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Abstract: We discuss an approach to using the event study, a common experimental design in the
social sciences, to parameterize delays and develop other insights into system structure. We show a
step-by-step process for undertaking a delay event study, discuss some of the conceptual reasons that
this provides information about the delay, and illustrate the process for a typical example. We find
evidence that school funding changes following court orders do not adjust quickly, and likely follow
a higher-order, as opposed to a first-order, delay process. Our tests also suggest that school district
budget makers appear to forecast revenue pessimistically, contributing an additional source of delay
to the system.
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1. Introduction

The consensus among scholars of system dynamics for the past 40 years [1] has been that, while it
may be possible to use simple statistical models for the estimation of delay characteristics, delays are
best understood through the application of more complicated methods [2], or as one degree of freedom
in a larger model calibration exercise [3]. This position is most influentially espoused by Sterman [4]
(p. 437), who cites multicollinearity and high data requirements to quickly dismiss the feasibility of
parameterizing a delay using ordinary least squares.

This critique no longer seems as convincing as it once may have been. First, most modern system
dynamics work takes place within a sea of increasingly rich data on the relationships of interest. Rather
than abandoning a tool that has high data needs, it would be far better to delineate exactly what the
data requirements of the tool are so that modelers can know whether they are able to use it. While the
delay parameterization tool we document here does require a certain data structure, the simple fact is
that high data requirements are not as troublesome as they might have been 20 years ago.

Second, multicollinearity inflates the standard errors in a linear regression, but it does not
inherently bias the slope estimates [5]. When the goal is insight into a system’s structure rather than
causal inference, even statistically insignificant parameter estimates can be very informative, and so
the potential for multicollinearity on its own is not a good reason to abandon a method. Additionally,
the test that we illustrate here, which we call a delay event study, can plausibly control for a good deal
of the covariation between similar time series by incorporating a collection of fixed effects along with
the parameters of interest.

When you consider the potential of regression tests to enable rapid, straightforward insight into
the structure of complicated social systems without the need for any model structure to be formulated,
it seems limiting to argue that large data requirements and the need for careful setup and interpretation
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should disqualify these tools. Yet, despite the common refrain that the optimal situation for any SD
model is one where all of the model parameters can be estimated “below the level of aggregation of
the model” [6], no work in system dynamics has documented a process for using linear regression to
estimate the structure of a system, or demonstrated an example of this process working in practice. We
think that this omission has caused some system dynamics scholars to skip over these methods in favor
of more impressive sounding tools, or worse to ignore delay parameterization and order estimation
altogether during model formulation.

This paper documents one approach to delay parameterization that mimics the quasi-experimental
designs that have become increasingly popular among social scientists [7,8]. We call this approach a
“delay event study”. This method relies on having data for multiple examples of a system of interest
(for instance, multiple businesses, school districts, or employees), each observed more frequently than
the expected delay length. The second data requirement is that we can identify an event that will shock
some subset of the system examples, causing them to adjust through the delay we are interested in
parametrizing. The shock can be external or internal to the system and can occur at different times for
different observations or at the same time for all of them. The only requirement is that we expect the
event to cause a change in the relationship we are estimating the delay characteristics of. The delay
event study directly estimates the response of the variable to the event, with finer grained estimates
available as the frequency of data measurement increases.

We apply this approach to better understand a specific delay in a complex policy process: The delay
between when a judge orders a state to change its school district funding and the time when those
funding changes occur. This delay is central to the interpretation of a large body of economics
scholarship interested in school funding [9,10], because these papers leverage a series of court orders
known as the “adequacy era” that required states to provide adequate education to their citizens,
as exogenous instruments in tests that estimate how effective increases in school spending are at
improving educational outcomes. Unfortunately, the statistical models used by most of these papers
implicitly assume that the court order and the change in funding are contemporaneous. We apply a
delay event study to carefully analyze whether this assumption is warranted. Did districts change
spending quickly, or did school spending respond only with a significant delay?

The answer is unlikely to change the overall nature of the results economists have found, since
school spending has had decades to influence student outcomes by now. However, it can certainly
help to cut through the confusion caused by the inconsistency of many early results [11], and could
also provide context to more recent null results in settings where insufficient time has passed to begin
to see real spending changes or impacts (for instance [12]). More broadly though, this identification
strategy is very common across the social sciences, and so our results also comment on the larger
issue of how the common mental model, which assumes that the causes and effects of policies are
collocated in time, is limiting the collective ability of social scientists to reach correct conclusions in
quasi-experimental settings.

That said, this paper is written primarily for system dynamists, not for economists or social
scientists. In this context, our paper serves as a reminder that we do not always need to reach for the
most complicated tools when we are building confidence in our models. We derive very rich insights
into the structure of this complex system using a simple series of distributed lag regressions, and as a
result, it is possible that other modelers will have similar experiences in diverse settings. It would be
interesting to learn how well or poorly this tool performs in other contexts, with the hope that system
dynamics modelers may soon know far more about when they can safely use a linear regression to
estimate the dynamics of a delay, and when they will need to reach for more sophisticated tools.

2. Performing a Delay Event Study

Simply, a delay event study attempts to detect the response of the variable of interest to a shock.
If you have a single example of a complex system and you know that an event occurred at time ¢, which
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will eventually cause variable X to change, then figuring out the length of the delay between the event
and the change in X might be as simple as very carefully examining a graph of the time behavior of X.

In any realistic setting however, this approach would not be easy to apply. It would be very time
consuming to run a visual test across many observations and it might also be inconclusive, since there
is likely to be heterogeneity in both the perception of and reaction to the event across cases. Worse, any
inconsistencies in when the event occurs for different cases might require us to disentangle the event’s
“signal” from the “noise” driven by the underlying pattern of behavior of the systems. This would be
essentially impossible to do visually.

Luckily, many decades of work by economists, starting with Granger’s [7] work on causal inference,
has honed a class of regression models that accomplish exactly this task. Equation (1) documents one
popular formulation:

T
Ln(Xip) = a+ Y BeDe+0;+ 01 + 85 + 0-Yis + & (M)
=0

where i indexes observation units while t indexes observation times. X is the variable we expect to
change as a result of the event, a is the constant of the regression, f3 is a vector of slope estimates, and ¢
is the error term. Call the sampling frequency of the data At. If we define a time T when the event!
occurs for each observation i, then the sum in Equation (1) is composed of a series of variables D,
which depend on 7. Dy takes a value of 1 only when t equals 7, and takes a value of 0 for all other t. D;
takes a value of 1 when ¢ is one At larger than 7, D, equals 1 when ¢ = 7 + 2At, and so on. The final Dt
should be constructed so that it takes a value of 1 for all time t greater than or equal to 7 + TAt. Make
sure to include enough D; so that the entire delay response can be observed in the output of the test?.

The two variables 6; and 6; are observation-based and time-based fixed effects, which will help to
control for the way that each individual system might experience a different average level of X, or the
way that different moments in time might be associated with different levels of X on average. Fixed
effects also take values of 1 or 0 but do so either for a specific observation or for a specific time (for a
full explanation see [13]). An individual level time trend 6, is also included [14]. This control allows
each unit of analysis to exhibit its own characteristic pattern of exponential growth or decay for the
variable of interest over time. Together, these fixed effect controls combine to allow the regression to
differentiate between changes in response to the event and changes caused by many outside influences
on the variable X.

Y in Equation (1) stands in for a set of control variables that can optionally be added to the event
study, and 0 is a vector of slopes for those controls. When selecting controls, it is important to focus
only on variables that change the way that observation units will respond to the event. It is not
important to control for all the influences on X that are absent from the model if those omissions do
not impact the response of each unit to the event.

Estimate Equation (1) using your favorite statistical package®. Since Equation (1) uses the natural
log of X, the resulting slope estimates fy—fr can be interpreted as giving the percentage change in X at
each of the T times following the event*. Graphing these estimates provides you with a picture of

T must be aligned with the data such that all 7 are an integer multiple of At, but it can potentially be different for each i. If
the event does not occur for some observation units simply set all D; for those observations to zero. This will enable that
observation to serve as a control.

That is, make sure that At*D, is about twice as large as the delay time you expect to observe.

If you have a very large number of observation units you might consider a package such as Stata’s reghdfe [15] that will
greatly reduce the computational time needed to arrive at the estimates.

The actual relationship is that e raised to the power  will return 1 plus the percentage change for relatively small values of 3.
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the average response of X following the event®, potentially revealing detailed information about the
structure of the delay between the origin of the event and the variable of interest.

One interesting feature of a delay event study is the fact that we do not need to specify anything
about the delay structure in order to run the test. Instead, by combining Equation (1) with the
theoretical knowledge of delays our literature has developed, results in testable predictions about how
the parameters we estimate during the delay event study will change based on the characteristics of
the delay. Specifically, we expect that:

e  Systems with very short delays should see f rise to a significant fraction of its maximum slope
ﬁmux'

e  Systems with significant first-order delays should see 3y smaller than Sy, and a pattern where
each subsequent f increases at a decreasing rate, at least roughly.

e  Systems with significant higher-order delays will also have p much smaller than Sy, but will
show more evidence of inflection, that is the § will start off accelerating their rate of increase,
before eventually slowing as they approach Sax.

The argument for the first expectation is straightforward. If the delay between the event and the
response is short, then the very first § we estimate will already exhibit almost all the eventual response.
The other two expectations are derived from the response of different information delays to a step
input. An excellent illustration of this behavior is Sterman’s [4] Figure 11-14 from his page 434, which
we recreate below as our Figure 1.
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Figure 1. The Response of Higher Order Delays to a Step Input.

This step response is exactly what the § we estimate during the delay event study are attempting
to capture. The presence of absence of inflection in the  estimates will indicate whether the delay is
plausibly first order, or potentially higher-order, and the rapidity of this inflection can give a further
indication of the order of the delay for very high order delays. While we cannot determine the average
delay time precisely using this method, the delay order estimate combined with the number of samples
it takes for the response to reach a large fraction of its maximum can give the modeler a rough idea of
the average delay time by comparison with this chart.

5 This approach should work whether you expect the response to the event to be sustained like a step or transient like a pulse.

The difference is that we would expect D, to move back towards zero if the response is transient.
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That is not the limit of the analysis we can perform using a delay event study. If two or more
variables of interest are in the expected path of the event, and if there is some uncertainty around which
variable will respond first, then comparing the results of two different event studies is also potentially
informative. In most cases though, direct comparison of the fy—pr estimates between two delay event
studies should only be done after scaling each set by their f;y, since in general there is no obvious
reason why any two variables should change by the same percentage in response to some event.

Compare this process to the most common alternative, which is delay parameterization through
partial model calibration. That approach would begin by tasking the modeler with designing a model
of the causal pathway between the variables of interest. As part of that effort, the modeler would have
to decide what the order of that delay might be, and what other structures or exogenous influences
might be present. Then, once this notional model was completed, partial model calibration would
drive the model’s input with time series data and task the modeler with changing the delay structures
and parameters to see what delay order, average delay time, and outside impacts best combine to fit
the observed data [3].

While that approach is certainly well indicated for situations where there are only data on a single
instance of a system, partial model calibration approaches the process of delay parameterization from
a fundamentally different perspective than the delay event study does. Delay event studies are an
important addition to the literature because they take the responsibility for deciding on possible delay
orders and exogenous impacts away from the modeler, at least initially. By leveraging data on multiple
instances of a system the delay event study can isolate the delay response while controlling for sources
of exogenous noise. This provides direct guidance to modelers about the delay order and time constant
even when there is little direct evidence on what those values should be a priori.

3. The Adequacy Era and School Funding

Starting in the late 1960s, legal theorists began arguing that the Constitution’s Equal Protection
Clause required that all students receive the same quality education. Despite losing a famous case
at the federal level in San Antonio Independent School District v. Rodriguez (1973), many of these
theorists, activists, and presumably disappointed parents took their arguments to the states, which
often have specific clauses guaranteeing quality education in their constitutions.

The first state to face such a lawsuit was California [16] and that lawsuit’s success helped to kick
start a series of structural reforms in school financing. However, these cases focused on equalizing
funding across districts rather than improving actual outcomes. Starting with a case in Kentucky in
1989, lawsuits began to focus instead on what they called “adequacy”, which requires that school
funding work to alleviate inequalities in the abilities or resources of incoming students [17]. Some
went so far as to argue that this meant schools had to spend more in poorer districts in order to chase
equality of outcomes rather than just equality of inputs. This “adequacy” era lead to similar cases
being won in 28 states [18].

This series of court orders have been used by economists as quasi-experiments, since the states
were forced to make changes in school funding that they otherwise would not have undertaken.
The standard isolation technique in those studies involves examining student performance around the
time of the court mandated changes in the hope that this will remove the influence of the political
processes or selection issues that typically make testing the relationship between student performance
and school funding troublesome®. This boils down to comparing the outcomes of poor students
in adequacy states following a court order with a control group consisting of the outcomes of poor
students in other states and the outcomes of poor students in adequacy states prior to a court order.

e.g., that richer districts might have students who are better prepared because of their home situation leading researchers to
overestimate the relationship between funding and performance, or that some students with disabilities receive additional
funding as part of a quasi-Rawlsian effort to level outcomes, leading researchers to underestimate the marginal effect of
increased funding on average performance. For a detailed analysis of the determinants of district level spending, see [19].
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Only poor students are expected to see any improvement because only those districts were “inadequate”
to begin with, and so only those districts saw increased funding. Most recent papers accomplish this
by running a separate regression for each quartile of districts grouped by median income prior to the
adequacy era.

There is nothing inherently wrong with the mathematics of that approach, but this research design
implicitly assumes that spending changes happened quickly following the court orders, since authors
typically look for changes to outcomes starting immediately after the cases in question are decided [18].
A few recent papers do test to make sure that school spending actually changes in response to the
court orders [9], but perhaps because of how much time has passed since the adequacy rulings, this
literature is broadly uninterested in developing a careful understanding the characteristics of the delay
between the court orders and spending changes.

There are ample theoretical reasons to expect such a delay, although its precise structure is less
certain. Most school districts derive funding through a combination of the taxes and fees that they
directly levy, and revenue sent to them by counties and states that levy their own taxes or impose other
tees. The mixture of intergovernmental revenue from the state or county and each district’s own source
revenue from local taxpayers varies considerably between states [17].

Since the state, not any specific school district, is the typical plaintiff in these cases, it is immediately
obvious that the causal pathway from court order to spending change will move through both a state
budgetary process and a district level one. These processes take time. It is certainly possible that
school district leaders might hear about a court order and work to preempt state budget makers by
increasing spending before intergovernmental revenue arrives to cover it, but decades of research into
budget making in the public sector suggest that a much more pessimistic budgetary attitude [20,21] is
probably more likely.

4. Competing Delay Structures

In the context of school spending, we propose four models that our delay event study will attempt
to distinguish between: A first-order delay with a short adjustment process, a first-order delay with a
long adjustment process, a higher-order information delay driven only by compliance with the courts,
and a higher-order information delay driven by both compliance and budgetary pessimism.

The implicit mental model of most economics research in this area is also a very simple model.
Courts order changes in school spending, and schools respond quickly to that request. This can be
easily represented by modelling the relationship with a simple causal link, as shown in Figure 2.

School
Spending
+

Court Ordered
School Spending

Figure 2. An illustration of the implicit mental model in adequacy research.

From the standpoint of a delay event study, this model is roughly equivalent to a model with a
first-order delay where that delay is shorter than the sampling interval in the data. If X is per student
spending, then applying Equation (1) to a world that closely conforms with this mental model will
result in a By that is very close to the maximum B,y with relatively similar values for all other f,.
Put another way, this model expects that when the court orders school spending to increase schools
essentially instantly step up spending in response.

A simple extension of that model would be one where school spending responds to the court
order with a significant delay. Figure 3 shows this first-order delay model.
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Figure 3. A first-order delay with a longer adjustment time.

This model is equivalent to a very simple delay differential equation:

== () @

dt T

where S is the level of school spending, S. is the court ordered level of school spending, and T is
the adjustment time of the delay. We would expect a world that conformed to this model to have a
relatively large gap between By and B4y, but for that gap to close as the § approached By in a roughly
exponential fashion. In other words, we would expect the f to look like the response of a first-order
delay to a step input, as illustrated in Figure 1.

A more realistic model of this process might employ a series of information delays to describe
the actual path that any court ordered spending change would take before it can influence spending
for a specific district. A parsimonious description might conceive of three intermediate steps in this
process. First state legislators must learn about the court order and update their expectations for school
spending, then a budget with the appropriate spending changes must be passed at the state level, and
only then can actual spending changes be implemented at the district level.

Essentially this model for spending changes would be:

s (S-S
E_( o ) (©)
dSs (S -Sp
E_( T2 ) (4)
S, (S.-Sc
W( - ) ©)

where S| represents the spending level legislators want to appropriate, and Sp represents the spending
level that legislatures budget for. Each stage of this cascading process might potentially have its own
characteristic delay time 7.

This model takes the form of a third-order information delay, as shown in Figure 4.
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Figure 4. Implementation of the third-order delay model.

Applying Equation (1) to data from a world that closely conforms to this system will result in a
set of f; that increase in an s-shaped fashion up to their maximum value, which is the characteristic
path of a higher-order delay following a step increase.

The third-order model shown in Figure 4 is more operational than the two first-order models, but
it may still be ignoring one potential source of delay: The reluctance of any prudent financial manager
to spend more money than they have. There is ample evidence that public sector budget makers create
pessimistic forecasts in some” settings [21,22]. If school districts produce pessimistic budget forecasts,
then we might expect their behavior following a court order to more closely follow a slightly different
model, which we illustrate in Figure 5.

School Spending

Implementation Delay Initial
Spending
School Revenue Initial Revenue 5 g Actual
Implementation Delay \‘ ‘Actual Spending| Spending (S)
Change
o Actual + @ j
- Revenue (R) -
Budgeting Cha;g::;:\:tual
Delay Actual Spending
9 I
N < - Budgeted
Legislative Change in Spending (SB) -
Delay Budgeted Revenue Gap
- Legislatively Spending \i'
= —m»| " indicated . 4B T
Change in Spending (SL)
Legislatively
Indicated Spending Budgeted
K O + Spending Gap
B -
Legislative
Spending Gap
+
Court Ordered

Spending

Figure 5. Higher-order delay model where revenue drives spending.

It is important to note that without separate time series for both spending and revenue a delay
event study could not tell the difference between the model in Figure 5 and the model in Figure 4.
Both would produce an s-shaped pattern in the 3; for school spending. We can overcome this limitation
by running two separate tests: One that uses revenue as its outcome variable and another which uses

7 While there is also some evidence that public sector forecasts can be overly optimistic our tests are already capable of

detecting that behavior by rejecting a high order model.
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spending. If school districts wait for new revenue to arrive before they decide to change spending, then
the pattern of f; produced in tests using revenue will increase faster than the pattern of f; produced in
tests using spending. Formally, we would expect each element of . for the revenue regression to be
greater than or equal to the corresponding element of ; for the spending regression, at least when
expressed as a percentage of their two maximum values revenue S, and spending Biuax.

5. Data and Empirical Tests

There are ample data available to explore school funding questions. We use data from the
individual unit files of the annual surveys of government finance provided by the US Census, as
organized by Pierson et al. [23]. This source provides 529,063 district-years of financial data, including
a subsample of all US school districts from 1970 through 2014, and the population of school districts
in years ending in a 2 or a 7, when the Census of Governments is run. The size of each subsample is
considerable, often covering more than 90% of all school districts in every year. The one exception is
the period between 1993 and 1996 when only around 3000 of the 16,895 school districts in the panel
were sampled.

The data include detailed information on both revenue and expenses. For our tests, we focus
on two broad categorizations: Current expenses, which ignore lumpy capital investments, and total
revenue, which counts both direct aid to the school district as well as revenue the district raises directly.
These two variables are expressed in thousands of real, 1983 dollars8, per student enrolled in the
district, and are transformed using natural logs in order to fit Equation (1).

Data for our treatment events come from Lafortune et al. [18], specifically we take their court order
dates from Appendix Table Al of their paper. We generate several lagged treatment variables, which
take a value of one for each district-year data point a specific number of years following the court order.
Observations 11 or more years after a court order are lumped together into a single indicator. States
with multiple court orders are only considered as treated by the first one.

We require observations to have non-missing and non-zero enrollment (17,438 observations lost)
as well as non-missing total expenditure (3956 observations lost) in order to be included in our panel.
Observations with missing data for any one test were excluded from that test but could remain in
our other tests. We do not require a district to be sampled a minimum number of times in order to
be included in the panel, since smaller districts are much less likely to be sampled by the census [23].
The final sample contains 454,887 observations across 12,498 districts.

Our first delay event study is designed to detect the response of school district current expenses C
to the adequacy era court orders. This test is performed following Equation (6):

11
Ln(Cg) = a+ ) eDr+ 04+ 0f + 65 + 0184 + £t ©)
7=0

where d indexes school districts, t indexes time, and 7 is the time when each school district experiences
a court order. 0, is a fixed effect for each school district, 6; is a fixed effect for each year of the data, and
0g is a unit specific time trend. We chose to control for only a single variable, the enrollment size S of
each district. This is an important variable for us to control for because we expect differently sized
school districts to respond differently on a percentage basis to court ordered spending changes. Larger
districts spend less per student because of the inherent economies of scale available in education [24].
As a result, the percentage change in per-student spending that is needed to achieve adequacy will
naturally be smaller the more students there are enrolled in a district.

8 Ttisnot strictly necessary to transform nominal dollars to real dollars since the time fixed effects are annual and so will

absorb any inflation in the annual reported values.
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Given the fact that adequacy era spending changes should be concentrated in the poorest districts,
we follow the approach of most papers in economics [9], and restrict our tests to only include school
districts that are in the lowest quartile of per capita median income, as measured by the 1979 census.
Unreported tests performed using controls for previous relative funding levels, as well as tests that
used different definitions for median income produced similar results.

In order to differentiate between a system where school spending is driven primarily by state
budgets and a system where school spending experiences an additional delay due to pessimistic
budget forecasts, we also test Equation (7):

11
Ln(Rg) = a+ Y BeDr+ 04+ 0¢ + 0g + 0154 + e @)
7=0

The only difference between Equations (6) and (7) is that Equation (7) models per student total
revenue R rather than current expenses C. If the scaled ; from Equation (7) react more quickly than
the scaled . from Equation (6), we can infer that school revenues increase before school expenses do,
at least on average, and so pessimistic budget forecasts may be causing an additional delay following
state level changes in education spending.

6. Results

The slope estimates from regression tests of Equations (6) and (7) are shown in Table 1. While the
statistical significance of these estimates is not of primary importance, all the reported standard errors
are clustered by state [25].

Table 1. Revenues and expenses after a court order.

Current Expenses 6 Revenue 7
Size (Sg) —0.431 *** —0.442 ***
(0.0256) (0.0296)
Bo—year of court order 0.00307 0.00308
(0.00906) (0.0127)
B1—one year after 0.0124 0.0558
(0.0143) (0.0457)
Bo—two years after 0.0121 0.00913
(0.0116) (0.0283)
p3—three years after 0.0313 ** 0.0434
(0.0132) (0.0257)
ps—four years after 0.0267 * 0.0415 **
(0.0140) (0.0155)
Bs—five years after 0.0363 ** 0.0427 **
(0.0172) (0.0175)
Bs—six years after 0.0509 *** 0.0446 **
(0.0171) (0.0185)
B7—seven years after 0.0586 *** 0.0484 ***
(0.0160) (0.0178)
Bs—eight years after 0.0584 *** 0.0433 **
(0.0175) (0.0201)
Bo—nine years after 0.0643 *** 0.0392 **
(0.0167) (0.0190)
B1o—ten years after 0.0552 *** 0.0102
(0.0198) (0.0259)
B1;—more than ten years after 0.0431 0.00539
(0.0310) (0.0372)
Observations 113,665 113,664
Number of districts 3356 3356
R-squared 0.926 0.900

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05,* p < 0.1
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These estimates make it immediately apparent that the naive model that expects school spending
to change quickly in response to a court order is not a good description of reality. The maximum
change in school spending we estimate, 4y, is 0.0643. The initial response to the court order, fy, is
0.00307, which only represents around 5% of the eventual maximum.

The first-order information delay with a long adjustment time fits the pattern of §; we estimate
significantly better than the naive model, since the maximum response of expenses is not estimated
until nine years after the court order. Differentiating between the first-order delay and a higher-order
delay however is much less clear. Indeed, the graph of the response of expenses shown in Figure 6
seems to almost straddle the line between a clearly exponential path and a clearly S-shaped one.
We could settle for a compromise and propose a second-order delay for our model, but we can also
approach the question using a more quantitative method.

0.07

o o
o o
] (=
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=

Response of Expenses per Student

0 1 2 3 4 5 6 7 8 9 10 11
Years After Court Order

Figure 6. A graph of the estimated response of expenses following a court order.

In order to quantify whether the § we estimate show evidence of inflection, and therefore whether
the system we are testing data for is more like a first-order delay or more like a higher-order delay;,
Table 2 expresses each f estimate for the response of current expenses as a fraction of the maximum
value fuqx and reports their first differences.

As Figure 1 indicates, the response of a first-order delay to a step input will be to exponentially
adjust to its maximum, whereas a higher-order delay will logistically adjust to its maximum. Thus, we
would expect a first-order system to have f estimates from a delay event study that increase rapidly at
first and then slowly decrease their rate of increase. A higher-order delay would have three phases to
its response: an initial rapid increase, followed by a sustained pace of increase, and a final phase where
the rate of increase slows rapidly. The higher a delay order is, the faster the transition from essentially
no response to a rapidly increasing response, and the faster the transition from a rapidly increasing
response to the unchanging maximum response.
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Table 2. The scaled response of school expenses.

Expenses

Scaled Response fr/Bumax First Differences

Bo—year of court order
B1—one year after
Bo—two years after
B3—three years after
Ba—four years after
Bs—five years after
Bs—six years after
B7—seven years after
Bs—eight years after
Bo—nine years after
B1o—ten years after
B17—more than ten years after

4.8%

19.3% 14.5%
18.8% —-0.5%
48.7% 29.9%
41.5% -7.2%
56.5% 14.9%
79.2% 22.7%
91.1% 12.0%
90.8% —-0.3%
100.0% 9.2%
85.8% -14.2%
67.0% -18.8%

We certainly cannot use Table 2 to completely settle the argument over order of this delay, since the

rate of growth in the scaled responses is far from consistent. That said, the column of first differences
we calculate seem to fit the pattern of a higher-order delay where growth speeds up, holds steady, and
then slows down again reasonably well. They certainly do not fit the pattern of a first-order delay
where growth starts fast and then monotonically slows down over time. In our estimation then, these
results suggest that a higher-order delay is probably the better description of the system producing

these results than a first-order delay would be.
The graph in Figure 7 reports scaled response estimates for expenses on the same axis as the

scaled response estimates for revenue.

100.0%
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< N

60.0%

40.0%

==Exp

=fl=Rev

20.0%

Scaled Response of Revenue and Expenses

0.0% r r T

4 5 6 7
Years After Court Order

Figure 7. Delay event study response estimates as a percent of their maximum.

The response we estimate for revenue following a court order is considerably different from the
response we estimate for expenses. Revenue jumps to its maximum value only one year following a
court order, but then returns to a much lower level, before jumping up to close to 80% of its maximum
and slowly declining. Two things are made clear by this result. First, revenue reacts much more
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quickly to a court order than expenses do, and second, revenue changes are much less likely to persist
over time.

This finding supports the notion that pessimistic revenue forecasts by school district managers
delayed the implementation of school spending changes in response to the adequacy era court orders,
but it also provides an excellent behavioral excuse for those pessimistic forecasts. If new revenue
that has been allocated might suddenly disappear next year, or even over a decade, most reasonable
managers should think twice about committing to any new teacher contracts or student services. Also,
the fact that the revenue estimates fall off much more quickly than the expense estimates following
year 7 further validates the idea that school expenses only adjust to revenue with a significant delay.

7. Conclusions

These results indicate that a higher-order delay structure that includes both the relatively quick
adjustment of revenue to the court order and a slower adjustment of expenses to changes in revenue is
the most likely structure for this system. That said, these results are not perfect. We offer them here
because we believe that it is important to begin this discussion in the hope that others will supplement
it with delay event studies in other contexts.

Overall, delay event studies enable us to build significant insight into the structure of a complex
social system without any simulation modeling. While it is possible that parameterizing this delay
inside of a fully developed model would produce different results, one of these approaches does not
preclude the other. This relatively simple empirical test of the structure of a delay is a step forward in
the literature on delay estimation. We offer our exposition in part to encourage others to pursue similar
tests so that we can work together as a community to better understand when delay event studies are
appropriate tools to use to better understand the structure of complex systems.
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