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Abstract: The economic world is very dynamic, and most phenomena appearing in this world are
mutually interconnected. These connections may result in the emergence of nonlinear relationships
among economic agents. Research discussions about different markets’ structures cannot be
considered as finished yet. Even such a well-known concept as oligopoly can be described with
different models applying diverse assumptions and using various values of parameters; for example,
the Cournot duopoly game, Bertrand duopoly game or Stackelberg duopoly game can be and
are used. These models usually assume linear functions and make analyses of the behavior of
the two companies. The aim of this paper is to consider a nonlinear inverse demand function in
the Cournot duopoly model. Supposing there is a sufficiently large proportion among the costs
of the two companies, we can possibly detect nonlinear phenomena such as bifurcation of limit
values of production or deterministic chaos. To prove a sensitive dependence on the initial condition,
which accompanies deterministic chaos, the concept of Lyapunov exponents is used. We also point out
the fact that even though some particular values of parameters are irrelevant for the above-mentioned
nonlinear phenomena, it is worth being aware of their existence.
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1. Introduction

One of the impacts of globalization is the existence of very rich and powerful corporations in the
economic world. These corporations are usually multinational and of a considerable size, and they can
have a significant impact on setting the prices in particular markets [1]. Consequently, trading can
be completely controlled by several companies. This is the reason why the oligopoly structure of
markets and their different models are constantly studied and modified. Different nonlinear versions
of oligopoly models can be found in [2] or [3], where the assumption of unimodal reaction functions
was established. The papers [4–6] worked with the assumption that the quantity of demanded
goods is reciprocal to their price. Many specific details of dynamical oligopoly models can be found
in [7]. A nonlinear version of duopoly for heterogeneous players is introduced in [8]. It is well
known that oligopoly markets consider a few producers of the same goods or perfectly substitutable
goods. Each company must reflect not only on the market demand, but also on the competitors’
activities, which is the property that is known as interdependence. Before a nonlinear duopoly model
is presented, results based on static linear models will be briefly reminded [9]. As was mentioned
above, several different theoretical models about oligopoly exist, such as the Cournot duopoly game,
Bertrand duopoly game or Stackelberg duopoly game.

Antoine Augustin Cournot (1801–1877) formulated his model in 1838 with the following
assumptions [10]:

• there is more than one company, and all the companies produce a homogenous product (there is
no product differentiation);
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• the companies do not cooperate (there is no collusion);
• the companies have a market power (each company’s output decision affects the goods’ price);
• the number of companies is fixed;
• the companies compete in quantities and choose the quantities simultaneously;
• the companies are economically rational and act strategically, usually seeking to maximize the

profit given by their competitors’ decision.

In the typical Cournot duopoly game with the linear price formula, another assumption about
the constant marginal costs (i.e., 0) was formulated. Cournot constructed a profit function for each
company, and then, partial differentiation was used to construct a function representing the company’s
best response to the given output levels of other firms on the market. A stable equilibrium occurs where
these functions intersect. Consequently, if the equilibrium is reached, each company’s expectations
of how other companies will act appear to be correct, and no company wants to change its output
decision. The strategy of the duopoly game works in the following way: when the first company
assumes the output of the second company is zero, then that first company deals with the total market
demand (the demand for the products of the first company is the market demand) and, with respect to
non-perfect competition, chooses the output. Consequently, the second company assumes the output
of the first company as given; the demand for the production of this company is half of the market,
and this company will set up its quantity. The first company assumes the output of the second company
as given and will reduce its production, while the second company will increase its production.

Joseph Louis Francois Bertrand (1822–1900) formulated his model in 1883 [11]. While Cournot
analyzed quantity in his model, Bertrand focused on price. This model made the following very
specific assumptions:

• there are at least two companies producing a homogeneous product, and they cannot cooperate
in any way;

• the companies compete by setting the prices simultaneously, and consumers want to buy
everything from the company that offers a lower price;

• both companies have the same constant unit cost of the production, then marginal and average
costs are the same, and they are equal to the competitive prices (as long as the price is above the
unit cost, the company is willing to supply any amount that is demanded; if the price is equal to
the unit cost, then it is indifferent to how much the company sells; the company will never want
to set a price below the unit cost).

If both the companies set the competitive price at the level of the price equal to the marginal
costs, neither of them will earn any profits. However, if one company sets the price equal to the
marginal costs, then if the other company raises its price above the unit costs, it will earn nothing,
since all consumers will buy the goods from the company still setting the competitive price. If both
the companies set the same price above the unit costs and share the market, then either of them has a
stimulus to undercut the other company by an arbitrarily small amount, and then, it can capture the
whole market and at the same time almost double its profits. Therefore, there can be no equilibrium
with both the companies setting the same price above the marginal costs. There can be no equilibrium
with the companies setting different prices, as well. The company setting the higher price will earn
nothing (the company offering lower prices serves all of the customers); therefore, it will want to lower
its price to undercut the lower priced company. Hence, the only equilibrium in the Bertrand model
occurs when both companies set the price equal to the unit costs.

Heinrich Freiherr von Stackelberg (1905–1946) introduced his duopoly model in 1934 [12]. In his
model, one player is the leader, and the other player is the follower; they compete in the sphere of
quantity. In a way, this model is a modification of the Cournot model. However, there are some
constraints on sustaining Stackelberg’s equilibrium:

• the leader must know ex ante that the follower observes his/her action;
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• the follower must have no means of reacting to the next leader’s action, and the leader must know
that (if the follower could react to the leader’s action and the leader knew this, the leader’s best
response would be to play the follower’s action).

Two companies may get engaged in Stackelberg’s competition if one of them has a sort of
advantage enabling it to move first (more generally, the leader must have commitment power). Moving
observably first is the most obvious means of commitment. Once the leader has made his/her move,
he/she cannot undo it (he/she is committed to that action). Holding excess capacity is another means
of commitment. The mutual comparison of the above-mentioned linear models (where P = a− b ·Q,
a presents fixed costs and b average variable costs) brings the following results [9]:

• In the Cournot model, the quantity produced by every duopoly will be a/3b, and the price on the
market will be a/3; therefore, the profit of every duopolist will be a2/9b;

• In the Bertrand model, the quantity produced by every duopolist will be a/2b, and in a very
absurd way, the market price will be zero (therefore, the profit of every duopolist will also be
zero);

• In the Stackelberg model, the leader will sell a quantity a/2b at the price a/4 (and the profit will
be a2/8b), when the follower will sell a quantity a/4b at the same price as the leader (and the
profit will be a2/16b).

The above-described models are static, and they usually assume a linear inverse demand function
and a linear cost function. The aim of this paper is to consider a nonlinear inverse demand function in
a dynamic Cournot duopoly model. Supposing there is a sufficiently large proportion among the costs
of the two companies, it is possible to detect nonlinear phenomena such as the bifurcation of limit
values of production or deterministic chaos. To prove a sensitive dependence on the initial condition,
the concept of the Lyapunov exponent is introduced. The computation of the Lyapunov exponent of
the introduced nonlinear Cournot model can be considered as an important complement to the earlier
published results in [3–5,7,13].

The paper is organized in the following way: First, basic concepts and methods connected
with discrete dynamical systems are introduced in Section 2. Second, a general dynamical model of
oligopoly based on the treatise in [13] is introduced in Section 3. Then, a nonlinear Cournot duopoly
model is presented. In contrast to the classical Cournot duopoly game, a nonlinear inverse demand
function is considered. These issues are studied in [2,5]. Similar properties as in [4] are considered in
this paper. The final part, Section 4, presents a discussion based on solutions to both the linear model
and the nonlinear one. The main aim of the simultaneous presentation of the results brought by the
linear model and the nonlinear model is to emphasize the big difference between these two types of
models and to illustrate this difference in one place.

2. Materials and Methods

The dynamics of a discrete dynamical system with state space X ⊆ Rn and parameter space
M ⊆ Rm can be given as a system of difference equations:

x(t + 1) = F(x(t), µ), (1)

where x(t) ∈ X is a state of the system at time t ∈ T ⊆ N0, µ ∈ M is a parameter and F : X×M→ X
is a C1 map. Usually, the initial condition x0 ∈ X is also given. Provided that map F is nonlinear,
the formula of the solution to (1) cannot be found. As an alternative, it is possible to consider
only a qualitative solution to the system (1). The fundamental steps of this procedure are briefly
introduced [14,15]:

• Firstly, a stationary solution to (1) is found. For the given µ0 ∈ M, the stationary solution x◦ ∈ X
can be found as a solution to the equation x◦ = F(x◦, µ0).
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• Next, the stationary solution having been found x◦, the behavior of solutions that start near this
solution can be examined. Therefore, we consider the following difference y(t) = x(t)− x◦ that
measures the deviation from x◦ at time t. The corresponding difference equation with stationary
solution of 0 is y(t + 1) = F(x◦ + y(t), µ0)− x◦. The simplification of the latter equation is its
linear approximation by the Taylor theorem y(t + 1) = DxF(x◦, µ0)y(t) + o(y(t)). Neglecting the
higher order terms of the following linear system of difference, we can consider the equations:

y(t + 1) = J(x◦) · y(t), (2)

where J(x◦) = DxF(x◦, µ0) is the Jacobian matrix evaluated for stationary solution x◦ and at the
given value µ0 of the parameter.

• Finally, the stability of the stationary solution x◦ can be assessed. When using Jacobian matrix
J(x◦), its eigenvalues can be found. The values of these eigenvalues determine the character of
the stationary solution x◦. For details, see [15].

The characteristics of the solution to (1) obviously depend on the value of parameter µ. In this
case, it is necessary to take into account the phenomenon called bifurcation [13,14].

2.1. Bifurcation Diagram

Only necessary concepts are introduced here, and details can be found in [14]. The bifurcation
diagram shows the relationship between the values of a parameter and the values of stationary points,
or values of periodic orbits of the given dynamical system. More generally, asymptotically-stable
stationary points and periodical points are special types of attractors that can be briefly characterized
in two steps as follows:

• A limit set X of a point x ∈ W, where W is an open set in state space, is the set of all
points a ∈ W, for which a sequence ti of natural numbers characterized by ti → ∞ exist,
and limti→∞ Fti (x, µ) = a. By the notation Fti , it is meant that the map (1) is composed of itself
ti − 1 times.

• A compact set A ⊆W is called the attractor if there is such a neighborhood U of A in which A is
the limit set of all initial values x(0) ∈ U.

In other words, the attractor is a set of all points to which trajectories starting from initial points in
a neighborhood of the set will converge. The parameter space M ⊆ Rm is confined to the case of m = 1
in this paper. Now it is possible to characterize the bifurcation diagram in more details: if µ ∈ M, is a
parameter of dynamical System (1) and Aµ is a set of all attracting points for the given value of µ ∈ M,
then the bifurcation diagram is the graph of the relation {(µ, Aµ)|µ ∈ M}. This figure shows the birth,
evolution and extinction of attracting sets [14]. The algorithm for plotting a bifurcation diagram is
based on the direct application of the attractor’s definition; instead of computing exact limit points,
only points for a sufficiently large number of iterations of the map (1) are considered. The algorithm
can be described as follows:

(i) Choose the initial value of µ of the parameter set M of the map (1).
(ii) Randomly choose the initial value x(0) of the map (1).
(iii) Calculate several first iterations of (1) and ignore them.
(iv) Calculate several next iterations of (1) and plot them.
(v) Increment the value of the parameter µ of the map (1), and repeat all the above given steps until

you reach the end of the parameter sets M.

More details can be found in [14]. The given algorithm for the duopoly model was implemented
in MATLAB; see Appendix A. Notes about the visual analysis of nonlinear dynamical systems are
introduced in [16].
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2.2. Lyapunov Exponent

The bifurcation diagram can also point out the phenomenon called deterministic chaos. In this
case, almost all intervals seem to be filled with the plot. Once such a phenomenon is observed, it is
useful to compute Lyapunov exponents for special values of parameter µ. This method can formally
identify the sensitive dependence of the given system on the initial conditions, which is one of the
characteristic attributes of chaotic behavior. This exponent measures the exponential rate of the
separation of very close trajectories.

Only a concise characterization based on [14] is provided here. Let F be the C1 map on Rn,
similarly as in (1), and provided Jm = DxFm(x0, µ0), where x0 is an initial point, µ0 the given value
of the parameter and Dx the first derivative of the map F with respect to x. In other words, J is the
Jacobian matrix of the map Fm. For k ∈ {1, 2, . . . m}, let rm

k be the length of the k-th longest orthogonal
axis of the ellipsoid JmS, where S is the m−dimensional unit sphere with the center x0. This means
that the value rm

k measures the expansion or contraction in the neighborhood of the orbit starting at x0

during the first m iterations. If the following limit:

Lk = lim
m→∞

(rm
k )

1/m

exists, it is called the k-th Lyapunov number, and moreover, the k-th Lyapunov exponent of x0 is

hk = ln Lk.

• If Lk > 1, then hk > 0,, which means that two initially close trajectories can move away from each
other, and the system (1) is sensitively dependent on the initial conditions.

• On other side, if 0 < Lk < 1, then hk < 0,, which means that two initially close trajectories can
stay close to each other, and the system (1) is not sensitively dependent on the initial conditions.

The concept of the Lyapunov exponent allows us to characterize chaotic orbits (cf. [14]): the orbit
is chaotic if it is not asymptotically periodic, no Lyapunov exponent is exactly zero and h1 > 0.
The particular algorithm for computing approximations of Lyapunov exponents uses an indirect
approach. It is based on ideas given in [14,17]. If the state space is X ⊆ R2, which is the case that is
required in this paper, it can be briefly described as follows:

(i) Start with an initial orthonormal basis {w0
1, w0

2} of the space R2 that sufficiently characterizes the
initial circle S.

(ii) Compute the vectors z1 = DxF(x0, µ0)w0
1 and z2 = DxF(x0, µ0)w0

2.
(iii) Use the vectors {z1, z2} and the Gram–Schmidt orthogonalization method to find a new

orthogonal basis {y1
1, y1

2}.
(iv) Set w1

1 = y1
1, w1

2 = y1
2 and consider the basis {w1

1, w1
2} for further computation.

(v) Repeat (ii), (iii) and (iv) for a sufficiently large number of steps m. At each step, use (1), compute
the following state x(t + 1) and use it instead of x0 in the Jacobian matrix in Step (ii).

(vi) The good approximation for the total expansion rm
k in the direction k, where k ∈ {1, 2}, is vector

wm
k . Thus, a good approximation of the Lyapunov number is ||wm

k ||
1/m, where || · || is the Euclidean

norm.

The given algorithm is not applicable to the real numerical computation because it uses very
large and small numbers. To avoid this complication, it is possible to use an orthonormal basis at each
step (iv); it is possible to use the unit vector wi

k = yi
k/||yi

k||, where i ∈ {1, 2, . . . , m}. Notice further
that rm

k ≈ ||y
m
k || . . . ||y1

k ||. If we take the logarithm of the latter relationship, we can summarize that
the formula:

∑m
i=1 ln ||yi

k||
m

provides a good approximation of the k-th largest Lyapunov exponent hk. The given algorithm can be
implemented in MATLAB (see Appendix B), and it can be used for the nonlinear duopoly model.
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3. Model

A classical model of oligopoly can be briefly reminded [18,19], and in particular, the Cournot
duopoly assumptions are presented [10]. Then, we can introduce a special nonlinear demand
function [4] that allows us to present some complex phenomena of the duopoly game.

3.1. Fundamental Principles of the Dynamics Cournot Oligopoly Model

Let n, n ∈ N0, be the number of companies in the given market. Denote D = {1, 2, . . . , n} a finite
set, and let Ci, i ∈ D, be the company that produces the homogeneous output qi(t) at the given time
period t, t ∈ N0. All companies make plans for their production qi(t + 1) in the subsequent time period
t + 1 in order to maximize their expected profit Pi or expected utility, which is related to the expected
total supply. This process will be developed in detail.

The profit of each company depends on the price p(t) at which the goods are sold in the
period t, and this price depends on the total supply Q(t) = ∑j∈D qj(t) according to the given inverse
demand function:

p(t) = pD[Q(t)]. (3)

To simplify the further considerations, we introduce the following notation:

Qi(t) = ∑
j∈D\{i}

qj(t) = Q(t)− qi(t), (4)

which represents the total output of the rest of the industry expected by the company Ci in the given
period t. Notice that the relation Q(t) = qi(t) + Qi(t) is valid for all i ∈ D. The profit Pi of the company
Ci in the given period t can be now expressed as:

Pi(qi(t), Qi(t)) = qi(t) · pD[qi(t) + Qi(t)]− ci(qi(t), Qi(t)), (5)

where ci(·) is the cost function of the company Ci. Moreover, the production for the next period t + 1
of the company Ci can be found as a solution to the following optimization problem:

qi(t + 1) = arg max
x∈Xi

Pi(x, Qe
i (t + 1)), (6)

where Qe
i (t + 1) represents the total output of the rest of the industry expected by the company Ci

for the next time period t + 1 and Xi, Xi ⊆ [0, ∞) is the strategy set, which is used for the selection
of the optimal production of the company Ci. The principal assumption of the model concerns some
particular expectations about the production of other companies. The original Cournot assumption is
a simple naive expectation:

Qe
i (t + 1) = Qi(t) (7)

for all i ∈ D.

3.2. Dynamics of Cournot Model

Let all problems (6) have their unique solutions. If (7) is applied, we can state:

qi(t + 1) = Ri(Qi(t)), i ∈ D, (8)

where Ri : Πn
j=1,j 6=iXj → Xi is the reaction function of the company Ci, or the best response by the

company, or the best reply mapping the firm Ci. To study this dynamical problem in more detail,
more specific forms of inverse demand functions and costs functions are necessary.
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3.3. Linear Model

To be able to see the strange behavior of the nonlinear duopoly model, it is necessary to have
a notion about the properties of the linear model. The contrast between the simple behavior of the
solution to the linear model and the erratic behavior of the solution to a nonlinear model will be
presented later. This is the reason why the linear model is introduced in this subsection. For further
details, cf. [7]. In the linear model, it is considered that the inverse demand function is a decreasing
linear function of the industry output. Particularly, it is assumed that (3) has the following form:

p(t) = a− bQ(t), t ∈ N0, (9)

where a > 0 and b > 0 are real constants (as was already mentioned, a presents fixed costs, and b
presents average variable costs in this model). Substituting this relation to formula (5) for profit Pi of
company Ci, we gain:

Pi(x, Qi(t)) = x(a− b(x + Qi(t)))− aix, i ∈ D, (10)

where ai, ai > 0, is a constant unit, average costs of the company are Ci and x substitutes qi(t) for a
specific value of the period t. Now, it is possible to solve the problem of the profit maximization (6).
The first order conditions of this problem are as follows:

P′i (x) = a− 2bx− bQi(t)− ai = 0, i ∈ D, (11)

which means that the reaction function is:

x =
1
2

(
a− ai

b
−Qi(t)

)
, i ∈ D. (12)

The reaction x is positive provided that:

Qi(t) <
a− ai

b
, i ∈ D. (13)

If not, then the negative outcome has to be replaced by a sufficiently small and nonzero outcome
ε, ε > 0, which allows us to construct the resulting reaction functions for the dynamics (8). For all
i ∈ D, we can consider:

qi(t + 1) = Ri(Qi(t)) =

{
1
2

(
a−ai

b −Qi(t)
)

, Qi(t) <
a−ai

b ,

ε, Qi(t) ≥ a−ai
b ·

(14)

This system of difference Equations (14) represents a particular dynamics (8) of the introduced
linear oligopoly model.

3.4. Nonlinear Model

The behavior of the solution to the linear Cournot duopoly model is very simple. The model
has only one asymptotically-stable equilibrium as is introduced in Section 4.1. If a nonlinear inverse
function is used instead of (9), a more complex behavior of the Cournot duopoly model can emerge.
The nonlinear inverse demand function means that also the demand function is nonlinear. Different
types of nonlinear demand functions can be found in [20–22]. In [4], it is considered that:

• the quantity demanded is reciprocal to the price,
• the companies operate under constant unit costs.

The latter assumptions will be partly modified, relaxed and generalized in this subsection. The first
assumption is modified in (15), and the second one is relaxed in (16). Instead of the linear inverse
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demand function (9), it is assumed that a nonlinear decreasing function of the industry output is given.
In [20,22], the algebraic demand function is considered. Its inverse function, which can be substituted
into (3), has the form:

p(t) = −a + bQ(t)−c, t ∈ N0, (15)

where a ≥ 0, b > 0 and 0 < c ≤ 1 are real constants. Notice that if Q = (b/a)1/c, then p(t) = 0,
which means that parameters a, b and c determine the intersection of the graph of the inverse demand
function with the horizontal axis that represents the total supply Q. Instead of (5), it is possible to write
the profit function in the form:

Pi(x, Qi(t)) = x · (−a + b(x + Qi(t))−c)− ai(t)x, i ∈ D, (16)

where ai(t), ai(t) > 0, are exogenous average unit costs of the company Ci within a specific time period
t and x substitutes qi(t) for this time period. Now, it is possible to solve the problem of the profit
maximization (6). If the time period t is fixed, the first order conditions of this problem are:

P′i (x, Qi(t)) = −a + b(x + Q(t))−c−1 · (x + Q(t)− cx)− ai(t) = 0, i ∈ D. (17)

To be able to find an explicit solution to the latter Equation (17), it is necessary to consider that
c = 1. If this setting is not valid, a numerical method for the solution to a nonlinear Equation (17) has
to be applied; however, this difficulty is not considered here. Assuming further that:

ai(t) + a > 0, t ∈ N0, (18)

Equation (17) can be solved for x. Particularly, it is possible to find the reaction function:

x =

√
bQi(t)

ai(t) + a
−Qi(t), i ∈ D. (19)

The reaction x is positive provided that:

Qi(t) <
b

ai(t) + a
, i ∈ D. (20)

If not, then the negative outcome has to be replaced by a sufficiently small and nonzero outcome
ε, ε > 0, which allows us to construct the resulting reaction functions for the dynamics (8). For all
i ∈ D, we put:

qi(t + 1) = Ri(Qi(t)) =


√

bQi(t)
ai(t)+a −Qi(t), Qi(t) < b

ai(t)+a ,

ε, Qi(t) ≥ b
ai(t)+a ·

(21)

This system of difference Equations (21) stands for a particular dynamics (8) of the introduced
nonlinear oligopoly model. Notice that this system is non-autonomous in general. To consider an
autonomous system, it is necessary to consider constant company costs.

4. Discussion

In the remaining part of this paper, a special case of a duopoly game will be considered. In this
case, n = 2, and immediately from (4), we have:

Qi(t) =

{
q2(t), i = 1,
q1(t), i = 2.

(22)
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If duopolists partially adjust their quantities towards their best replies according to (8) and (22),
the dynamical system is generated by the iteration of the map:

F : (q1(t + 1), q2(t + 1)) = (R1(q2(t)), R2(q1(t))), (23)

where R1 : X2 → X1 and R2 : X1 → X2 are the reaction functions of the companies C1 and C2 given
by (21). If the initial conditions (q1(0), q2(0)) ∈ X1 × X2 are given, the trajectory:

{(q1(t), q2(t))}∞
t=0 = {Ft(q1(0), q2(0))}∞

t=0, (24)

is generated by the t-th iteration Ft, t ∈ N0, of the map (23), and it produces the Cournot
tatonnement [13].

4.1. The Equilibrium of the Linear Model and Its Properties

If there is a fixed point (q◦1 , q◦2) on the map (23), it is called the Cournot–Nash equilibrium [18].
In Section 2, it was already mentioned that this equilibrium can be found as a solution to the following
system of equations (q◦1 , q◦2) = F(q◦1 , q◦2). With the particular form of the reaction functions (14) and (22),
it is possible to find the following nonzero equilibrium:

(q◦1 , q◦2) =
(

a− 2a1 + a2

3b
,

a− 2a2 + a1

3b

)
. (25)

As was pointed out in Section 2, the stability of this stationary point can be determined from the
Jacobian matrix of the map (14) enumerated at the stationary point (25); see [15]. It is possible to find:

J(q1, q2) =

(
0 − 1

2
− 1

2 0

)
. (26)

The eigenvalues of the matrix (26) are:

λ1 = −1
2

, λ2 =
1
2
· (27)

Since |λi| < 1, i ∈ {1, 2}, the stationary point (q◦1 , q◦2) is always asymptotically stable (cf. [15]),
no matter what the values of parameters a, b and a1, a2 are. As soon as the average costs of companies
are zero (a1 = a2 = 0 in (25)), the equilibrium is (q◦1 , q◦2) = (a/3b, a/3b) , which corresponds to the
known result for the static Cournot duopoly model introduced in Section 1.

4.2. Equilibrium of the Nonlinear Model and Its Properties

To be able to find the equilibrium of a nonlinear model (21), it is necessary to consider an
autonomous system. This means that it is assumed that average unit costs in this model are a constant
function of time t, which can be written in the form:

ai(t) = ai, t ∈ N0, i ∈ {1, 2}, (28)

where ai, ai > 0 and i ∈ {1, 2}, are real constants. With the particular form of reaction functions (21)
and (22), it is possible to solve the equation for the stationary point (q◦1 , q◦2) = F(q◦1 , q◦2) and find a
nonzero Cournot–Nash equilibrium:

(q◦1 , q◦2) =
(

b(a2 + a)
(a1 + a2 + 2a)2 ,

b(a1 + a)
(a1 + a2 + 2a)2

)
. (29)
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The stability of this stationary point can be determined from the Jacobian matrix of the map (23)
enumerated at the stationary point, [15]. It is possible to find:

J(q1, q2) =

 0 b
2
√

b(a1+a)q2
− 1

b
2
√

b(a2+a)q1
− 1 0

 , (30)

which means that at the stationary point (29), we have:

J(q◦1 , q◦2) =

(
0 a2−a1

2(a1+a)
a1−a2

2(a2+a) 0

)
. (31)

The eigenvalues of the matrix (31) are imaginary as follows:

λ1 = −i
|a1 − a2|

2
√
(a1 + a)(a2 + a)

, λ2 = i
|a1 − a2|

2
√
(a1 + a)(a2 + a)

· (32)

The stationary point (q◦1 , q◦2) is asymptotically stable provided that |λi| < 1, i ∈ {1, 2}; for details,
see [15]. Solving this problem, we can observe that such a situation happens when the following
relation for the ratio µ = (a1 + a)/(a2 + a) of unit costs is valid:

3− 2
√

2 < µ < 3 + 2
√

2. (33)

If the ratio µ of the unit costs falls outside these intervals, the stationary point is not stable.
Then, a more complex behavior of the model can be detected. To observe such phenomena, a bifurcation
diagram can be used.

Let us finally return to the problem with nonconstant companies’ average costs briefly. Let us
suppose that during a finite time period T, T ∈ N, the company’s costs are functions of time t.
Specifically, let them change exponentially as ai(t) = αi exp(βit) where t ∈ {0, 1, . . . , T}, i ∈ {1, 2},
αi, αi > 0, and βi, βi > 0, are real constants. Further, let us suppose that the costs functions stay
constant for the rest of the time, which means that:

ai(t) = αi exp(βiT), t ∈ N, t > T, i ∈ {1, 2}. (34)

Then, the new stationary point of the model (21) is:

(q◦1 , q◦2)T =

(
b(α2 exp(β2T) + a)

(α1 exp(β1T) + α2 exp(β2T) + 2a)2 ,
b(α1 exp(β1T) + a)

(α1 exp(β1T) + α2 exp(β2T) + 2a)2

)
. (35)

4.3. Bifurcation Diagram of the Duopoly Model

As (23) depends symmetrically on two parameters a1− a and a2− a, corresponding to a company’s
cost prices and the parameter of the inverse demand function, the price ratio µ = (a1 − a)/(a2 − a)
is considered as a bifurcation parameter. Without loss of generality, it is possible to fix a1 = 1 as a
price unit for particular computations. Other values of the constant a1 could be used, and the same
structure of the bifurcation would be observed. The algorithm for the construction of a bifurcation
diagram was described in Section 2.1. It was implemented in MATLAB (See Appendix A), and its
results are illustrated in Figure 1. The domain for the parameter µ was selected similarly as in [4],
where more details can be found. Since 3 + 2

√
2 .
= 5.83, which is the upper limit of the parameter µ

for the asymptotic stable stationary point of the map (23), it is assumed that µ ∈ [5.8, 6.25].
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Figure 1. The bifurcation diagram of the map (23) with the inverse demand function (15), where a = 0
and b = 1. The left diagram describes the dependence of the limit points of the variable q1 on the
parameter µ = a1/a2, and similarly, the right diagram describes the limit points of the variable q2.
Source: computation in MATLAB; cf. Appendix A.

The analysis of Figure 1 shows that the results are really interesting from the economic point of
view. The basic Cournot linear duopoly model, as described in the Introduction and Section 4.1, has the
only unique stable equilibrium for both companies. However, as was mentioned above, if the ratios of
the unit costs fall outside the presented intervals, the stationary point is not stable. The companies will
behave differently. It is possible that both the companies will try to sell a higher amount of products,
which will result in the supply exceeding the demand, and then, a certain amount of unsold goods
will occur on the market. Consequently, both companies will decrease their supply simultaneously,
which will result in the demand exceeding the supply, and the demand of the market will not be
satisfied. The companies will cyclically repeat their behavior. Moreover, if the ratio of the unit costs
becomes really high (more than 6.1, as described in Figure 1), the behavior of the companies will be
really unstable, chaotic and unpredictable. The basic idea and basic conclusion of the Cournot duopoly
game with linear functions (one stable solution) will not work at that moment.

4.4. Lyapunov Exponent of the Duopoly Model

The bifurcation diagrams in Figure 1 provide only graphical evidence of chaotic behavior.
To present quantitative evidence of this issue, Lyapunov exponents of the map (23) are computed here.
The concept of Lyapunov exponents was introduced in Section 2.2. The described algorithm for the
map (23) was implemented in MATLAB; see Appendix B. It was found that Lyapunov exponents for
the bifurcation parameter µ = 6.25 can be approximated by the values h1 ≈ 0.1678 and h2 ≈ 0.1686,
respectively, after n = 5000 iterations. In this computation, the initial state v0 = (q1(0), q2(0)) = (0.1, 1)
and parameter ε = 2.2× 10−16 were used. If the process of the computation of Lyapunov exponents
converges, then it does not depend on the initial value v0. This phenomenon was tested with different
initial values. Since at least one value of Lyapunov exponents is positive, we can conclude that for
the given value of the parameter µ, the map (23) is sensitive to the initial conditions. This means that
it is possible to consider the fact that the given map shows features typical of deterministic chaos.
The same computations can be used for different values of the bifurcation parameter µ. In this way,
the diagram of the largest Lyapunov exponent can be found. If µ ∈ [5.8, 6.25], the diagram in Figure 2
can be constructed step by step.
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Figure 2. Diagram of the largest Lyapunov exponent of the map (23) with the inverse demand
function (15), where a = 0 and b = 1. Bifurcation parameter µ ∈ [5.8, 6.25]. Source: computation in
MATLAB; essential steps of the algorithm are given in Appendix B.

The diagram depicts that there are values of the bifurcation parameter µ for which the largest
Lyapunov exponent is positive. For these values, the system given by the maps (23) and (21) is
sensitively dependent on initial values, and deterministic chaos can emerge. Similarly as in the case of
the bifurcation diagram in Figure 1, it is possible to observe that this phenomenon is present for large
values of the bifurcation parameter µ, which represents the ratio of both the companies’ unit costs.
Since such high ratios are not very likely in economic systems, it can be summarized that the erratic
behavior of the duopoly model can be rather rare.

5. Conclusions

The paper introduced both a linear and a nonlinear version of the Cournot duopoly model.
The reason for presenting these versions together was given by the overall goal to compare the
differences in the behavior of their possible solutions. The essential assumption linked with the
nonlinear model is that of a nonlinear inverse demand function. A similar assumption as in [4] was
used. Instead of the unique inverse demand function given in [4], a more general function (15) was
proposed and used. The equilibrium was found, and the conditions for its stability were established.
The shift of the Cournot–Nash equilibrium caused by exogenous development of the companies’ cost
function was examined. Provided there is a sufficiently large proportion between the unit costs of
the two companies in the duopoly game, it was shown that there are nonlinear phenomena such as
bifurcation of limit values of the production or deterministic chaos. To prove a sensitive dependence
on the initial conditions that accompanies deterministic chaos, the concept of Lyapunov exponents
was used. Moreover, a diagram for the largest Lyapunov exponent was also introduced in Figure 2.
MATLAB implementations of the bifurcation diagram and calculation of Lyapunov exponents are
introduced in Appendices A and B, respectively. In our future work, we would like to deal with the
chaos control linked with the presented model (29). We would also like to improve the algorithm for
the computation of Lyapunov exponents to make it more accurate.
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Appendix A. MATLAB Implementation of the Bifurcation Diagram for the Duopoly Map

clear all; clc;
% Map %
b=1;
f=@(y,m) sqrt(y/(m*b))-y;
g=@(x,m) sqrt(x/b)-x;
% Parameter domain
left=5.8;
right=6.3;
step=1/2000;
skip=1700;
draw=2000;
% Bifurcation
for m=[lelt:step:right]
value=[0.1, 0.1];
for i=[1:skip]
if m*value(2)<=1
value(1)=f(value(2), m);
else
value(1)=eps;
end
if m*value(1) <=1
value(2)=g(value(1), m);
else
value(2)=eps;
end
end
for i=[skip+1:draw]
if m*value(2)<=1
value(1)=f(value(2), m);
else
value(1)=eps;
end
if m*value(1) <=1
value(2)=g(value(1), m);
else
value(2)=eps;
end
plot(m, value(1), ’b.’, ’MarkerSize’, 2);
hold on;
plot(m, value(2), ’r.’, ’MarkerSize’, 2);
end
end
hold off;

Appendix B. MATLAB Implementation of the Lyapunov Exponent for the Duopoly Map

clear all; close all; clc;
% Map and its parameters %
a=6.25;
b=1;
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f=@(x, y) [sqrt(y/a)-y; sqrt(x/b)-x;];
% Jacobian %
J=@(x, y) [0, 1/(2*sqrt(a*y))-1; 1/(2*sqrt(b*x))-1, 0];
% Dot product %
product=@(x, y) x’*y;
% Initial condition %
v0=[0.1; 1];
w=eye(2);
% Number of iterations %
m=5000;
% Coomputing %
suma=zeros(2,1);
for i=[1:m]
x=v0(1); y=v0(2);
z=J(x, y)*w;
yy(:, 1)=z(:, 1);
yy(:, 2)=z(:, 2)-(product(z(:, 2), yy(:, 1))/norm(yy(:, 1))^2)*yy(:, 1);
suma=suma+[log(norm(yy(:, 1))); log(norm(yy(:, 2)))];
w(:,1)=yy(:,1)/norm(yy(:,1));
w(:,2)=yy(:,2)/norm(yy(:,2));
pomoc=f(x, y);
if pomoc(1) > 0
v0(1)=pomoc(1);
else
v0(1)=eps;
end
if pomoc(2) > 0
v0(2)=pomoc(2);
else
v0(2)=eps;
end
end
% Print Lyapunov exponents %
disp(suma/n);
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