollow
diamond symbol) evaluates the validation results with Boolean logic. If the result is true,
the outgoing flow continues the validation process to the next stage until all of the system
functions are traversed. Otherwise, the feedback information about the failed functions
will be sent to the stakeholders. In the next section, we will describe this method in further
detail through an application in the use case of a WT system. After the functional testing
process, the designer will redesign the related solutions based on the feedback information.
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4. Wind Turbine System Model Use Case

The proposed system modeling approach attempts to guide the designer in applying
the variety of diagrams in SysML and having seamless modeling in the system design
phase. In this paper, one of the roles of the system modeling is an approach to bring a
system view that supplies the consistent model. As the realization of this approach at the
system parameter level, domain-specific analysis is achieved with other kinds of tools—
such as MBS software—to simulate and calculate the dynamic loads on the WT. In this
paper, the proposed approach will be used to handle the complexity in the development
of modern WT systems containing a large number of mechanical, control, and electrical
components, as well as the corresponding models describing their behavior.

4.1. Wind Turbine System

A WT is a device that uses the kinetic energy of an airflow (wind energy) to pro-
duce electricity.

The main component groups of horizontal axis wind turbines (HAWT) are the rotor
system, the drivetrain, and the support structure, including the tower and the control
system. The rotor system is composed of the hub and blade, which converts a wind energy
flow into a mechanical kinetic energy flow. The rotors of the commonly used HAWT
technology rotate around the horizontal axis (see Figure 3). The drivetrain transfers the
kinetic energy flow to the generator, which converts the kinetic energy flow into an electrical
energy flow. In order to control the quantities of the kinetic energy flow transformed at
the rotor, the pitch systems change the angle of the blades to change the aerodynamic
characteristics of the rotor. The main shaft system not only transfers torque from the rotor
to the rest of the drivetrain but also supports the rotor. Most WT’s drivetrains include a
gearbox to increase the speed of the input shaft of the generator, allowing the generator to
operate in its desired operational range.
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The control system has a major effect on the mechanical energy generated at the rotor.
Depending on different wind conditions, the controller provides effective regulation to
achieve optimal operation, and to ensure that the mechanical and electrical design load
limits are not exceeded [44].

In the following, the models of the different domains that are considered in this use
case are further described.

4.1.1. Mechanical Domain

Considering the large number of components and the unsteady loads, the methods
of modeling and simulation are a challenge for the mechanical engineer. In order to cope
with these demands, MBS is commonly utilized to conduct motion and load analysis [45].
In an MBS system, the WT system is considered as being composed of various elastic
bodies that are interconnected. The MBS simulation covers the motion of those bodies,
including their elasticity and their kinematic constraints, as well as the forces and moments
acting in the connections between the bodies [43]. The inputs to the MBS model are the
3D geometry, the physical properties of the components, the specific contact conditions,
and the characteristics of the generator and wind forces. Mechanical engineers design
the system based on the required parameters and evaluate the dynamic behavior of the
WT’s components (e.g., deformation, speed acceleration, force, or torque). Afterward, they
improve the design of the WT models based on these results.

4.1.2. Control Domain

Modern WTs operate at variable speeds to maximize the efficiency of the conversion,
limit power during operation, maintain the grid frequency constant, and limit loads on the
drivetrain. Therefore, reliable controllers are necessary to achieve a long product life [46].
Typically, the control models are developed in a proprietary programming language, such
as Matlab/Simulink.

Specifically, in order to derive proper loads for the WT under different operation
conditions (e.g., variable wind speed), pitch angle control is the most common solution
for the adjustment of the rotation speed of the rotor and generator [47]. Therefore, the
control model needs to be considered with the mechanical model, which can take place
through the co-simulation of the mechanical and the control domain model [44]. The
simulated variables from the mechanical model, together with the pitch angle limit, feed
into the controller model, which estimates a pitch angle and feeds it back to the mechanical



Systems 2021, 9, 76 9 of 21

model. The WT control system uses, e.g., a proportional-integral controller (PI-controller),
including control parameters, the proportional coefficient (KP), and the integral coefficient
(KI), which achieves a control loop mechanism employing feedback. In this study, the value
of KP and KI is determined by the mechanical structure of the WT. In common practice,
the engineers of the control domain have to check that the data is up to date manually, and
vice versa. This will lead to time-wasting in the redesign process of complex systems, and
even a system failure risk caused by inconsistent data.

4.2. Specification of the System Requirements

For the definition of the system to be modeled, first of all, the defined requirements
are modeled. In Figure 4, a requirement diagram shows part of the required capabilities or
conditions of the WT system under consideration, which must be satisfied. In this study, the
simulation results (e.g., the cost of energy and the lifetime) are calculated and saved as value
properties of the solution blocks which are connected to the non-functional requirement
through the satisfy relation. The SysML tools support the visualization (e.g., highlighted in
red or printing constraint failures in the console) of which non-functional requirements
failed. Moreover, the system should trace its main function from the functional requirement.
Therefore, for the fulfillment of the functional requirements, the system function will be
checked through a function-testing activity (see Figure 4).
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Modern requirement management tools typically maintain requirements in a database,
in a table form. The SysML modeler used provides a similar mechanism to view the
data using tables. It has an obvious advantage when dealing with a large number of
requirements due to its compact representation. The requirement matrices can be used to
represent various interrelationships between the requirements and other model elements.
In this case, the matrix is applied to trace the dependency relationships of the WT, as shown
in Figure 5. The relationship “Dependency” enables us to trace the related parts, meaning
that if the design changes, the influence of the requirements must be considered.
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It will help the designer to quickly find the solutions from a complicated system. For
instance, the requirement of the lifetime of a bearing is strongly related to the component
solutions of the WT in various domains (e.g., rotor, controller). The arrow icon in the matrix
table will help the designer to find the key parameters quickly and show the ways towards
an improvement of the economic efficiency of a WT.

4.3. System Architecture

In the second step, we need to be clear about the specific performances of a system;
the functions can define what exactly a system does. As we mentioned in Section 4.2, the
system should derive its main function from the functional system requirement, which
is “Transform wind energy into electricity”. In order to simplify the complexity of the
WT system, the main function should be decomposed, and each sub-function should be
associated with the corresponding solutions.

The functional architecture of a WT system model is illustrated in BDDs that describes
the whole system by functions on different detailed levels with a hierarchical relationship.
The partial functions of the WT lying on the same branch of the function architecture tree
are shown on the left side of Figure 6. The right side of the figure shows the solutions
corresponding to the system functions in the MBS model [43].

Moreover, the functions of the WT system are created in IBDs. IBDs describe internal
functional flows between connected blocks. The connection between different components
is indicated by ports in the container block, providing a common interface. Each port has a
flow type, and enables us to present the flow directions. The connector between two blocks
is depicted as a line connecting two symbols. This case study will focus on the energy
flows between the functions, as shown in Figure 7. The energy loss flows are shown in grey,
and the effective energy flows are shown in red. The function “Transform wind energy
into electricity” is performed by two sub-functions. First, wind energy is transformed into
mechanical energy. Then, the mechanical energy is converted into electrical energy. In the
next step, the second function will be continuously broken down into several functions,
such as “Transfer mechanical energy”.
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In addition, we created a solution for each function in IBD to support the functional
testing at the parameter level. For instance, as shown in Figure 8, the solution “Bear-
ingSystem” is inherited from (generalization relationship) the sub-function “Support the
mechanical component”. The solution contains the bearing system’s properties in terms
of geometry, physical effect, material, cost domain, and simulation constraint block in the
system model. This constraint delivers the design parameters in the system model to the
external domain-specific design model (e.g., Lifetime Analysis Model), and then saves the
calculation results back to the system model. The calculation results will be finally used for
comparison with the non-functional requirements. It means that when the solution meets
all of the critical non-functional requirements, we will declare that the solution satisfies the
corresponding system.
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Furthermore, Figure 9 shows the internal composition of the super solution “Wind
Turbine System”, in which the physics domain focuses on the equivalent hub load study.
The constraint blocks are used to relate the various mechanical parameters from the
physical effect and geometry domain with control parameters from the control domain.
These parameters are distributed in the various sub-solutions of the WT system model, and
are linked with the super-solution “Wind Turbine System” through the ports. In this case,
the constraint block “Load calculation” calculates the hub load data, and then performs
the post-processing analysis. The calculated equivalent load, as a calculated result, will
be imported into SysML and stored as one of the parameters of the WT system. It can be
utilized as a quantitative reference in the following validation process.
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4.4. System Functional Testing Activity

In this study, we build tests based on activity diagrams to check the validation results
of the WT system step by step. In the function testing activity, the critical simulation results
from the solutions should be checked against the related design requirements, and it should
then be determined whether the function is satisfied according to the validation results.
For instance, the bearing lifetime plays a role as one of the criteria, which helps us to judge
if the selected solution “BearingSystem” is applicable to the function based on the lifetime
calculation. When the simulated lifetime is equal to or more than the required lifetime,
the validation results serve as the true value, and the function “Support the mechanical
component” will be regarded as passed. Figure 10 illustrates a portion of the functional
testing process for a WT system. Assuming that the sub-function “Support the mechanical
component” can be realized by a specific solution called “BearingSystem”. When the
testing starts, the activity diagram triggers the simulations of the solution “BearingSystem”
based on the external simulation models. After the simulations, a significant simulated
result (the lifetime value) will be used to compare with the requirement, which is “The
minimum bearing rating lives for various operating and reliability conditions shall be
equal or more than 2 × 105 h”.

Subsequently, the decision node (the white diamond symbol) evaluates the comparison
results with Boolean logic, and displays the result in the simulation console. If the lifetime
value is greater than 2× 105, then the validation result will be true, and the system function
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is satisfied. The outgoing flow continues the testing process to the next function. Otherwise,
it will send the feedback information to stakeholders through E-mail. According to the
feedback, the solution should be replaced or the properties of the corresponding solution
need to be redesigned. Finally, the functions should be tested again until the functions
are passed.
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5. Case Studies

Our motivating example is the model-based development of the WT system. The
development process case studies of the WT system in this paper are based on multi-
disciplinary cooperation among the involved stakeholders in the mechanical, control, and
electrical domain. In the first case study, the parameters from a certain domain will be
changed. The changes will lead to unsatisfactory validation results of the WT system, and
will provide feedback to relevant stakeholders in time, thereby solving the design errors
caused by inconsistency in the traditional development process. The second case study
demonstrates that the proposed approach enables us to support an agile redesign process
and make optimal decisions from the potential solutions.

5.1. Maintaining the Consistency of the Parameters

We assumed a redesign process of the drivetrain that increases the original generator
inertia JGen_O to JGen_O/0.215 and decreases the original gear ratio iO to iO/3. This resulted
in a new value of the drivetrain inertia (0.92·JDT_O) in the mechanical model. If the change
is not communicated in a timely manner, members of the control domain will continue to
use the obsolete control parameters KI_O and KP_O in their model. This leads to inconsistent
parameters between the mechanical and the control domain (see Table 1).
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Table 1. The parameters of a wind turbine in different domains under inconsistent and consistent design situations.

Mechanical Domain Parameters Control Domain Parameters

Generator Inertia Gear Ratio Drivetrain Inertia Integral Coefficient Proportional
Coefficient

Unit kgm2 kgm2

Original Design
(Consistent) JGen_O iO JDT_O KI_O KP_O

Redesign
(Inconsistent)

JGen_O
0.215

io
3 0.92·JDT_O KI_O KP_O

Redesign
(Consistent)

JGen_O
0.215

io
3 0.92·JDT_O 2.76·KI_O 2.76·KP_O

A WT system with inconsistent parameters affects the simulation results, leading to
dissatisfied requirements. For instance, the above-mentioned redesign causes a significant
overshoot of the rotor speed and the loads. These results are presented in Figure 11, which
clearly shows that the dynamic behavior (the curve named “Inconsistent Redesign”) of the
WT is unstable (shown as overshoot) compared to the original design (the curve named
“Consistent Original Design”).

In comparison to document-based approaches, changes of these parameters will
be spread to all of the stakeholders by using the proposed approach. Specifically, the
mechanical engineers assigned new values to the variable “Generator Inertia” and “Gear
Ratio” in the WT system model. The functional testing process triggers the co-simulation,
as the simulated results are affected by these changed mechanical parameters. After that,
the automatic validation of the requirements for the simulated results will be executed. In
case the validation fails, a notification will be sent to each owner (e.g., the control engineer)
of this view. Therefore, the control engineers can identify changes from the mechanical
team and set the parameters to 2.76 ·KI_O and 2.76·KP_O (see Table 1) in time.

The simulation results of the redesigned WT model with consistent cooperation are
illustrated in Figure 11 (the curve named “Consistency Redesign”). It clearly shows that the
overshoot in the results is removed, causing a better working behavior of the WT system.
Model consistency between different stakeholders ensures that the WT development
process becomes more efficient.

The proposed approach enables members from the mechanical domain and members
from the control domain to work together, editing all of the parameters in a common
system model in SysML. Any change is transparent, enabling all of the team members to
work with a consistent model. In other words, changes to the parameters of one domain
can be automatically spread to other relevant domains.

5.2. Agile Redesign Process of System Solutions

In this case, we adopted the proposed approach to redesign the bearings of the WT
system and choose the optimal solution that satisfies the corresponding function. The
parameters for the system properties can be valued using an instance specification. In
the first step, the system engineer can set the different instances of the solutions in an
instance table containing a list of properties or using a user interface created by SysML.
Instance specifications can be nested to mirror the composition of blocks [6]. Therefore,
any set of values can override the initial values of the specific properties of the block, and
every parameter of the WT model can be accessed and changed easily. In addition, the
execution results can be recorded in a designated instance as well. Hence, it is possible that
the simulation results can be reused in further validation processes. As an example, we
set three instances called Bearing System A, B, and C of WT. The different types of fixed
bearings and positions of assembly are determined as the variables (see Figure 12).
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In order to test these solution instances, in the second step, we will execute the
functional testing process, which is designed by object flows in an activity diagram. In
this case, the solution “BearingSystemA” has a false value in the validation results. This
means that the solutions cannot satisfy the related function, as the calculated lifetime of
“BearingSystemA” is less than required. On the contrary, “BearingSystemB and C” have the
true value as their result. Therefore, “BearingSystemB and C” are both feasible solutions to
the corresponding function.

In the last step, we expect to find out the optimal solution from “BearingSystemB and
C”, because the option with “BearingSystemC” provides a lower cost than “BearingSys-
temB” under the same wind situation (see Figure 13). Therefore, “BearingSystemC” will be
regarded as the best choice when we consider the economic aspect from the cost domain.
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By the proposed system modeling approach and the testing steps, our WT system
achieves a seamless development process, from a sketch design based on a system model
to a detail design based on domain-specific models. It shows the potential to support an
efficient redesign and optimization when working with a complex system. In other words,
an agile development process is possible when there is a change in the system because we
can redesign and verify the system model based on the existing functional architecture with
different solution instances. Moreover, the consistency feature of the system model among
the view specifications ensures that the stakeholders will work in the same direction, and
therefore the results in the WT development process become more accurate.

6. Discussion

MBSE is an approach to support the product development process for a complex
system [48]. The potential of MBSE is to improve communication and knowledge reuse,
leading to a reduced cycle time and lower development cost [49]. SysML provides a
platform to define the high-level relationships between the requirements, functions, and
physical architecture of a system. SysML v2 intends to address some of the more basic
problems relating to the language, including the need for additional expressiveness, higher
precision, interoperability, and improved consistency and integration [50]. However, there
is still a lack of a practical system modeling approach that can easily interact with the
external simulation model, instead of just focusing on the conceptual development phase
or the validation phase through the low-precision constraints inside the system model.
Therefore, the traditional modeling approach in SysML needs to be updated to adapt to the
need of the development process in the industrial world. In addition, many domain-specific
design tools need to be integrated with SysML in order to obtain consistency across the
system specification [51].

The presented approach of modeling complex systems with SysML is based on the use
case of WT systems. This real-world scenario is capable of representing current challenges
in systems engineering, and supports the claim that MBSE has advantages over traditional
document-based systems engineering [3]. Incorporating simulations allows the continuous
validation of local requirements, increasing development efficiency. While the scope of the
presented concept is very specific, the approach introduced is designed to be scalable, and
to be extended to more general approaches and other engineering disciplines.

Another prospect of this paper is that the traceability of the advanced MBSE approach
will help to quickly identify the significant parameters of the system. Achieving better
complexity management results in reduced cycle times and lower costs of redesigns. The
model-based design enables an efficient and flexible optimization of specific parts of the
system. Therefore, the reusable parts are retained, avoiding unnecessary procedures and
supporting even more agile methods by enabling the strong reuse of models. Furthermore,
this paper demonstrates that SysML alone is not sufficient for sophisticated MBSE. Domain-
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specific design tools and applications (e.g., MBS software) also contribute to the overall
interdisciplinary system. The limitations of the integration of commercial software are
clear. First of all, the commercial tools like ModelCenter are workflow builders, which
are hard to integrate with all of the simulation software used in engineering fields. The
multi-domain modeling languages like Modelica or Simulink will not cover all of the
design fields, and cannot meet the high-precision design requirements of systems (such
as lifetime and NVH analysis); therefore, the physical behavior of the WTs cannot be
accurately captured. Specifically, we cannot use this type of commercial software to
check the time-varying aspects of WT design, such as any phenomena related to the
resonance-induced loads. Therefore, we proposed an integration approach that is based
on general-purpose programming languages, such as Matlab and Python, which are
designed to support a wide range of domain-specific tools. Secondly, most engineers
are familiar with these languages, and there are already many existing codes. Therefore,
engineers do not have to completely abandon traditional modeling methods, which are
more conducive to promoting the application of the MBSE approach. The approach
will be geared towards tool integration [52] to truly enable dependency tracing over
the entire heterogeneous tooling landscape. The corresponding models need to be built
under a unified standard, such as consistent parameter naming and formal modeling.
The continuing evolution of information technology is a necessary enabler of improved
modeling techniques. In the future, MBSE will benefit from the creation and reuse of model
repositories, taxonomies, and design patterns [53]. The testing process adopted in this
paper is based on the functional architecture of the system; therefore, the different solutions
can be allocated to the same function, and can be validated at the same time. For that, the
multiplicity of the parameters should be considered in the future system model to achieve
the parallelization of the simulation. An effective MBSE approach requires a disciplined
and well-trained team. Therefore, the efforts of the standardization of previous works
and improving the understanding of MBSE for some stakeholders should be evaluated in
the future.

However, the presented approach is not comprehensive. More advanced resolving
mechanisms also entail additional effort for the interdisciplinary modeling teams, as
dependencies have to be modeled explicitly. The solution in the system model should be
further defined, and the domain-specific models should be classified in future work. The
validation process should be extended with a standardized workflow to support a granular
design and optimization processes. Even more specialized actions in activity diagrams
provide a way to achieve this extension. For example, the simulation activities during the
testing process need to be further structured. A mechanism in the simulation workflows
should be established to determine the execution sequence and necessity of each simulation
to save external computational costs. Other works such as data structure management and
version control also need to be considered in order to obtain better and faster access to data
and improve the consistent work among the stakeholders. All of the above works will have
significant meanings for the further promotion of the applicability of the MBSE approach
in the industrial field.

7. Conclusions

In this paper, an advanced Model-Based Systems Engineering (MBSE) approach using
Systems Modeling Language (SysML) diagrams for system modeling and integration
across domain-specific models was presented. The proposed solution covered a general
concept for parameter tracing across engineering models. We applied this technique to
SysML models for wind turbine (WT) systems to present the applicability of the approach
to complex, modern systems and their technical parameters.

The proposed approach gives a way to apply functional decomposition concepts
to system modeling; thus, system engineers will be more capable of managing system
complexity, and the reusability of the model will be increased meanwhile. Additionally, the
strategies to integrate domain-specific design tools from a later stage of the development
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process into the solution of the system model enable system engineers to describe their
systems at a higher level of abstraction while still maintaining the possibility of analyzing
the system at the detailed level. This paper also presents a system of functional testing
formalism using the activity diagram based on SysML. Thus, it is not only oriented to the
creation of a system model but also includes engineering analysis and verification, and a
validation process to support the system lifecycle.

Using this approach, the use case of a WT system was investigated to analyze the
benefits of automatically distributing changes to the different stakeholders. The proposed
solution reduces the engineering effort by liberating developers from manual and error-
prone (mostly document-based) parameter tracing and data distribution throughout the
system. This facilitates systems engineering with truly integrated models.
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