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Abstract: Floodplains, as seen from the flood risk management perspective, are composed of
co-evolving natural and human systems. Both flood processes (that is, the hazard) and the values
at risk (that is, settlements and infrastructure built in hazardous areas) are dynamically changing
over time and influence each other. These changes influence future risk pathways. The co-evolution
of all of these drivers for changes in flood risk could lead to emergent behavior. Hence, complexity
theory and systems science can provide a sound theoretical framework for flood risk management in
the 21st century. This review aims at providing an entry point for modelers in flood risk research to
consider floodplains as complex adaptive systems. For the systems science community, the actual
problems and approaches in the flood risk research community are summarized. Finally, an outlook
is given on potential future coupled component modeling approaches that aims at bringing together
both disciplines.
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1. Introduction

Floods are one of the most damaging natural hazards, accounting for a majority of all economic
losses from natural events worldwide [1]. Managing flood risks requires knowledge about hazardous
processes and their impacts. Hence, risks resulting from floods are defined as functions of the
probability of a flood event or scenario, respectively, and the related extent of damage [2,3]. The latter
is computed in most cases by a function of the monetary value of the object affected by the flood and
its vulnerability against the magnitude of the process scenario. In floodplains, these main factors of
flood risk, the flood process, and the values at risk meet each other locally. From a physical perspective,
floodplains are defined as areas of land adjacent to and formed by flowing water in times of floods.
In addition, from a socioeconomic perspective, floodplains provide land for settlement, infrastructure,
and other human activities. Floodplains and the main drivers for flood risks are evolving over time.
Consequently, in natural hazards and risk research, an actual change in the paradigms can be observed.
Risks are being more frequently analyzed from a dynamic rather than a static perspective [4,5]. Hence,
many studies are dealing with changes of natural risks over recent decades and centuries [2,6–10].
In addition, research on climate changes and its impact is the focus of future changes in risks [11–20].
A few studies consider both the impacts of climatic changes to river flows and the future dynamics in
the values at risk [21–26]. As drivers for changes in risk are not only varying in time, recent studies
extend the dynamic framework of risk analysis toward a spatiotemporal framework [27–34]. Herein,
the drivers of flood risk vary in space and time. Consequently, a few studies adopted the system
dynamics approach to a spatial system dynamics approach for water resources systems and flood
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risk analyses [35–37]. Beside flood risk research, system dynamics modeling is also becoming an
increasingly attractive approach in social sciences and earth system modeling [38–42].

In summary, the built environment in floodplains, whether the settlement area or the river channel,
is subject to changes and co-evolutionary dynamics in both spheres. Floodplains are influenced by flood
events and subsequent disruptive changes in the society, by governmental decisions as adaptation
to these flood events, and individual agents. These co-evolutionary dynamics in the drivers for
changes in flood risk influence future risk pathways, and could lead to emergent behavior. Hence,
complexity theory and systems science potentially provide a sound theoretical framework for flood
risk management as postulated by Helbing et al. [43] for other risks.

This short review aims at summarizing recent attempts in analyzing and modeling spatiotemporal
changes in flood risk from a complex systems perspective and at giving an explorative outlook
of future perspectives in considering floodplains as complex adaptive systems. With this, I am
aiming at providing a summary of the prospective approaches for modeling the co-evolutionary
dynamics and emergent behavior of floodplains and thus, an entry point for flood risk modelers to
consider floodplains as complex adaptive systems. Moreover, I am aiming at providing a collection of
relevant literature from the flood risk research community, and thus an entry point for the systems
science community into flood risk research. The focus is placed on the approaches for modeling the
co-evolutionary and spatiotemporal dynamics in the evolution of flood risks in floodplains.

2. Main Drivers of Evolving Risks in Floodplains

The spatiotemporal evolution of flood risk in floodplains is composed of several drivers that are
intertwined with each other. In a reductionist approach, flood risk research is focusing on a single
aspect of flood risk and their changes in space and time. However, constructivist perspectives in flood
risk research are rather rare, and are more frequently present in the systems sciences. In this paper,
I will summarize the main drivers of evolving flood risks in floodplains.

2.1. Changes in Flood Processes

Floods are either caused directly by rainfall onto the system under investigation (pluvial floods
and surface water floods, for example) or by falling onto river catchments, resulting in a catchment
outflow. The latter causes floods in downstream floodplains (riverine floods and lake floods). Thus,
the boundary condition of floods in floodplains can either be rainfall, river flows, or both. Consequently,
changes in flood processes, that is, changes in the frequency and magnitude of floods, are determined
by these external influencing factors. In many studies, the changes in rainfall frequency and intensity
are investigated, with a special focus on the effects of climatic changes [44,45]. In addition, changes in
the incoming flow hydrographs are drivers of change in floodplains [46–48]. In mountainous areas,
flood losses are also influenced by sediment transport and deposition processes [49].

However, the rivers themselves and their floodplains change over time [50–53]. These can be
natural and gradual changes in the river morphodynamics and flood regime [54–57], changes in the
adjacent vegetation [58], or disruptive changes by flood events [59], for example by levee failures [60].
Last but not least, anthropogenic interventions are more or less the most relevant driver of flood risk
in a floodplain; that is, the construction of flood defenses such as levees and dams [61–63] or river
restoration projects [64–66]. Furthermore, the construction of levees as flood protection measures in
one floodplain can have adverse effects in downstream floodplains [67–71], and thus result in trade-offs
between upstream and downstream floodplains [72,73]. Reviews on the impacts of land use changes
and regulations on floods are given by Rogger et al. [74], Burby et al. [75], and O’Connell et al. [76].
Moreover, floodplains can be affected by land subsidence due to drainage or groundwater extraction.
This results in increasing flood hazards and consequently, increasing flood risk [77].
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2.2. Changes in Exposure and Vulnerability

In addition to changes in the natural environment (that is, the fluvial aspect of the floodplain),
flood risks also change due to variations in the exposed values at risk and in their vulnerability.
First of all, one of the most relevant drivers of flood risk is the increase in the values that are at
risk due to economic development [78,79]. The growing of settlements and thus, the increase of
residential buildings is related to population growth [80]. With it, the infrastructure increases as well.
Infrastructure failures have wider impacts on the socioeconomic systems, and thus exhibit relevant
interdependencies [81–84]. In economically active areas, floodplains are increasingly occupied by
production facilities, as these require relatively flat compound areas for their construction that are not
available in hilly areas [85]. Recent studies show that the number of buildings potentially affected by
floods increased by up to 700% in the last century [31,78]. With economic development, the objects
at risk and the infrastructure in the floodplains increase in terms of monetary value. This and higher
object vulnerabilities [86,87] result in increased flood risks. Both factors compete with the opposing
drivers of flood risk reduction measures by individuals and the public.

2.3. Adaptation in Governance

Changes in exposure and vulnerability are influenced by the action of individuals and by
governmental interventions and regulations. On the one hand, local governments regulate land
use with planning instruments. In several countries, the occupation and utilization of areas potentially
affected by floods are not allowed or restricted. Moreover, governmental institutions and legislative
entities are defining the basic principles and legislative frameworks for spatial planning in floodplains.
On the other hand, land use regulations are binding the actions of the individuals and businesses.
Hence, both the actions of individual agents and the public composed by a collection of agents result
in the key interfering driving forces for changes in flood risk [88]. Often, the actions of individuals and
governments are an adaptation to flooding events [89–92]. When a flood affects a relevant share of a
house or the infrastructure of the floodplain, individuals urge the government to act. As a reaction
to the flood event and requests by the population, the local government invests in flood protection
measures [93–95]. If many communities are affected, the regional or national governments react
by adapting the legislative or financial framework for flood risk management [96–99]. Individuals
experiencing a flood event become aware and sensible to the hazard, and adapt by protecting their
homes and workplaces from floods with object-based flood protection measures [100,101]. Moreover,
governments try to inform and to sensitize residents in floodplains by aiming at increasing risk
awareness [102]. These adaptations can be seen as social learning. Consequently, the following flood
event will result in fewer losses. Hence, the vulnerability of values at risk and socioeconomic activities
in floodplains might decrease due to the adaptation measures. Overall, this complexity calls for
adaptive flood risk management strategies and integrative governance [103–117].

3. Characterization of Floodplains from the Viewpoint of Complex Adaptive Systems

Flood risk—as a quantitative variable of hazard, exposure, and vulnerability—is evolving in space
and time. However, the quantification of flood risk in terms of expected losses in a specified time period
summarizes all of the factors into one lumped variable. As the single factors in the risk formula are
supposed to be co-evolutionary dynamics, it is interesting to have a look at the spatiotemporal evolution
of the single drivers first and second to the evolution of the floodplain as a whole. The classical risk
formula and the approaches in risk analyses enable a monitoring of the temporal development of
the risks by periodically repeating a risk analysis [118]. However, these approaches do not provide
a theoretical framework for a deeper understanding and for delineating management options from
the behavior of the floodplain, including all drivers of change. As shown in Section 2, the factors
influencing flood risk exhibit co-evolutionary dynamics with positive and negative feedback between
each other. Moreover, signals from the natural process shaping floodplains as well as information
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processing between the local human agents and its collective in the form of governmental institutions
in the floodplain lead to the complex behavior of a floodplain. Both the natural and the human systems
adapt their behavior after flood events. The social system changes their behavior by learning from
accidents and continuously adapting flood risk management strategies. Consequently, this adaptation
leads to an emerging behavior of floodplains. Behavior in terms of vulnerability against floods and
resilience changes remarkably with time. Following the overall complexity of the co-evolutionary
dynamics in the drivers of flood risk and the emergent behavior, floodplains can be defined as
complex adaptive systems [119,120]. As the actions of the individuals are difficult to predict, the future
development paths of such a complex system as floodplains are difficult to predict as well. Hence,
complex systems science might provide a helpful theoretical framework for the analysis and simulation
of future development pathways of floodplains. However, the identification of emergent behavior,
self-organization, and adaptation, as well as mapping complexity, remain a key challenge in flood risk
research [121–124].

4. Prospective Approaches in Modeling Co-Evolutionary Dynamics in Floodplains

As the co-evolution of natural–human systems became more evident recently, the disciplines
involved in flood risk research tried to collaborate with social sciences to implement human behavior
in their models for analysis and prediction. There are mainly two research foci to mention in regard to
the co-evolutionary dynamics in floodplains and the interactions between human and natural systems:
the coupled human–natural systems approach, and the socio-hydrology approach [125]. The latter is a
sub-discipline of socio-ecological systems research [126].

The research topic “coupled human–natural systems” (CHANS) mainly focus on wildlife habitats
and landscape evolution [127]. An overview is given by Liu et al. [128]. However, there are some
studies dealing with evolving floodplains and the role of individuals [129]. One focus in these
models is an analysis of the resilience of the social systems in floodplains [130]. Another focus lays
on vulnerability analysis, as exemplarily shown by Turner et al. [131]. The approach is also used
to model flood protection investments [132]. The CHANS approach focuses on spatially explicit
simulations of changes in systems by considering feedback mechanisms between human activities and
the natural environment.

In 2013, the International Association of Hydrological Sciences launched a decade of focused
research with the theme “Panta Rhei: Change in Hydrology and Society” [133–135]. Consequently,
hydrological science attempted to analyze and model human behavior and their interlinkages with
the natural environment, as well as co-evolutionary dynamics. These attempts are often termed
as “socio-hydrology”. This new focus aims at understanding the dynamics and co-evolution of
coupled human–water systems [136] and the relationships between society and floods [137]. Soon after,
conceptual articles followed and sharpened the research topic [138–148]. A review is given by Blair
and Buytaert [125].

In parallel, different case studies described typically complex problems in floodplains from the
“socio-hydrology” perspective [149–156]. A debate on socio-hydrology describes different points
of views and discussions between research groups in this field [157–163]. In the wider field of
socio-hydrology, a few studies focused on the dynamic behavior of floodplains as human–water
systems [164] and on conceptualizing human–flood interactions [165,166]. The main topic herein is the
relationship between the development paths of settlements and the construction of levees. In contrast to
the CHANS approach, socio-hydrological models are based on system dynamics, and simulate system
behavior mainly in a lumped way (that is, a way that is not spatially explicit). In geomorphology,
similar tendencies in capturing and analyzing the co-evolution of socio-natural systems and the effects
of human interventions on river morphology can be observed [167–169]. Hydrologic and geomorphic
drivers in flood hazard evolution are compared by Slater et al. [170].

The unresolved challenges in socio-hydrology lie in the parameterization and validation of the
models [163]. Spatially explicit models for the prediction of future pathways in floodplain evolution
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are still lacking [138,171,172]. Furthermore, there is still a lack of models that can predict potential
adverse consequences for flood risk due to unintentional developments in the areas protected by
levees [164]. This cannot be studied until the models explicitly consider space and time.

In the following sections, I will give a short overview of the three selected approaches that enable
the consideration of the interactions between natural processes and human activities and describe
the complex behavior of floodplains. I exemplarily selected one top–down modeling approach,
one bottom–up modeling approach, and an approach that offers, in my opinion, a promising way
to combine the two first mentioned options. The selection of modeling approaches is based on the
classification of Kelly et al. [173]. The top–down modeling approaches aim to represent the system
as a whole. The system behavior is represented by the interactions between the system components.
Its design is mostly inferred by studying the overall behavior of the system. A model designed in
this way can produce only deterministic results, and processes within the system are usually hard to
analyze. In contrast, the bottom–up approach mainly focuses on representing the processes in a system.
The overall behavior of the whole system results from the processes and their interactions. The latter
approach is implemented mainly by explicitly considering space and time. A typical example of the
first modeling technique is system dynamics. The most typical bottom–up modeling approach is
agent-based models. A prospective approach of combining the benefits of both approaches is coupled
component modeling.

4.1. System Dynamics

System dynamics (SD) is a computer simulation problem-solving approach with a foundation
in the concepts of system feedbacks with the purpose of gaining insight into real-world system
behavior [174]. System dynamics is based on the first computational experiments of Forrester [175] and
on the system theory of Luhmann [176]. These approaches have recently been used in conceptualizing
human–flood interactions [165], in vulnerability analyses [177], in modeling the feedbacks between
flooding and economic growth [178], and to analyze upstream–downstream trade-offs in the
internalization and externalization of flood risks [179].

However, system dynamic models are in most cases lumped models. Only a few studies deal with
a spatial discretization of system dynamic models [180–183]. In flood risk research, these either deal
with structural changes in flood risks [174] in general, the management of flood risk [111], or disaster
management [184].

These approaches provide a potential for system conceptualization and thus a holistic analysis of
floodplains. However, there is still a lack of methods for incorporating physically-based process models
and linking them with the other modules in complex models. Moreover, the consideration of changes
over time in system dynamic models is still a challenge. As an example, in studying the evolution of
the flood risk of a specific floodplain, a modeler would build a system model at the macro level that
incorporates the main drivers that change risk, such as river morphology, river engineering works,
the dynamics in the exposure of houses, and finally, the risk management strategies. The modeler
must know the present state of the system, the changes in these drivers, and the effects of the different
risk reduction options. The system dynamics model would then quantitatively simulate the change in
the overall flood risk in the floodplain within a certain time period. Thus, the outcome is quantitative,
but aggregated in a lumped variable. The processes on the ground, that is, the spatiotemporal dynamics,
are not modeled explicitly. However, the adaptive capacity can be studied because of the ability to
consider flood risk management options and their effects.

4.2. Agent-Based Modeling

Agent-based modeling techniques (ABM) aim at simulating the behavior and decision-making of
individuals (agents) and groups of individuals or institutions explicitly in space and time at the micro
scale [125,173,185]. In (multi)agent models, the interactions between the agents are considered as well.
The behavior of the agents is mostly determined by a set of rules. Agents can share common resources,
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compete, or react to a changing environment. Moreover, agents could be simulated as learning
entities. The overall system behavior results in the sum of all actions, reactions, and interactions of the
agents. Thus, this approach is preferably used in modeling complex adaptive systems. In hierarchical
agent-based models, the effects of regulations by institutions could also be simulated [186]. Another
benefit of this approach is the ability to consider time lags, memory, and legacy effects. Major challenges
in developing agent-based models lie in their calibration and validation. In regards to flood risk
management, agent-based models are being used for simulating the behavior of people in case of
flooding. An example is the planning of evacuations [187–189], where pedestrians, cars, and crowding
are considered. Another example is the assessment of flood risk management strategies under
future climate changes [190]. In this example, institutional behavior is also modeled. In regards
to the co-evolutionary dynamics and emergence in floodplains, ABMs can be used to model how
individuals and institutions react to a changing environment. Exemplarily, which house owner is
taking precautionary measures into account to protect their homes against increasing floods can be
simulated. Herein, experience with former flood events, the availability bias, or other incentives could
be considered. Furthermore, the role of institutions in changing the environment as a reaction to a
flood event could be modeled in space and time. For example, where do governments invest in river
engineering works?

4.3. Coupled Component Modeling

Coupled component models (CCM) are composed of specialized disciplinary models representing
the parts of the system. Coupled models integrate sub-models to form a model chain that represents a
whole system [125]. Synonymously, this type of model is often defined as an integrated environmental
model [191,192]. Coupled component models have an advantage in that they are flexible regarding the
level of integration, and are relatively transparent because the sub-models are in most cases validated
in their specific discipline. Moreover, coupled component models are generally able to combine system
dynamics and agent-based models. In such cases, the disciplinary and spatially explicit process models
can simulate the (changing) boundary conditions of agent-based models. The outcomes of both results
in the system behavior. The design of a CCM can be based on a causal loop diagram of SDs. Hence,
instead of using stocks and flows, CCMs simulates the processes directly. However, the sub-models
often use different spatial and temporal scales. Thus, the bridging of different scales in model coupling
is challenging. Another advantage is that coupled component models can potentially combine both
lumped and spatially explicit models. An overview of common coupled or integrated modeling
approaches is given by Kelly et al. [173]. However, there is still a lack of integrating process-based
models with socio-environmental models. As an example, a few studies showed how to couple system
dynamics with agent-based models [193], physically-based models [194], or expert systems [195].
In regards to flood risk analysis, models for weather forecasts are coupled with hydrological models,
inundation models, and with flood impact models (for example, flood loss models). An example of a
complex modeling chain from rainfall to flood risk is given by Falter et al. [196] or Zischg et al. [197].
In addition, Saint-Geours et al. [198] and Thaler et al. [199] present an approach of incorporating risk
management policies in coupled component models.

5. Conclusions and Outlook from a Modeler’s Perspective

In this short review, I summarized the literature on modeling floodplains as complex adaptive
systems. Beside this, there are other approaches that might be applicable in this context such as Bayesian
networks, network theory, or knowledge-based models (that is, expert systems). I focused here on
approaches that are applicable in predicting future pathways of flood risk evolution in floodplains.
The literature review results in the first overview of modeling floodplains in their complexity and provides
a few conclusions for further research that is needed in order to simulate the complex interactions between
the natural processes and human actions. Flood risk is determined by several factors, and thus the
coupling of models that are specified for selected drivers of flood risk change is needed.
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Hitherto, in flood risk research, two main approaches of coupling models prevail. One of the most
common approaches is the coupling of different models across specific domains. This is either done in a
cascading approach or in a coupled modeling approach. In the first approach, changes in the boundary
conditions of the model changes are analyzed from the viewpoint of the impacts to the studied system
represented by the model chain. However, the studied system itself, which is represented by the
sub-models in the model chain, changes contemporarily with the boundary conditions. In many cases,
top–down model chains represent a system behavior that is relatively constant in time. One example
of such a shortage is to study future flood risks without implementing the future system status of
floodplains with their values at risk and the adaptation of flood risk management strategies over
time. Moreover, the development of the studied system over time is influenced by its sensitivity to
changes in the boundary conditions. This means that both changes in the boundary conditions and
internal changes in the system predetermine the development path of a changing floodplain. Both
drivers of change are interwoven, and a sound analysis of changes in complex environmental systems
needs to consider them. Thus, a second main approach in model coupling is to study the sensitivity of
floodplains. In this bottom–up approach, the focus is laid more on the internal behavior and change
of the system rather than on the boundary conditions. In the coupled models, this is studied on the
one hand by sensitivity analyses of the sub-modules in an isolated way, and on the other hand by
sensitivity analyses of the whole model chain.

While both top–down and bottom–up modeling approaches offer a high potential for the
development of methods and tools for the analysis of changes in complex environmental systems,
a research gap is identified in bridging both approaches. Therefore, the main aim of future research in
modeling floodplains as complex adaptive systems should be to integrate both approaches. This should
lead to an extension of the capabilities of coupled component modeling. If the sensitivity of a
hydro-geomorphic system is analyzed in detail and a model of adaptive behavior is developed
(bottom–up approach), a subsequent analysis of the impacts of changing the boundary conditions
(top–down), and consequently, a prediction of future development paths can be done more satisfyingly.
This means that changes over time in the boundary conditions meet system-specific sensitivities and
adaptive capabilities. Figure 1 schematizes a possible combination of top–down and bottom–up
approaches in modeling floodplains as complex adaptive systems with a coupled component model.

Figure 1. The proposed schema for merging top–down and bottom–up approaches in the framework
of coupled component models.
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Herein, coupled component models seem to promise the most flexible and robust approach for the
prediction of future pathways of floodplain development. This modeling approach is modular; thus,
the model chains can be extended step by step with sub-models that have already been validated in their
specific domain of application. This modularity makes coupled component models more transparent,
robust, and interpretable than lumped specific-purpose models. However, the coupling of already
existing models remains a challenge, as they potentially address different scales in space and time.
Moreover, coupled component models are preferred, as they consider explicitly spatial phenomena.

Before being applied in floodplain modeling, coupled component models have to be extended
remarkably. In my opinion, especially the coupling of process models with agent-based models
that simulate the interactions of individuals and institutions with the changing environment, offer
a huge potential for extending the capabilities for simulating complex adaptive systems such as
floodplains. Thus, the inclusion of the bottom–up modeling approach leads to a more holistic
application for prediction purposes than process models alone. The combination of physics-based
process models and ABMs offer a thorough simulation of the spatiotemporal dynamics in floodplains.
In conclusion, the coupled component models have to be extended with agent-based models
representing adaptive behavior sub-modules, and with capabilities for modeling the interactions
between the sub-modules, such as feedbacks. This might lead to the capability of modeling adaptive
behavior and emergent phenomena.
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Kundzewicz, Z.W.; Lang, M.; et al. Understanding flood regime changes in Europe: A state-of-the-art
assessment. Hydrol. Earth Syst. Sci. 2014, 18, 2735–2772. [CrossRef]

57. Herget, J.; Dikau, R.; Gregory, K.J.; Vandenberghe, J. The fluvial system—Research perspectives of its past
and present dynamics and controls. Geomorphology 2007, 92, 101–105. [CrossRef]

http://dx.doi.org/10.1080/15715124.2015.1016954
http://dx.doi.org/10.1061/(ASCE)0887-3801(2004)18:4(331)
http://dx.doi.org/10.3389/fenvs.2014.00035
http://dx.doi.org/10.1016/j.ijdrr.2017.01.011
http://dx.doi.org/10.1016/j.geomorph.2015.09.026
http://dx.doi.org/10.1016/j.envsoft.2012.03.002
http://dx.doi.org/10.1177/2053019617725537
http://dx.doi.org/10.1007/s10955-014-1024-9
http://www.ncbi.nlm.nih.gov/pubmed/26074625
http://dx.doi.org/10.1016/j.scitotenv.2013.07.050
http://www.ncbi.nlm.nih.gov/pubmed/23953405
http://dx.doi.org/10.5194/hess-19-771-2015
http://dx.doi.org/10.1029/WR011i003p00431
http://dx.doi.org/10.1016/j.geomorph.2006.06.036
http://dx.doi.org/10.1080/15715124.2017.1372447
http://dx.doi.org/10.5194/nhess-8-539-2008
http://dx.doi.org/10.1016/S0048-9697(02)00619-8
http://dx.doi.org/10.1002/rra.2930
http://dx.doi.org/10.1029/94WR01493
http://dx.doi.org/10.1029/01EO00199
http://dx.doi.org/10.1002/2014WR016862
http://dx.doi.org/10.1016/j.geomorph.2007.04.011
http://dx.doi.org/10.5194/hess-18-2735-2014
http://dx.doi.org/10.1016/j.geomorph.2006.07.034


Systems 2018, 6, 9 11 of 17

58. Corenblit, D.; Davies, N.S.; Steiger, J.; Gibling, M.R.; Bornette, G. Considering river structure and stability
in the light of evolution: Feedbacks between riparian vegetation and hydrogeomorphology. Earth Surf.
Process. Landf. 2014, 40, 189–207. [CrossRef]

59. Guan, M.; Carrivick, J.L.; Wright, N.G.; Sleigh, P.A.; Staines, K.E.H. Quantifying the combined effects of
multiple extreme floods on river channel geometry and on flood hazards. J. Hydrol. 2016, 538, 256–268.
[CrossRef]

60. Croke, J.; Denham, R.; Thompson, C.; Grove, J. Evidence of Self-Organized Criticality in riverbank mass
failures: A matter of perspective? Earth Surf. Process. Landf. 2015, 40, 953–964. [CrossRef]

61. Di Baldassarre, G.; Castellarin, A.; Brath, A. Analysis of the effects of levee heightening on flood propagation:
Example of the River Po, Italy. Hydrol. Sci. J. 2009, 54, 1007–1017. [CrossRef]

62. French, J.R. Hydrodynamic Modelling of Estuarine Flood Defence Realignment as an Adaptive Management
Response to Sea-Level Rise. J. Coast. Res. 2008, 2, 1–12. [CrossRef]

63. Pinter, N.; Thomas, R.; Wlosinski, J.H. Regional Impacts of Levee Construction and Channelization, Middle
Mississippi River, USA. In Flood Issues in Contemporary Water Management; Marsalek, J., Watt, W.E., Zeman, E.,
Sieker, F., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 351–361.

64. Dixon, S.J.; Sear, D.A.; Odoni, N.A.; Sykes, T.; Lane, S.N. The effects of river restoration on catchment scale
flood risk and flood hydrology. Earth Surf. Process. Landf. 2016, 41, 997–1008. [CrossRef]

65. Surian, N.; Rinaldi, M. Morphological response to river engineering and management in alluvial channels in
Italy. Geomorphology 2002, 50, 307–326. [CrossRef]

66. Kiss, T.; Fiala, K.; Sipos, G. Alterations of channel parameters in response to river regulation works since
1840 on the Lower Tisza River (Hungary). Geomorphology 2008, 98, 96–110. [CrossRef]

67. Pinter, N.; van der Ploeg, R.R.; Schweigert, P.; Hoefer, G. Flood magnification on the River Rhine.
Hydrol. Process. 2006, 20, 147–164. [CrossRef]

68. Ward, P.J.; Renssen, H.; Aerts, J.C.J.H.; van Balen, R.T.; Vandenberghe, J. Strong increases in flood frequency
and discharge of the River Meuse over the late Holocene: Impacts of long-term anthropogenic land use
change and climate variability. Hydrol. Earth Syst. Sci. 2008, 12, 159–175. [CrossRef]

69. Gregory, K.J. The human role in changing river channels. Geomorphology 2006, 79, 172–191. [CrossRef]
70. Tobin, G.A. The Levee Love Affair: A Stormy Relationship? J. Am. Water Resour. Assoc. 1995, 31, 359–367.

[CrossRef]
71. Van Triet, N.K.; Dung, N.V.; Fujii, H.; Kummu, M.; Merz, B.; Apel, H. Has dyke development in the

Vietnamese Mekong Delta shifted flood hazard downstream? Hydrol. Earth Syst. Sci. 2017, 21, 3991–4010.
[CrossRef]

72. Ryffel, A.N.; Rid, W.; Grêt-Regamey, A. Land use trade-offs for flood protection: A choice experiment with
visualizations. Ecosyst. Serv. 2014, 10, 111–123. [CrossRef]

73. Salzmann, N.; Huggel, C.; Nussbaumer, S.U.; Ziervogel, G. Climate Change Adaptation Strategies—An
Upstream-Downstream Perspective; Springer: Cham, Switzerland, 2016.

74. Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J.C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.;
Hall, J.; et al. Land-use change impacts on floods at the catchment scale—Challenges and opportunities for
future research. Water Resour. Res. 2017, 53, 5209–5219. [CrossRef] [PubMed]

75. Burby, R.J.; French, S.P. Coping With Floods: The Land Use Management Paradox. J. Am. Plan. Assoc. 2007,
47, 289–300. [CrossRef]

76. O’Connell, P.E.; Ewen, J.; O’Donnell, G.; Quinn, P. Is there a link between agricultural land-use management
and flooding? Hydrol. Earth Syst. Sci. 2007, 11, 96–107. [CrossRef]

77. Carisi, F.; Domeneghetti, A.; Gaeta, M.G.; Castellarin, A. Is anthropogenic land subsidence a possible driver
of riverine flood-hazard dynamics? A case study in Ravenna, Italy. Hydrol. Sci. J. 2017, 6, 1–16. [CrossRef]

78. Fuchs, S.; Keiler, M.; Zischg, A. A spatiotemporal multi-hazard exposure assessment based on property data.
Nat. Hazards Earth Syst. Sci. 2015, 15, 2127–2142. [CrossRef]

79. Elmer, F.; Hoymann, J.; Düthmann, D.; Vorogushyn, S.; Kreibich, H. Drivers of flood risk change in residential
areas. Nat. Hazards Earth Syst. Sci. 2012, 12, 1641–1657. [CrossRef]

80. Morales, A.P.; Gil-Guirado, S.; Cantos, J.O. Housing bubbles and the increase of flood exposure. Failures
in flood risk management on the spanish south-eastern coast (1975–2013). J. Flood Risk Manag. 2015, 11,
S302–S313. [CrossRef]

http://dx.doi.org/10.1002/esp.3643
http://dx.doi.org/10.1016/j.jhydrol.2016.04.004
http://dx.doi.org/10.1002/esp.3688
http://dx.doi.org/10.1623/hysj.54.6.1007
http://dx.doi.org/10.2112/05-0534.1
http://dx.doi.org/10.1002/esp.3919
http://dx.doi.org/10.1016/S0169-555X(02)00219-2
http://dx.doi.org/10.1016/j.geomorph.2007.02.027
http://dx.doi.org/10.1002/hyp.5908
http://dx.doi.org/10.5194/hess-12-159-2008
http://dx.doi.org/10.1016/j.geomorph.2006.06.018
http://dx.doi.org/10.1111/j.1752-1688.1995.tb04025.x
http://dx.doi.org/10.5194/hess-21-3991-2017
http://dx.doi.org/10.1016/j.ecoser.2014.09.008
http://dx.doi.org/10.1002/2017WR020723
http://www.ncbi.nlm.nih.gov/pubmed/28919651
http://dx.doi.org/10.1080/01944368108976511
http://dx.doi.org/10.5194/hess-11-96-2007
http://dx.doi.org/10.1080/02626667.2017.1390315
http://dx.doi.org/10.5194/nhess-15-2127-2015
http://dx.doi.org/10.5194/nhess-12-1641-2012
http://dx.doi.org/10.1111/jfr3.12207


Systems 2018, 6, 9 12 of 17

81. Hasan, S.; Foliente, G. Modeling infrastructure system interdependencies and socioeconomic impacts of
failure in extreme events: Emerging R & D challenges. Nat. Hazards 2015, 78, 2143–2168. [CrossRef]

82. Little, R.G. Controlling Cascading Failure: Understanding the Vulnerabilities of Interconnected
Infrastructures. J. Urban Technol. 2002, 9, 109–123. [CrossRef]

83. Gonzva, M.; Barroca, B.; Gautier, P.-É.; Diab, Y. Modeling disruptions causing domino effects in urban guided
transport systems faced by flood hazards. Nat. Hazards 2017, 86, 183–201. [CrossRef]

84. Pescaroli, G.; Alexander, D. Critical infrastructure, panarchies and the vulnerability paths of cascading
disasters. Nat. Hazards 2016, 82, 175–192. [CrossRef]

85. Nicholls, S.; Crompton, J.L. The effect of rivers, streams, and canals on property values. River Res. Appl. 2017,
36, 773. [CrossRef]

86. Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [CrossRef]
87. Posey, J. The determinants of vulnerability and adaptive capacity at the municipal level: Evidence from

floodplain management programs in the United States. Glob. Environ. Chang. 2009, 19, 482–493. [CrossRef]
88. Wiering, M.; Liefferink, D.; Crabbé, A. Stability and change in flood risk governance: On path dependencies

and change agents. J. Flood Risk Manag. 2017. [CrossRef]
89. Kreibich, H.; Müller, M.; Thieken, A.H.; Merz, B. Flood precaution of companies and their ability to cope

with the flood in August 2002 in Saxony, Germany. Water Resour. Res. 2007, 43, 41. [CrossRef]
90. Kuhlicke, C. The dynamics of vulnerability: Some preliminary thoughts about the occurrence of ‘radical

surprises’ and a case study on the 2002 flood (Germany). Nat. Hazards 2010, 55, 671–688. [CrossRef]
91. Guthrie, R. The catastrophic nature of humans. Nat. Geosci. 2015, 8, 421–422. [CrossRef]
92. Reilly, A.C.; Guikema, S.D.; Zhu, L.; Igusa, T. Evolution of vulnerability of communities facing repeated

hazards. PLoS ONE 2017, 12, e0182719. [CrossRef] [PubMed]
93. Thomi, L.; Zischg, A.; Suter, H. Was Macht Hochwasserschutzprojekte Erfolgreich? Eine Evaluation der

Risikoentwicklung, des Nutzens und der Rolle privater Geldgeber; Geographisches Institut: Bern, Switzerland, 2015.
94. White, G. Human Adjustment to Floods; University of Chicago: Chicago, IL, USA, 1945.
95. James, L.A.; Marcus, W.A. The human role in changing fluvial systems: Retrospect, inventory and prospect.

Geomorphology 2006, 79, 152–171. [CrossRef]
96. Hartmann, T. Clumsy Floodplains: Responsive Land Policy for Extreme Floods/by Thomas Hartmann; Ashgate:

Farnham, UK, 2011.
97. Ison, R.L.; Collins, K.B.; Wallis, P.J. Institutionalising social learning: Towards systemic and adaptive

governance. Environ. Sci. Policy 2015, 53, 105–117. [CrossRef]
98. Kjeldsen, T.R.; Prosdocimi, I. Assessing the element of surprise of record-breaking flood events. J. Flood

Risk Manag. 2016, 19, 83. [CrossRef]
99. Wiering, M.; Kaufmann, M.; Mees, H.; Schellenberger, T.; Ganzevoort, W.; Hegger, D.L.T.; Larrue, C.;

Matczak, P. Varieties of flood risk governance in Europe: How do countries respond to driving forces and
what explains institutional change? Glob. Environ. Chang. 2017, 44, 15–26. [CrossRef]

100. Collenteur, R.A.; Moel, H.; de Jongman, B.; di Baldassarre, G. The failed-levee effect: Do societies learn from
flood disasters? Nat. Hazards 2015, 76, 373–388. [CrossRef]

101. Gallopín, G.C. Linkages between vulnerability, resilience, and adaptive capacity. Glob. Environ. Chang. 2006,
16, 293–303. [CrossRef]

102. White, G.F.; Kates, R.W.; Burton, I. Knowing better and losing even more: The use of knowledge in hazards
management. Environ. Hazards 2001, 3, 81–92.

103. Klijn, F.; Kreibich, H.; Moel, H. de; Penning-Rowsell, E. Adaptive flood risk management planning based
on a comprehensive flood risk conceptualisation. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 845–864.
[CrossRef]

104. Klinke, A.; Renn, O. Adaptive and integrative governance on risk and uncertainty. J. Risk Res. 2012, 15,
273–292. [CrossRef]

105. Koontz, T.M.; Gupta, D.; Mudliar, P.; Ranjan, P. Adaptive institutions in social-ecological systems governance:
A synthesis framework. Environ. Sci. Policy 2015, 53, 139–151. [CrossRef]

106. Kruse, S.; Pütz, M. Adaptive Capacities of Spatial Planning in the Context of Climate Change in the European
Alps. Eur. Plan. Stud. 2013, 22, 2620–2638. [CrossRef]

107. Hurlimann, A.C.; March, A.P. The role of spatial planning in adapting to climate change. WIREs Clim. Chang.
2012, 3, 477–488. [CrossRef]

http://dx.doi.org/10.1007/s11069-015-1814-7
http://dx.doi.org/10.1080/106307302317379855
http://dx.doi.org/10.1007/s11069-016-2680-7
http://dx.doi.org/10.1007/s11069-016-2186-3
http://dx.doi.org/10.1002/rra.3197
http://dx.doi.org/10.1016/j.gloenvcha.2006.02.006
http://dx.doi.org/10.1016/j.gloenvcha.2009.06.003
http://dx.doi.org/10.1111/jfr3.12295
http://dx.doi.org/10.1029/2005WR004691
http://dx.doi.org/10.1007/s11069-010-9645-z
http://dx.doi.org/10.1038/ngeo2455
http://dx.doi.org/10.1371/journal.pone.0182719
http://www.ncbi.nlm.nih.gov/pubmed/28953893
http://dx.doi.org/10.1016/j.geomorph.2006.06.017
http://dx.doi.org/10.1016/j.envsci.2014.11.002
http://dx.doi.org/10.1111/jfr3.12260
http://dx.doi.org/10.1016/j.gloenvcha.2017.02.006
http://dx.doi.org/10.1007/s11069-014-1496-6
http://dx.doi.org/10.1016/j.gloenvcha.2006.02.004
http://dx.doi.org/10.1007/s11027-015-9638-z
http://dx.doi.org/10.1080/13669877.2011.636838
http://dx.doi.org/10.1016/j.envsci.2015.01.003
http://dx.doi.org/10.1080/09654313.2013.860516
http://dx.doi.org/10.1002/wcc.183


Systems 2018, 6, 9 13 of 17

108. Hasselman, L. Adaptive management intentions with a reality of evaluation: Getting science back into policy.
Environ. Sci. Policy 2017, 78, 9–17. [CrossRef]

109. Lawrence, J.; Reisinger, A.; Mullan, B.; Jackson, B. Exploring climate change uncertainties to support adaptive
management of changing flood-risk. Environ. Sci. Policy 2013, 33, 133–142. [CrossRef]

110. Mori, K.; Perrings, C. Optimal management of the flood risks of floodplain development. Sci. Total Environ.
2012, 431, 109–121. [CrossRef] [PubMed]

111. Simonovic, S.P. Managing flood risk, reliability and vulnerability. J. Flood Risk Manag. 2009, 2, 230–231.
[CrossRef]

112. Priest, S.J.; Penning-Rowsell, E.C.; Suykens, C.; Lang, M.; Klijn, F.; Samuels, P. Promoting adaptive flood risk
management: The role and potential of flood recovery mechanisms. E3S Web Conf. 2016, 7, 17005. [CrossRef]

113. Prenger-Berninghoff, K.; Cortes, V.J.; Sprague, T.; Aye, Z.C.; Greiving, S.; Głowacki, W.; Sterlacchini, S. The
connection between long-term and short-term risk management strategies for flood and landslide hazards:
Examples from land-use planning and emergency management in four European case studies. Nat. Hazards
Earth Syst. Sci. 2014, 14, 3261–3278. [CrossRef]

114. Smit, B.; Wandel, J. Adaptation, adaptive capacity and vulnerability. Glob. Environ. Chang. 2006, 16, 282–292.
[CrossRef]

115. Thaler, T. Moving away from local-based flood risk policy in Austria. Reg. Stud. Reg. Sci. 2016, 3, 329–336.
[CrossRef]

116. Van der Pol, T.D.; van Ierland, E.C.; Gabbert, S. Economic analysis of adaptive strategies for flood risk
management under climate change. Mitig. Adapt. Strateg. Glob. Chang. 2015. [CrossRef]

117. Birkmann, J.; Bach, C.; Vollmer, M. Tools for Resilience Building and Adaptive Spatial Governance.
Raumforsch. Raumordn. 2012, 70, 293–308. [CrossRef]

118. Zischg, A.; Schober, S.; Sereinig, N.; Rauter, M.; Seymann, C.; Goldschmidt, F.; Bäk, R.; Schleicher, E.
Monitoring the temporal development of natural hazard risks as a basis indicator for climate change
adaptation. Nat. Hazards 2013, 67, 1045–1058. [CrossRef]

119. Miller, J.H.; Page, S.E. Complex Adaptive Systems: An Introduction to Computational Models of Social Life;
Miller, J.H., Page, S.E., Eds.; Princeton University Press: Princeton, NJ, USA, 2007.

120. Mitchell, M. Complexity: A Guided Tour; Oxford University Press: Oxford, UK, 2009.
121. Birdsey, L.; Szabo, C.; Falkner, K. Identifying Self-Organization and Adaptability in Complex Adaptive

Systems. In Proceedings of the 2017 IEEE 11th International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), Tucson, AZ, USA, 18–22 September 2017; pp. 131–140.

122. Bras, R.L. Complexity and organization in hydrology: A personal view. Water Resour. Res. 2015. [CrossRef]
123. Kirschke, S.; BORCHARDT, D.; Newig, J. Mapping Complexity in Environmental Governance:

A comparative analysis of 37 priority issues in German water management. Environ. Policy Gov. 2017,
3, 101. [CrossRef]

124. Weis, S.W.M.; Agostini, V.N.; Roth, L.M.; Gilmer, B.; Schill, S.R.; Knowles, J.E.; Blyther, R. Assessing
vulnerability: An integrated approach for mapping adaptive capacity, sensitivity, and exposure. Clim. Chang.
2016, 136, 615–629. [CrossRef]

125. Blair, P.; Buytaert, W. Socio-hydrological modelling: A review asking “why, what and how?”. Hydrol. Earth
Syst. Sci. 2016, 20, 443–478. [CrossRef]

126. Schlüter, M.; Mcallister, R.R.J.; Arlinghaus, R.; Bunnefeld, N.; Eisenack, K.; Hölker, F.; Milner-Gulland, E.J.;
Müller, B. New horizons for managing the environment: A review of coupled social-ecological systems
modeling. Nat. Resour. Model. 2012, 25, 219–272. [CrossRef]

127. Werner, B.T.; McNamara, D.E. Dynamics of coupled human-landscape systems. Geomorphology 2007, 91,
393–407. [CrossRef]

128. Liu, J.; Dietz, T.; Carpenter, S.R.; Folke, C.; Alberti, M.; Redman, C.M.; Ouyang, Z.; Deadman, P.; Kratz, T.;
Provencher, W. Coupled human and natural systems. Ambio 2007, 639–649.

129. Noël, P.H.; Cai, X. On the role of individuals in models of coupled human and natural systems: Lessons
from a case study in the Republican River Basin. Environ. Model. Softw. 2017, 92, 1–16. [CrossRef]

130. Folke, C. Resilience: The emergence of a perspective for social–ecological systems analyses. Glob. Environ. Chang.
2006, 16, 253–267. [CrossRef]

http://dx.doi.org/10.1016/j.envsci.2017.08.018
http://dx.doi.org/10.1016/j.envsci.2013.05.008
http://dx.doi.org/10.1016/j.scitotenv.2012.04.076
http://www.ncbi.nlm.nih.gov/pubmed/22673177
http://dx.doi.org/10.1111/j.1753-318X.2009.01040.x
http://dx.doi.org/10.1051/e3sconf/20160717005
http://dx.doi.org/10.5194/nhess-14-3261-2014
http://dx.doi.org/10.1016/j.gloenvcha.2006.03.008
http://dx.doi.org/10.1080/21681376.2016.1195282
http://dx.doi.org/10.1007/s11027-015-9637-0
http://dx.doi.org/10.1007/s13147-012-0172-0
http://dx.doi.org/10.1007/s11069-011-9927-0
http://dx.doi.org/10.1002/2015WR016958
http://dx.doi.org/10.1002/eet.1778
http://dx.doi.org/10.1007/s10584-016-1642-0
http://dx.doi.org/10.5194/hess-20-443-2016
http://dx.doi.org/10.1111/j.1939-7445.2011.00108.x
http://dx.doi.org/10.1016/j.geomorph.2007.04.020
http://dx.doi.org/10.1016/j.envsoft.2017.02.010
http://dx.doi.org/10.1016/j.gloenvcha.2006.04.002


Systems 2018, 6, 9 14 of 17

131. Turner, B.L.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Hovelsrud-Broda, G.K.;
Kasperson, J.X.; Kasperson, R.E.; Luers, A.; et al. Illustrating the coupled human-environment system for
vulnerability analysis: Three case studies. Proc. Natl. Acad. Sci. USA 2003, 100, 8080–8085. [CrossRef]
[PubMed]

132. O’Connell, P.E.; O’Donnell, G. Towards modelling flood protection investment as a coupled human and
natural system. Hydrol. Earth Syst. Sci. 2014, 18, 155–171. [CrossRef]

133. McMillan, H.; Montanari, A.; Cudennec, C.; Savenije, H.; Kreibich, H.; Krueger, T.; Liu, J.; Mejia, A.;
van Loon, A.; Aksoy, H.; et al. Panta Rhei 2013–2015: Global perspectives on hydrology, society and change.
Hydrol. Sci. J. 2016, 1–18. [CrossRef]

134. Kreibich, H.; Krueger, T.; van Loon, A.; Mejia, A.; Liu, J.; McMillan, H.; Castellarin, A. Scientific debate of
Panta Rhei research—How to advance our knowledge of changes in hydrology and society? Hydrol. Sci. J.
2016, 1–3. [CrossRef]

135. Montanari, A.; Young, G.; Savenije, H.H.G.; Hughes, D.; Wagener, T.; Ren, L.L.; Koutsoyiannis, D.;
Cudennec, C.; Toth, E.; Grimaldi, S.; et al. “Panta Rhei—Everything Flows”: Change in hydrology and
society—The IAHS Scientific Decade 2013–2022. Hydrol. Sci. J. 2013, 58, 1256–1275. [CrossRef]

136. Sivapalan, M.; Savenije, H.H.G.; Blöschl, G. Socio-hydrology: A new science of people and water.
Hydrol. Process. 2012, 26, 1270–1276. [CrossRef]

137. Di Baldassarre, G.; Kemerink, J.S.; Kooy, M.; Brandimarte, L. Floods and societies: The spatial distribution of
water-related disaster risk and its dynamics. WIREs Water 2014, 1, 133–139. [CrossRef]

138. Pande, S.; Sivapalan, M. Progress in socio-hydrology: A meta-analysis of challenges and opportunities.
WIREs Water 2016, 4, e1193. [CrossRef]

139. Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M.R. A prototype framework for models of socio-hydrology:
Identification of key feedback loops and parameterisation approach. Hydrol. Earth Syst. Sci. 2014, 18,
2141–2166. [CrossRef]

140. Gupta, H.V.; Nearing, G.S. Debates-the future of hydrological sciences: A (common) path forward?
Using models and data to learn: A systems theoretic perspective on the future of hydrological science.
Water Resour. Res. 2014, 50, 5351–5359. [CrossRef]

141. Liu, D.; Tian, F.; Lin, M.; Sivapalan, M. A conceptual socio-hydrological model of the co-evolution of humans
and water: Case study of the Tarim River basin, western China. Hydrol. Earth Syst. Sci. 2015, 19, 1035–1054.
[CrossRef]

142. Garcia, M.; Portney, K.; Islam, S. A question driven socio-hydrological modeling process. Hydrol. Earth
Syst. Sci. 2016, 20, 73–92. [CrossRef]

143. Mount, N.J.; Maier, H.R.; Toth, E.; Elshorbagy, A.; Solomatine, D.; Chang, F.-J.; Abrahart, R.J. Data-driven
modelling approaches for socio-hydrology: Opportunities and challenges within the Panta Rhei Science
Plan. Hydrol. Sci. J. 2016, 61, 1192–1208. [CrossRef]

144. Seidl, R.; Barthel, R. Linking scientific disciplines: Hydrology and social sciences. J. Hydrol. 2017, 550,
441–452. [CrossRef]

145. Sivapalan, M.; Konar, M.; Srinivasan, V.; Chhatre, A.; Wutich, A.; Scott, C.A.; Wescoat, J.L.; Rodríguez-Iturbe, I.
Socio-hydrology: Use-inspired water sustainability science for the Anthropocene. Earth Futur. 2014, 2,
225–230. [CrossRef]

146. Sivapalan, M.; Blöschl, G. Time scale interactions and the coevolution of humans and water. Water Resour. Res.
2015, 51, 6988–7022. [CrossRef]

147. Viglione, A.; Di Baldassarre, G.; Brandimarte, L.; Kuil, L.; Carr, G.; Salinas, J.L.; Scolobig, A.; Blöschl, G.
Insights from socio-hydrology modelling on dealing with flood risk—Roles of collective memory, risk-taking
attitude and trust. J. Hydrol. 2014, 518, 71–82. [CrossRef]

148. Wesselink, A.; Kooy, M.; Warner, J. Socio-hydrology and hydrosocial analysis: Toward dialogues across
disciplines. WIREs Water 2016, 4, e1196. [CrossRef]

149. Fuchs, S.; Karagiorgos, K.; Kitikidou, K.; Maris, F.; Paparrizos, S.; Thaler, T. Flood risk perception and
adaptation capacity: A contribution to the socio-hydrology debate. Hydrol. Earth Syst. Sci. 2017, 21,
3183–3198. [CrossRef]

150. Lu, Z.; Wei, Y.; Xiao, H.; Zou, S.; Xie, J.; Ren, J.; Western, A. Evolution of the human–water relationships in
the Heihe River basin in the past 2000 years. Hydrol. Earth Syst. Sci. 2015, 19, 2261–2273. [CrossRef]

http://dx.doi.org/10.1073/pnas.1231334100
http://www.ncbi.nlm.nih.gov/pubmed/12815106
http://dx.doi.org/10.5194/hess-18-155-2014
http://dx.doi.org/10.1080/02626667.2016.1159308
http://dx.doi.org/10.1080/02626667.2016.1209929
http://dx.doi.org/10.1080/02626667.2013.809088
http://dx.doi.org/10.1002/hyp.8426
http://dx.doi.org/10.1002/wat2.1015
http://dx.doi.org/10.1002/wat2.1193
http://dx.doi.org/10.5194/hess-18-2141-2014
http://dx.doi.org/10.1002/2013WR015096
http://dx.doi.org/10.5194/hess-19-1035-2015
http://dx.doi.org/10.5194/hess-20-73-2016
http://dx.doi.org/10.1080/02626667.2016.1159683
http://dx.doi.org/10.1016/j.jhydrol.2017.05.008
http://dx.doi.org/10.1002/2013EF000164
http://dx.doi.org/10.1002/2015WR017896
http://dx.doi.org/10.1016/j.jhydrol.2014.01.018
http://dx.doi.org/10.1002/wat2.1196
http://dx.doi.org/10.5194/hess-21-3183-2017
http://dx.doi.org/10.5194/hess-19-2261-2015


Systems 2018, 6, 9 15 of 17

151. Di Baldassarre, G.; Saccà, S.; Aronica, G.T.; Grimaldi, S.; Ciullo, A.; Crisci, M. Human-flood interactions in
Rome over the past 150 years. Adv. Geosci. 2017, 44, 9–13. [CrossRef]

152. Gaál, L.; Szolgay, J.; Kohnová, S.; Parajka, J.; Merz, R.; Viglione, A.; Blöschl, G. Flood timescales:
Understanding the interplay of climate and catchment processes through comparative hydrology.
Water Resour. Res. 2012, 48, 383. [CrossRef]

153. Mao, F.; Clark, J.; Karpouzoglou, T.; Dewulf, A.; Buytaert, W.; Hannah, D. HESS Opinions: A conceptual
framework for assessing socio-hydrological resilience under change. Hydrol. Earth Syst. Sci. 2017, 21,
3655–3670. [CrossRef]

154. Reynard, E.; Bonriposi, M.; Graefe, O.; Homewood, C.; Huss, M.; Kauzlaric, M.; Liniger, H.; Rey, E.; Rist, S.;
Schädler, B.; et al. Interdisciplinary assessment of complex regional water systems and their future evolution:
How socioeconomic drivers can matter more than climate. WIREs Water 2014, 1, 413–426. [CrossRef]

155. Sofia, G.; Roder, G.; Dalla Fontana, G.; Tarolli, P. Flood dynamics in urbanised landscapes: 100 years of
climate and humans’ interaction. Sci. Rep. 2017, 7, 40527. [CrossRef] [PubMed]

156. Westerberg, I.K.; Di Baldassarre, G.; Beven, K.J.; Coxon, G.; Krueger, T. Perceptual models of uncertainty for
socio-hydrological systems: A flood risk change example. Hydrol. Sci. J. 2017. [CrossRef]

157. Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L.; Yan, K.; Brandimarte, L.; Blöschl, G. Debates-Perspectives
on socio-hydrology: Capturing feedbacks between physical and social processes. Water Resour. Res. 2015, 51,
4770–4781. [CrossRef]

158. Gober, P.; Wheater, H.S. Debates-Perspectives on socio-hydrology: Modeling flood risk as a public policy
problem. Water Resour. Res. 2015, 51, 4782–4788. [CrossRef]

159. Loucks, D.P. Debates-Perspectives on socio-hydrology: Simulating hydrologic-human interactions.
Water Resour. Res. 2015, 51, 4789–4794. [CrossRef]

160. Montanari, A. Debates-Perspectives on socio-hydrology: Introduction. Water Resour. Res. 2015, 51, 4768–4769.
[CrossRef]

161. Sanderson, M.R.; Bergtold, J.S.; Heier Stamm, J.L.; Caldas, M.M.; Ramsey, S.M. Bringing the “social” into
socio-hydrology: Conservation policy support in the Central Great Plains of Kansas, USA. Water Resour. Res.
2017, 53, 6725–6743. [CrossRef]

162. Sivapalan, M. Debates-Perspectives on socio-hydrology: Changing water systems and the “tyranny of small
problems”-Socio-hydrology. Water Resour. Res. 2015, 51, 4795–4805. [CrossRef]

163. Troy, T.J.; Pavao-Zuckerman, M.; Evans, T.P. Debates-Perspectives on socio-hydrology: Socio-hydrologic
modeling: Tradeoffs, hypothesis testing, and validation. Water Resour. Res. 2015, 51, 4806–4814. [CrossRef]

164. Di Baldassarre, G.; Kooy, M.; Kemerink, J.S.; Brandimarte, L. Towards understanding the dynamic behaviour
of floodplains as human-water systems. Hydrol. Earth Syst. Sci. 2013, 17, 3235–3244. [CrossRef]

165. Di Baldassarre, G.; Viglione, A.; Carr, G.; Kuil, L.; Salinas, J.L.; Blöschl, G. Socio-hydrology: Conceptualising
human-flood interactions. Hydrol. Earth Syst. Sci. 2013, 17, 3295–3303. [CrossRef]

166. Ciullo, A.; Viglione, A.; Castellarin, A.; Crisci, M.; Di Baldassarre, G. Socio-hydrological modelling of
flood-risk dynamics: Comparing the resilience of green and technological systems. Hydrol. Sci. J. 2016, 62,
880–891. [CrossRef]

167. Ashmore, P. Towards a sociogeomorphology of rivers. Geomorphology 2015, 251, 149–156. [CrossRef]
168. Keiler, M. Geomorphology and Complexity–inseparably connected? Z. Geomorphol. Suppl. Issues 2011, 55,

233–257. [CrossRef]
169. Temme, A.J.A.M.; Keiler, M.; Karssenberg, D.; Lang, A. Complexity and non-linearity in earth surface

processes—Concepts, methods and applications. Earth Surf. Process. Landf. 2015, 40, 1270–1274. [CrossRef]
170. Slater, L.J.; Singer, M.B.; Kirchner, J.W. Hydrologic versus geomorphic drivers of trends in flood hazard.

Geophys. Res. Lett. 2015, 42, 370–376. [CrossRef]
171. Srinivasan, V.; Sanderson, M.; Garcia, M.; Konar, M.; Blöschl, G.; Sivapalan, M. Prediction in a

socio-hydrological world. Hydrol. Sci. J. 2016, 62, 338–345. [CrossRef]
172. Lane, S.N. Acting, predicting and intervening in a socio-hydrological world. Hydrol. Earth Syst. Sci. 2014, 18,

927–952. [CrossRef]
173. Kelly, R.A.; Jakeman, A.J.; Barreteau, O.; Borsuk, M.E.; ElSawah, S.; Hamilton, S.H.; Henriksen, H.J.;

Kuikka, S.; Maier, H.R.; Rizzoli, A.E.; et al. Selecting among five common modelling approaches for
integrated environmental assessment and management. Environ. Model. Softw. 2013, 47, 159–181. [CrossRef]

http://dx.doi.org/10.5194/adgeo-44-9-2017
http://dx.doi.org/10.1029/2011WR011509
http://dx.doi.org/10.5194/hess-21-3655-2017
http://dx.doi.org/10.1002/wat2.1032
http://dx.doi.org/10.1038/srep40527
http://www.ncbi.nlm.nih.gov/pubmed/28079147
http://dx.doi.org/10.1080/02626667.2017.1356926
http://dx.doi.org/10.1002/2014WR016416
http://dx.doi.org/10.1002/2015WR016945
http://dx.doi.org/10.1002/2015WR017002
http://dx.doi.org/10.1002/2015WR017430
http://dx.doi.org/10.1002/2017WR020659
http://dx.doi.org/10.1002/2015WR017080
http://dx.doi.org/10.1002/2015WR017046
http://dx.doi.org/10.5194/hess-17-3235-2013
http://dx.doi.org/10.5194/hess-17-3295-2013
http://dx.doi.org/10.1080/02626667.2016.1273527
http://dx.doi.org/10.1016/j.geomorph.2015.02.020
http://dx.doi.org/10.1127/0372-8854/2011/0055S3-0060
http://dx.doi.org/10.1002/esp.3712
http://dx.doi.org/10.1002/2014GL062482
http://dx.doi.org/10.1080/02626667.2016.1253844
http://dx.doi.org/10.5194/hess-18-927-2014
http://dx.doi.org/10.1016/j.envsoft.2013.05.005


Systems 2018, 6, 9 16 of 17
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