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Abstract: Contemporary manufacturing systems are undergoing a major change promoted by emerg-
ing technologies such as Cyber-physical Systems (CPS) or the Internet of Things (IoT). This trend,
nowadays widely known by the term “Industry 4.0”, leads to a new kind of automated production.
However, the rising number of dynamically interconnected elements in industrial production lines
results in such a system being transformed into a complex System of Systems (SoS). Due to the
increasing complexity and the challenges accompanied by this change, conventional engineering
methods using generic principles reach their limits when developing this type of systems. With
varying approaches only trying to find a solution for small-scaled areas of this problem statement,
the need for a holistic methodology becomes more and more obvious. Having recognized this issue,
one of the most promising approaches has been introduced with the Reference Architecture Model
Industry 4.0 (RAMI 4.0). However, in the current point of view, this domain-specific architecture
framework is missing specifications to address all aspects of such a critical infrastructure. Thus, this
paper introduces a comprehensive modeling approach utilizing methods applied in Model-Based
Systems Engineering (MBSE) and including domain-specific particularities as well as architectural
concepts with the goal to enable mutual engineering of current and future industrial systems. The
resulting artifacts, a domain-specific language (DSL), an architecture definition and a development
process, are thereby consolidated in a ready to use software framework, whose applicability was
evaluated by a real-world case study.

Keywords: Industry 4.0; systems architecture; System of Systems (SoS); Industrial Internet of Things
(IIoT); Reference Architecture Model Industry 4.0 (RAMI 4.0); Model-Based Systems Engineering (MBSE)

1. Introduction

The need for optimized production processes with the goal to manage resources best
possible force most manufacturing companies to constantly improve in order to remain
competitive. The latest results from research and development offer new possibilities to
support this goal, which drive change in the present industrial area and lead the path to a
new form of automation-driven industry, today widely known by the term “Industry 4.0”.
One of the key factors ensuring the application of this trend is the emergence of Industrial
Internet of Things (IIoT), an alignment of Internet of Things (IoT) to the industrial area aim-
ing to pursue automation and data exchange in manufacturing processes [1]. The resulting
interconnection of these mainly intelligent units, so-called Cyber-physical System (CPS),
forms a service-oriented value creation network [2], which drifts away from the original
product orientation towards technology-oriented services [3]. However, accompanied by
all the opportunities for developing future industrial systems according to this trend, there
are several challenges that need to be addressed in order to ensure this realization. More
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precisely, as explained in [4], a major issue concerning the interconnection of components
is their coexistence and interoperability, as most of them are making decentralized deci-
sions to find the best solution for themselves. Taking this into further consideration, a
new level of complexity arises when it comes to describe the architecture of current and
future manufacturing systems. According to the classification scheme introduced in [5],
a traditional production line can be considered a complicated system due to the large
number of machines or their dynamic utilization according to what should be produced.
However, by following this principle and through the integration of IIoT aspects, contem-
porary manufacturing systems have to be classified as complex systems, which is mainly
attributed to the composition of multiple interdisciplinary elements within the production
line and their possibility to make decisions on their own. In addition, falling back on the
criteria mentioned in [6] as well as a CPS being a system itself, even the term System of
Systems (SoS) is suggested to be used in order to emphasize the autonomous character of
the system’s individual components, which is substantiated by one of the early definitions
of Industry 4.0 [7].

Summarizing these concerns and with regard to the arising complexity, it becomes
clear that suitable ways for structuring such systems according to the different aspects
addressed by Industry 4.0 need to be available. Thus, multiple organizations recently
proposed different types of architectural models dealing as a reference for describing an in-
dustrial system. A collection is presented in [8], where the single projects are also described
in more detail. While each reference architecture has different objectives and therefore
provides different viewpoints, the main targets concerning flexibility, usability and pro-
ductivity can be found in all approaches. With special focus on the mentioned aspects and
due to its maturity level, Reference Architecture Model Industrie 4.0 (RAMI 4.0) [9] stands
out in particular. This can be attributed to the extensive methods offered for developing
concrete industrial system architectures. Those are more precisely described in two sep-
arate contributions [10,11], where the framework is also compared to another promising
approach, Industrial Internet Reference Architecture (IIRA). However, although RAMI 4.0
is already used in several projects and found its way to standardization, it is still difficult to
develop a specific system architecture according to its concepts at the current point of view.
One of the main reasons causing this issue is the missing formalization in terms of architec-
tural specifications on each of its layers, impeding the utilization of Model-based Systems
Engineering (MBSE) concepts. More precisely, currently only a rough frame to work in is
provided, resulting in a concept looking good on paper without concrete applicability.

Therefore, this paper deals with three major contributions. First, the architectural
model of RAMI 4.0 is precisely refined by making use of the ISO 42010 and elaborating
viewpoints to address the stakeholder concerns. To enable MBSE according to those
viewpoints, the next step is to design a Domain-specific Language (DSL) based on Systems
Modeling Language (SysML). Subsequently, based on the developed artifacts, the second
contribution is to provide a specific systems development process, derived from the ISO
15288. The resulting process model should unite aspects originating from the architecture
definition with the concepts applied by methodologies used in MBSE, similar to Model-
driven Architecture (MDA). The last contribution is to evaluate the developed artifacts and
validate the feasibility of the approach by applying a real-world case study, a manufacturer
of subway tracks.

To address these aspects, the remainder of this contribution is structured as follows.
Section 2 provides an overview of RAMI 4.0, used standards and technologies as well as
current approaches applied in the engineering of IIoT-based systems. In Section 3, the
approach itself to challenge the mentioned problem is stated. Next, the development of
the previously mentioned artifacts is explained in detail in Section 4, whose applicability
is demonstrated with a typical industrial use case in Section 5. Finally, in Section 6, the
results of the conducted study are summarized and a conclusion is given.
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2. Related Work

In this section, the theoretical background of the intended approach as well as its
related work is explained in more detail. To do so, first an overview of state-of-the-art
reference architectures is given within the first subsection. Subsequently, contemporary
approaches and methodologies in the area of model-based industrial systems engineering
are listed and further analyzed.

2.1. Domain-Specific Architecture Frameworks

The goal of RAMI 4.0 is to enable the discussion of an Industry 4.0 system based on
domain-specific viewpoints. The three-dimensional model, delineated in Figure 1, has been
mainly developed to create a common understanding and a mutual basis for industrial
systems engineering [9]. Due to the big influence of its creators on the German industry,
the reference architecture encloses multiple sectors within the industrial area and even
has been standardized in the standard DIN SPEC 91345 [12]. Moreover, a system either
is developed as a whole or single parts of it are considered in more detail, according to
the corresponding Industry 4.0 related use case. In more detail, the horizontal axis of
RAMI 4.0, the so-called “Life Cycle and Value Stream”, deals with the different states
an asset may have during its time of usage by falling back to the criteria introduced in
the standard IEC 62890. In the second axis, the vertical integration within a factory is
represented by the “Hierarchy Levels” based on IEC 62264 and IEC 61512, better known
by the term “Automation Pyramid”. Finally, the top-down arrangement of the layers
enables the structuring of the system according to the feature of its components across six
Interoperability Layers.

Figure 1. Reference Architecture Model Industry 4.0 (RAMI 4.0) [13].

Parallel to the German approach, a similar concept was proposed by the Industrial
Internet Consortium (IIC) with the name of IIRA [11]. In comparison to RAMI 4.0, this
reference architecture also focuses on the different interests of stakeholders within an
industrial system. By doing so, it makes use of the ISO 42010 as a guideline for building
an architecture in a particular domain or a community of stakeholders. Thus, these
conventions and principles have a significant influence on an industrial model based on
IIRA. However, in contrast to RAMI 4.0, only four levels to reflect the stakeholder concerns
are defined within the architectural model. The Business and the Functional Viewpoint can
thereby be compared to the equally called RAMI Layers. In contrast, the Usage as well as
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the Implementation Viewpoint deal with describing the system during its run-time and its
implementation, as the names imply.

Additionally, the European joint project has set itself the task of ensuring collaborative
automation using different kinds of networks and embedded devices in five domains,
resulting in the proposal of the so-called Arrowhead Framework. The domains include
home and industrial automation, production, virtual markets of energy and electrical
vehicles infrastructures [14]. The primary goal of this approach is to address the technical
difficulties that come with collaboration issues in automation. Thus, a framework for
the modeling of systems has been adopted to this objective, which is provided in order
to advance innovations and standardization. In [15], the service-oriented architecture of
the framework and its core components are introduced. The main contribution of this
work is the possibility to enable the interoperability between systems originating from the
previously mentioned domains by considering them from a SoS perspective.

2.2. Model-Based Systems Engineering

In summary, the approaches above build a promising foundation for structuring and
enabling the discussion of future industrial systems. However, as all of the mentioned
reference architectures were proposed in recent years, they are more or less theoretical
concepts, which look good on paper, but are lacking concrete applications in order to
guide the development of an Industry 4.0 based system. For example, RAMI 4.0 mainly
specifies the frame to work in giving a rough outline for the boundaries of the system,
but does not define a specific development process. Thus, different projects trying to
actually implement applications according to this reference architecture have emerged.
The first steps to understanding and realizing the vision of digitalizing production and
manufacturing in those systems is proposed in [16] by modeling the digital twin of a
CPS in regard to concrete standards and technologies such as those introduced by the
administration shell of RAMI 4.0 [17]. However, as explained above, MBSE is one of the
chosen methods concerning consistency within a model of a constantly changing system by
keeping traceability at the same time. Thus, several projects try to provide MBSE methods
such as modeling languages for addressing different aspects when developing future
industrial systems, based on Unified Modeling Language (UML), SysML or even defining
a DSL [18–20].

Similar to the projects tailored to RAMI 4.0, model-based systems engineering ap-
proaches for developing Industry 4.0 based systems have been proposed for other reference
architectures. Thus, an approach to model and develop a CPS-based manufacturing system
from a technical perspective is proposed in [21]. To mention another example, the authors
of [22] described an approach for the development of IIoT applications by considering
them as a SoS and making use of the concepts of IIRA. A special feature of their work is the
mapping of the IIRA viewpoints to those of the Unified Architecture Framework (UAF),
which enables MBSE by applying the extensive possibilities for model-based systems devel-
opment of this framework. Furthermore, Radanliev [23] used cyber-elements for Industry
4.0, collected from different trends throughout global regions. The goal of this approach is
to summarize those elements to a framework for describing IoT-based cyber-security mod-
els as part of a more comprehensive reference architecture [24]. As far as the Arrowhead
Framework is concerned, a project has been proposed making this framework the basis for
realizing the supply chain of a paper-making company [25]. The main goal of this work is to
identify impacts of Industry 4.0 on Supply Chain Management (SCM) as well as logistics in
order to support these business units in digitalization issues . Additionally, several projects
introduce applications supporting the engineering process within industrial systems by
applying decision trees or security frameworks [26–28].

However, all of the mentioned approaches are more or less missing applicability
aspects, as no user is able to develop the respective system with a suitable tool. Thus, to
fully enable the applicability of MBSE, a comprehensive framework inheriting a specific and
detailed development process, integrating well-known and tool-supported methods, needs
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to be provided. In conclusion, the need for a methodology tailored to future industrial
systems engineering becomes more and more obvious.

3. Approach

As explained in above, the main purpose of this work is to provide the possibility
for developing industrial systems based on RAMI 4.0 in order to ensure the applicability
of the proposed theoretical reference architecture. Nevertheless, actual applications are
a rarity in the current point of view, although RAMI 4.0 is one of the most promising
approaches when it comes to handling the complexity of Industry 4.0-based systems. Thus,
a software tool is developed, which addresses aspects of current characteristics in the
area of systems engineering by considering peculiarities of the industrial domain at the
same time. As both MBSE and Industry 4.0 are growing areas, which are dynamically
altering or profiting from new advances in research and development, suitable methods
for developing the piece of software need to be applied. Hence, the Agile Design Science
Research Methodology (ADSRM) appears to be the right method to be utilized in such
dynamic application scenarios. Thereby, this agile methodology introduces five process
steps, as visualized in Figure 2. By offering multiple entry steps into its iteration cycle,
the whole process is supported by exploratory case studies [29]. In this specific work, the
development cycle is initiated by defining a case study. Based on the chosen use case,
requirements can be derived for specifying quantitative information about what should be
developed and how to approach this. Based on those requirements, so-called artifacts can
be developed. In this case, an architecture definition, a process model as well as method
integration are considered to be such artifacts. Finally, the case study is implemented in
order to evaluate and verify the developed components, whose result will then serve as
basis for the next iteration step.

Figure 2. Agile Design Science Research Methodology (ADSRM).

Case Study Design

The proposed work makes use of a typical industrial case study, a manufacturer of
subway tracks. Specific information such as business models or production line infras-
tructures is thereby provided by a company partner, combined with the desired need
for a transformation inheriting the concepts of the fourth industrial revolution. Thus, to
integrate Industry 4.0-related aspects, the single subway tracks are produced in sample
size 1. In addition, the whole life-cycle of the subway track has to be considered as well as
state-based maintenance or any supply-chain challenges. As the system of this case study
should be developed based on the specifications of RAMI 4.0, the requirements need to
be derived in the next step in order to fulfill the ADSRM specification as well as provide
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fundamental directions for creating the piece of software. In this particular scenario, the
intention of modeling the case study should consider the following requirements:

• Integrate and evaluate the ISO 42010 for refining the architecture of RAMI 4.0.
• Follow systems engineering according to a particular development process.
• Validate the applicability of the RAMI Toolbox.
• Execute a feasibility analysis for future and more sophisticated projects.
• Develop functionalities for automating repetitive tasks.

4. Implementation

In this section, the implemented steps for developing the intended modeling software,
better known by the term “RAMI Toolbox”, are explained in more detail. As already men-
tioned, this task is constituted of three different parts. First, a comprehensive architectural
definition of RAMI 4.0 is given by also defining a DSL and using established standards.
Subsequently, a specific development process is defined and useful software functions
are implemented into the RAMI Toolbox. As this piece of software is aims at being an
extension for the modeling software Enterprise Architect (EA), all following concepts are
tailored to work in this environment and therefore inherit tool-specific conventions.

4.1. Architecture Development

The first step to create the RAMI Toolbox is to define the RAMI 4.0 architecture based
on the ISO 42010. This will result in having a standardized backbone for the following
domain-specific adaptations. To look further into the theoretical concept of the standard,
there are multiple stakeholders having interest in the architecture of a system, described
as concerns. The goal of the architecture is to define viewpoints in order to address those
stakeholder concerns. However, as the specification of RAMI 4.0 provides several inter-
operability layers, those can directly be converted into viewpoints. Nevertheless, this is
the point where the reference architecture is lacking information. To counteract this issue,
the next step of the ISO 42010 aims to define model kinds in order to provide applicable
instruments for practically implementing the viewpoints. Thus, with regard to the con-
cerns mentioned in the official RAMI 4.0 specification document and the corresponding
viewpoints [9], the views and model kinds delineated in Table 1 have been specified.
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Table 1. RAMI 4.0 viewpoints and model kinds.

Viewpoint View Model Kind

Business Layer Context View SIPOC Model
Process View BPMN Model

Value Chain Model
Business View Business Case Model

Goal Model
Requirements View Requirements Model

Function Layer FAS View Use Case Model
Functional Development

Function View Black Box Model
White Box Model

Logical View Actor Mapping Model

Information Layer Information View Information Model
Data View Data Model

Communication Layer Communication View Communication Model
Interface View Interface Model

Integration Layer Technical View Component Model
ICT Model
HMI Model

Asset Layer Realization View Asset Model
RTE Model

Based on the elaborated model kinds, the architectural model of an industrial system
based on RAMI 4.0 can be created with the help of the RAMI Toolbox. To do so, the last
piece is missing, the specification of a particular DSL. By deriving elements from the UML
or SysML, the needed semantics and structure for understanding the application domain
as well as the physical world of Industry 4.0 is defined. As the development of the DSL is
precisely defined in [30] and its usage is explained in detail in Section 5, it is not outlined
any further at this point.

4.2. Process Model Definition

As there are many aspects to consider throughout the whole engineering life-cycle of
RAMI 4.0-based systems, a clear development process guiding users executing this task
has to be provided. Therefore, this work also introduces a specific process model utilizing
the well-known engineering standard ISO 15288. Theoretically, as Lake explained, the
development of such a complex system needs to be structured according to the phases of
its life-cycle in order to prevent confusion, misunderstanding or even conflict [31]. This
is why the authors of [32] originally proposed a process model for developing Industry
4.0 applications based on RAMI 4.0, which is extended according to novel advances in this
work. To give a small excerpt, Figure 3 provides an overview of how the process model
correlates with the architecture definition.
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At the top of the image, the two processes Stakeholder Needs Definition Process and
Requirements Analysis Process, which are defined in the ISO 15288, are combined to the
RAMI 4.0 specific Business Analysis Process. As recognizable from its name, this process
deals with developing the Business Layer of the architecture. Subsequently, single process
steps are elaborated, which indicate executable tasks for transforming all inputs from the
System of Interest (SoI) to its output. By doing so, every single step is performed in the
context of a view and results in creating one or more architectural models.

Figure 3. Process model for developing RAMI 4.0 Business Layer.

4.3. Framework Integration

The Functional Architecture for Systems (FAS) method was introduced by Weilkiens
[33] due to lack of common approaches for functional architecture development, in par-
ticular in the context of MBSE. However, especially in the industrial domain, systems
strongly rely on their functions, since they ensure the traceability between the requirements
and the actual implementation. In more detail, in complex systems, a single function
usually is deployed on a large number of technical components, while a single component
is able to carry out more than one function. With the FAS method, a methodology for
developing the architecture of such interwoven systems has been introduced. According to
the aforementioned reasons, the eligibility for this method to be applied in the context of
RAMI 4.0 becomes clear and is therefore utilized to further refine the Function Layer.

Additionally, it has been pointed out that the cubic layout of RAMI 4.0 is missing
one abstraction level. In particular, when describing a whole production system, the
combination of both reference architectures reaches its limits. On the other hand, single
CPS could be developed in detail throughout the whole life-cycle including aspects such
as Round-trip Engineering (RTE) or application in a co-simulation environment. Thus,
in the current version of the toolbox, the Software Platform Embedded Systems (SPES)
method is implemented to counteract with those issues. However, in future versions, a
more comprehensive methodology has to be integrated or developed by itself.

In addition, a detailed description how the mentioned concepts are used within the
RAMI Toolbox is given by the case study illustration in Section 5.

5. Application

In this section, the development of the case study (a click-through model is available
at http://www.rami-toolbox.org/UseCaseATS, accessed on 23 March 2021) is described in
more detail. The main goal of this case study is to evaluate the created process model, the
architecture definition as well as the DSL and verifying its potential to create industrial sys-

http://www.rami-toolbox.org/UseCaseATS
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tems based on RAMI 4.0. To do so, the use case describing the development of individual
subway tracks is delineated in detail according to the previously mentioned aspects.

This means, the first step is to describe the Business Layer of RAMI 4.0. In the first
task, the system context of the SoI has to be defined, which is done with the help of a
SIPOC-Diagram (suppliers, inputs, process, output and customers). The SoI is considered
to be a process transforming the inputs to the outputs. In the illustrated case study, the SoI
is represented by the production process of the subway track itself, as outlined in detail in
Figure 4. The diagram indicates this model in a simplified way on the highest perspective
by summarizing all material suppliers as well as all energy providers. An example for a
further input are considered to be the product requirements from the product engineering
department, while the final result is transmitted to the laboratory as output of the SoI.

Figure 4. RAMI 4.0 SIPOC model.

Thus, the next step is to indicate how this process is executed, in this case with the
help of a Business Process Model and Notation (BPMN) diagram. On different abstraction
levels, all business or manufacturing processes being connected with the SoI in any possible
way are depicted. A specialty of the RAMI Toolbox is the provision of a value chain
model for modeling the manufacturing processes, as depicted in Figure 5. In this model,
material and information flows are shown in the so-called value-stream mapping, which is
especially targeted to accompany the development of manufactured goods. In this case,
the production of the metal profile for the subway track, which is demonstrated by the
bottom sequence of events in the image, is outlined in the image. On top, the information
flow is shown by the blue arrows, while the red arrow represents a manual stream. In
addition, the two lightnings stand for the so-called Kaizen Bursts, which are used to indicate
optimization potential or susceptibility to errors. In this case, the information flow on top
of the image can be automated and the mechanical flow is prone to errors.
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Figure 5. RAMI 4.0 value-stream mapping.

Based on this analysis, new business cases are derived from the single Kaizen Bursts,
which are used to describe ways for integrating Industry 4.0 aspects to optimize the
production process. Those business cases exhibit an interconnection to stakeholders having
interest in the respective SoI. With regard to all interests coming from the single business
actors, a comprehensive requirements analysis can be performed, serving as basis for
further system developments.

As previously mentioned, the interface between the requirements and the physical
components of the system is realized with the FAS method, by defining functions fulfilling
the requirements and being deployed to system parts. The first step to achieve this is to
model all desired processes within the business case with the help of activity diagrams.
All atomic process steps, called actions, are thereby summarized and represent the tasks
to be executed by the system. Similar tasks are then summarized to functional groups,
which are realized by functional elements. Those elements represent the functions of the
system, as depicted in Figure 6. By showing them in a black box or white box perspective,
their interconnection and exchanged information can be indicated as well as interference
or disturbances influencing the transformation from the input to the output. The displayed
image however reveals the interfaces between the single functions and their data exchange,
such as the length of the modules for calculating the content of copper needed for the
electrical conductors. The last step of the Function Layer is to deploy those functions to
logical elements representing the physical system parts. This finally ensures the traceability
between the requirements and the actual system components, since it is possible to fall
back which requirement is fulfilled by which component.
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Figure 6. RAMI 4.0 Function Layer.

From this point on, the Information and the Communication Layer can be described
in more detail, by modeling what is exchanged between the components and how it is
done. Therefore, a data flow diagram is used to describe the exact information flow with all
information items, data stores and external data sources. The next big step is to define data
model standards such as JSON or XML to indicate the format of the single information that
is exchanged. Based on this information, the interfaces in the Communication Layer can be
adapted. As the information object remains the same, the direction flow is now specified
using request or service points. Additionally, the protocols ensure that the data model
standard is correctly transmitted and furthermore define the interfaces between the single
components. In Figure 7, a diagram considering the just mentioned aspects is delineated. It
indicates that the measurement data are transmitted via Near-field Communication (NFC),
while machine codes are sent with the help of Ethernet in this particular case study. This
falls back to the fact that the current infrastructure only allows this type of protocol
for information exchange. In future iterations of ADSRM, this could be investigated
further and novel technologies or protocols such as Open Platform Communications
Unified Architecture (OPC UA) might be implemented. The main control unit however
needs to have multiple interfaces, including non-technical ones such as a Human-machine
Interface (HMI). Additionally, in the Communication Layer, all networking information is
further defined. While one particular granularity level, as shown in the mentioned image,
depicts the used system components and their interconnection with interfaces, other levels
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deal with the detailed specification of those interfaces. For example, with regard to the
Ethernet interface, a higher level considers the type of communication network standard,
such as PROFINET or Ethernet for Control Automation Technology (EtherCAT), as used
within the complete production system. On a lower granularity level, more details about
the single protocol transmitting the data between the industrial devices are stated. While
the data are depicted as Information Objects, protocols such as NFC or 4G indicate how
these technologies are used to send the objects over the interfaces within the company
network. Subsequently, a lower level allows a more detailed insight within a single protocol
and could enable model-based implementations or code generation.

Figure 7. RAMI 4.0 Communication Layer.

The transformation from the logical perspective towards a more technical one takes
place in the Integration Layer of RAMI 4.0. In this viewpoint, the administration shell of
the components is modeled in detail. According to the official RAMI 4.0 documents, this
assures that all data are collected throughout the whole life-cycle of an asset and even
components not able to actively communicate find their place in an Industry 4.0 system.
Furthermore the Integration Layer deals with specifying all HMIs as well as the Information
and Communication Technology (ICT) network infrastructure. For example, the modeling
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of a Supervisory Control and Data Acquisition (SCADA) system takes place at this layer.
By considering information resulting from the Information as well as Communication
Layer, data management as well as communication structures can be used for engineering
such a SCADA system. Thus, as the vertical integration within a factory is also considered
by RAMI 4.0, the work centers or station panes provide an ideal location for depicting
the interfaces between organization and shop floor. On a lower granularity level, the
architecture of the SCADA system itself is modeled in order to optimize its implementation.
At last, the Asset Layer represents the single system components in detail considering all
technical aspects as well as software specifications, which would bridge the model and the
actual implementation. In addition, this viewpoint also enables RTE or the embedding of
components into simulation scenarios.

Findings

A big advantage of the RAMI Toolbox is that the software is publicly available and
open-source. This means, it might be used by multiple system engineers in various projects.
The results thereby can be analyzed and lead to constantly evolving the tool towards new
findings from research and industry. The iterative development process ADSRM at the
same time acts as major technology driver supporting this step. New developments and
research outcomes based on the RAMI Toolbox can thus be proposed to the community
within short cycles. Hence, developing the case study concerning the subway tracks
according to ADSRM led to some interesting results. Although the RAMI Toolbox is
aiming to be a universal tool for developing any kind of industrial systems, the current
specifications target the description of production lines on a higher abstraction level. As
the SPES method however enables engineering of embedded systems on various hierarchy
levels, due to missing specifications and inequalities or deviations with RAMI 4.0, the
implementation of a proprietary method especially focused on the industrial area appears
to be a preferable solution. More precisely, as an industrial system aligned to RAMI 4.0 is a
SoS consisting of multiple CPS itself, each of the single subsystems has to be engineered in
detail as well. Thus, by implementing a methodology extending the RAMI 4.0 cube and
aiming to address the aforementioned issues, engineering of current and industrial systems
could be vastly improved.

Additionally, as can be recognized from the model, the Business as well as the Function
Layer of RAMI 4.0 are clearly defined with specific process steps in order to be developed.
This results mainly from integrating domain-specific knowledge as well as business ex-
pertise from the various stakeholders. However, when it comes to model the system with
respect to a technical perspective, the RAMI Toolbox is offering a more interpretative work-
ing environment. Additionally, this leads back to missing specifications in the RAMI 4.0
cube as well as the just mentioned problem of engineering systems on lower abstraction
levels. To handle this, future research further helps refining the toolbox. On the one hand,
the integration of the OPC UA leads to specifying IIoT-based communication infrastruc-
tures or data standard models, as explained is several publications [34,35]. On the other
hand, AutomationML is the leading standard when it comes to storing or exchanging plant
engineering information [36]. Consequently, the goal of the next iteration must be to extend
the RAMI Toolbox in order to consider and utilize these technologies.

6. Conclusions and Future Work

Engineering of systems rising in complexity becomes an increasingly difficult task. In
particular, the industrial domain is profiting from the ongoing transformation originating
from the introduction of CPS, IIoT or new communication technologies. Nevertheless,
as MBSE proves to be a promising way to handle the complexity of such dynamically
changing systems in theory, the need for practical applications becomes obvious. For these
reasons, this paper proposes an approach for developing complex IIoT applications by
providing a specific toolset, the so-called RAMI Toolbox. This is done by implementing a
number of needed steps, as delineated in Section 4. First, the specifications of RAMI 4.0 are
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analyzed in detail and extended by the concepts of the ISO 42010. Then, a particular DSL
is developed in order to allow all included stakeholders to find a mutual communication
basis. To handle the complexity during the engineering task, this work also introduces a
development process giving step-by-step guidelines. Finally, the developed framework is
evaluated and validated towards its feasibility in Section 5. Based on the result of this work,
industrial systems engineering could be taken to the next step by increasing the acceptance
of RAMI 4.0 in the community and as a consequence its utilization in industrial projects.

However, this approach must not be seen as a ready-to-use methodology but rather a
next step in the right direction. Several follow-up projects could further refine and enhance
the RAMI Toolbox. To mention some examples, to enable development of embedded units,
further specifications have to be integrated into the software. Furthermore, on the bottom
layers of RAMI 4.0, additional optimizations need to be performed. At the current point
of view, the model is more or less an abstract illustration of an industrial system, without
the possibility to go too much into detail. The integration of accepted standards such
as OPC UA or AutomationML could help in this matter, which would highly contribute
to physical asset development or system evaluation. Overall, the complete and refined
approach needs to be verified and evaluated with more sophisticated case studies in order
to guarantee its seamless application.
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IIC Industrial Internet Consortium
IIoT Industrial Internet of Things
SoS System of Systems
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MBSE Model-based Systems Engineering
MDA Model-driven Architecture
DSL Domain-specific Language
DSSE Domain Specific Systems Engineering
UML Unified Modeling Language
CPS Cyber-physical System
FAS Functional Architecture for Systems
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HMI Human–machine Interface
EA Enterprise Architect
SoI System of Interest
SPES Software Platform Embedded Systems
IIRA Industrial Internet Reference Architecture
UAF Unified Architecture Framework
SysML Systems Modeling Language
ICT Information and Communication Technology
SCM Supply Chain Management
RTE Round-trip Engineering
NFC Near-field Communication
BPMN Business Process Model and Notation
EtherCAT Ethernet for Control Automation Technology
SCADA Supervisory Control and Data Acquisition
OPC UA Open Platform Communications Unified Architecture

References
1. Serpanos, D.; Wolf, M. Industrial internet of things. In Internet-of-Things (IoT) Systems; Springer: Berlin/Heidelberg, Germany,

2018; pp. 37–54.
2. Iglesias, A.; Sagardui, G.; Arellano, C. Industrial cyber-physical system evolution detection and alert generation. Appl. Sci. 2019,

9, 1586. [CrossRef]
3. Colombo, A.W.; Karnouskos, S.; Kaynak, O.; Shi, Y.; Yin, S. Industrial cyberphysical systems: A backbone of the fourth industrial

revolution. IEEE Ind. Electron. Mag. 2017, 11, 6–16. [CrossRef]
4. Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial internet of things: Challenges, opportunities, and directions.

IEEE Trans. Ind. Inform. 2018, 14, 4724–4734.
5. Haberfellner, R.; de Weck, O.; Fricke, E.; Vössner, S. Systems Engineering-Grundlagen und Anwendung, 13rd ed.; Orell Füssli:

Basel/Zürich, Switzerland, 2015.
6. DeLaurentis, D. Understanding transportation as a system-of-systems design problem. In Proceedings of the 43rd AIAA

Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005; p. 123.
7. Lasi, H.; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [CrossRef]
8. Weyrich, M.; Ebert, C. Reference architectures for the internet of things. IEEE Softw. 2016, 33, 112–116. [CrossRef]
9. Hankel, M.; Rexroth, B. The Reference Architectural Model Industrie 4.0 (RAMI 4.0). ZVEI 2015, 1, 1–2.
10. Pai, D. Interoperability between IIC Architecture & Industry 4.0 Reference Architecture for Industrial Assets. Infosys. Tech. Rep.

2016, 1, 1–12.
11. Lin, S.W.; Murphy, B.; Clauer, E.; Loewen, U.; Neubert, R.; Bachmann, G.; Pai, M.; Hankel, M. Architecture Alignment and

Interoperability-An Industrial Internet Consortium and Plattform Industrie 4.0 Joint Whitepaper. In White Paper, Industrial Internet
Consortium; IIC: Milford, MA, USA, 2017.

12. DIN SPEC. 91345: 2016-04. In Reference Architecture Model Industrie 4.0; Beuth Verlag GmbH: Berlin, Germany, 2016.
13. Bitkom; VDMA; ZVEI. Umsetzungsstrategie Industrie 4.0, Ergebnisbericht der Plattform Industrie 4.0. ZVEI 2015, 1, 40–69.
14. Delsing, J. Iot Automation: Arrowhead Framework; CRC Press: Boca Raton, FL, USA, 2017.
15. Varga, P.; Blomstedt, F.; Ferreira, L.L.; Eliasson, J.; Johansson, M.; Delsing, J.; de Soria, I.M. Making system of systems

interoperable–The core components of the arrowhead framework. J. Netw. Comput. Appl. 2017, 81, 85–95. [CrossRef]
16. Grangel-González, I.; Halilaj, L.; Coskun, G.; Auer, S.; Collarana, D.; Hoffmeister, M. Towards a semantic administrative shell

for industry 4.0 components. In Proceedings of the 2016 IEEE Tenth International Conference on Semantic Computing (ICSC),
Laguna Hills, CA, USA, 4–6 February 2016; pp. 230–237.

17. Adolphs, P.; Auer, S.; Bedenbender, H.; Billmann, M.; Hankel, M.; Heidel, R.; Hoffmeister, M.; Huhle, H.; Jochem, M.; Kiele-
Dunsche, M.; et al. Struktur der Verwaltungsschale: Fortentwicklung des Referenzmodells für die Industrie 4.0-Komponente. In
Bundesministerium für Wirtschaft und Energie (BMWi); Spreedruck Berlin GmbH: Berlin, Germany, 2016.

18. Arantes, M.; Bonnard, R.; Mattei, A.P.; de Saqui-Sannes, P. General architecture for data analysis in industry 4.0 using SysML
and model based system engineering. In Proceedings of the 2018 Annual IEEE International Systems Conference (SysCon),
Vancouver, BC, Canada, 23–26 April 2018; pp. 1–6.

19. Sharpe, R.; van Lopik, K.; Neal, A.; Goodall, P.; Conway, P.P.; West, A.A. An industrial evaluation of an Industry 4.0 reference
architecture demonstrating the need for the inclusion of security and human components. Comput. Ind. 2019, 108, 37–44.
[CrossRef]

20. Uhlemann, T.H.J.; Lehmann, C.; Steinhilper, R. The digital twin: Realizing the cyber-physical production system for industry 4.0.
Procedia Cirp 2017, 61, 335–340. [CrossRef]

21. Tran, N.H.; Park, H.S.; Nguyen, Q.V.; Hoang, T.D. Development of a smart cyber-physical manufacturing system in the industry
4.0 context. Appl. Sci. 2019, 9, 3325. [CrossRef]

http://doi.org/10.3390/app9081586
http://dx.doi.org/10.1109/MIE.2017.2648857
http://dx.doi.org/10.1007/s12599-014-0334-4
http://dx.doi.org/10.1109/MS.2016.20
http://dx.doi.org/10.1016/j.jnca.2016.08.028
http://dx.doi.org/10.1016/j.compind.2019.02.007
http://dx.doi.org/10.1016/j.procir.2016.11.152
http://dx.doi.org/10.3390/app9163325


Systems 2021, 9, 21 16 of 16

22. Morkevicius, A.; Bisikirskiene, L.; Bleakley, G. Using a systems of systems modeling approach for developing Industrial Internet
of Things applications. In Proceedings of the 2017 12th System of Systems Engineering Conference (SoSE), Waikoloa, HI, USA,
18–21 June 2017; pp. 1–6.

23. Radanliev, P.; Montalvo, R.M.; Cannady, S.; Nicolescu, R.; De Roure, D.; Nurse, J.R.; Huth, M. Cyber Security Framework for the
Internet-of-Things in Industry 4.0; Munich University Library: Munich, Germany, 2019.

24. Radanliev, P.; De Roure, D.; Nicolescu, R.; Huth, M. A reference architecture for integrating the Industrial Internet of Things in
the Industry 4.0. arXiv 2019, arXiv:1903.04369.

25. Kozma, D.; Varga, P.; Hegedus, C. Supply Chain Management and Logistics 4.0-A Study on Arrowhead Framework Integration.
In Proceedings of the 2019 8th International Conference on Industrial Technology and Management (ICITM), Cambridge, UK,
2–4 March 2019; pp. 12–16.

26. Xu, W.; Tao, Y.; Yang, C.; Chen, H. MSICST: Multiple-Scenario Industrial Control System Testbed for Security Research. Comput.
Mater. Contin. 2019, 58, 691–705. [CrossRef]

27. Manduri, A.; Ghani, A.; Qureshi, M.A.; Band, S. Smart Security Framework for Educational Institutions Using Internet of Things
(IoT). Comput. Mater. Contin. 2019, 61, 81–101.

28. Aguilar, L.; Nava-Diaz, S.W.; Chavira, G. Implementation of Decision Trees as an Alternative for the Support in the Decision-
making within an Intelligent System in Order to Automatize the Regulation of the Vocs in Non-Industrial Inside Environments.
Comput. Syst. Sci. Eng. 2019, 34, 297–303. [CrossRef]

29. Conboy, K.; Gleasure, R.; Cullina, E. Agile Design Science Research. In International Conference on Design Science Research in
Information Systems; Springer: Berlin/Heidelberg, Germany, 2015; pp. 168–180.

30. Binder, C.; Neureiter, C.; Lastro, G.; Uslar, M.; Lieber, P. Towards a Standards-Based Domain Specific Language for Industry
4.0 Architectures. In Complex Systems Design & Management; Bonjour, E., Krob, D., Palladino, L., Stephan, F., Eds.; Springer
International Publishing: Cham, Switzerland, 2019; pp. 44–55.

31. Lake, J.G. Thoughts About Life Cycle Phases: How A System Is Developed Incrementally. INCOSE International Symposium;
Wiley Online Library: Los Angeles, CA, USA, 1997; Volume 7, pp. 597–603.

32. Binder, C.; Neureiter, C.; Lastro, G. Towards a Model-Driven Architecture Process for Developing Industry 4.0 Applications. Int.
J. Model. Optim. 2019, 9, 1–6. [CrossRef]

33. Weilkiens, T.; Lamm, J.G.; Roth, S.; Walker, M. Model-Based System Architecture; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp.
189–230.

34. González, I.; Calderón, A.J.; Figueiredo, J.; Sousa, J. A literature survey on open platform communications (OPC) applied to
advanced industrial environments. Electronics 2019, 8, 510. [CrossRef]

35. Shin, S.J. An OPC UA-compliant Interface of Data Analytics Models for Interoperable Manufacturing Intelligence. IEEE Trans.
Ind. Inform. 2020, 17, 3588–3598. [CrossRef]

36. Zhang, H.; Yan, Q.; Wen, Z. Information modeling for cyber-physical production system based on digital twin and AutomationML.
Int. J. Adv. Manuf. Technol. 2020, 107, 1–19. [CrossRef]

http://dx.doi.org/10.32604/cmc.2019.05678
http://dx.doi.org/10.32604/csse.2019.34.297
http://dx.doi.org/10.7763/IJMO.2019.V9.674
http://dx.doi.org/10.3390/electronics8050510
http://dx.doi.org/10.1109/TII.2020.3024628
http://dx.doi.org/10.1007/s00170-020-05056-9

	Introduction
	Related Work
	Domain-Specific Architecture Frameworks
	Model-Based Systems Engineering

	Approach
	Implementation
	Architecture Development
	Process Model Definition
	Framework Integration

	Application
	Conclusions and Future Work
	References

