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Abstract: In the context of the modeling and simulation of neural nets, we formulate definitions for
the behavioral realization of memoryless functions. The definitions of realization are substantively
different for deterministic and stochastic systems constructed of neuron-inspired components.
In contrast to earlier generations of neural net models, third generation spiking neural nets exhibit
important temporal and dynamic properties, and random neural nets provide alternative probabilistic
approaches. Our definitions of realization are based on the Discrete Event System Specification (DEVS)
formalism that fundamentally include temporal and probabilistic characteristics of neuron system
inputs, state, and outputs. The realizations that we construct—in particular for the Exclusive Or (XOR)
logic gate—provide insight into the temporal and probabilistic characteristics that real neural systems
might display. Our results provide a solid system-theoretical foundation and simulation modeling
framework for the high-performance computational support of such applications.

Keywords: neural nets; spiking neurons; xor problem; input/output system; system specifications;
Discrete Event System Specification

1. Introduction

Bridging the gap between neural circuits and overall behavior is facilitated by an intermediate
level of neural computations that occur in individual and populations of neurons [1]. The computations
performed by Artificial Neural Nets (ANN) can be viewed as a very special, but currently popular,
instantiation of such a concept [2]. However, such models map vectors to vectors without considering
the immediate history of recent inputs nor the time base on which such inputs occur in real
counterparts [3–5]. In reality, however, time matters because the interplay of the nervous system
and the environment occurs via time-varying signals. Recently, third-generation neural nets which
feature temporal behavior, including processing of individual spikes, have gained recognition [4].

Computing the XOR function has received special attention as a simple example of resisting
implementation by the simplest ANNs with direct input to output mappings [6], and requiring
ANNs having a hidden mediating layer [7,8]. From a systems perspective, the XOR function—and
indeed all functions computed by ANNs—are memoryless functions not requiring states for their
definition [2,9,10]. It is known that Spiking Neural Nets (SNN)—which employ spiking neurons
as computational units—account for the precise firing times of neurons for information coding,
and are computationally more powerful than earlier neural networks [11,12]. Discrete Event System
Specification (DEVS) models have been developed for formal representations of spiking neurons
in end-to-end nervous system architectures from a simulation perspective [10,13,14]. Therefore, it
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is of interest to examine the properties of DEVS realizations that employ dynamic features that are
distinctive to SNNs, in contrast to their static neuronal counterparts.

Although typically considered as deterministic systems, Gelenbe introduced a stochastic model of
ANN that provided a markedly different implementation [15]. With the advent of increasingly complex
simulations of brain systems [13] the time is ripe for reconsideration of the forms of behavior displayed
by neural nets. In this paper, we employ systems theory and a modeling and simulation framework [16]
to provide some formal definitions of neural input/output (I/O) realizations and how they are applied
in deterministic and probabilistic systems. We formulate definitions for the behavioral realization of
memoryless functions with particular reference to the XOR logic gate. The definitions of realization
are substantively different for deterministic and stochastic systems constructed from neuron-inspired
components. In contrast to ANNs that can compute functions such as XOR, our definitions of
realizations fundamentally include temporal and probabilistic characteristics of their inputs, state,
and outputs. The realizations of the XOR function that we describe provide insight into the temporal
and probabilistic characteristics that real neural systems might display.

In the following sections, we review system specifications and concepts for their input/output
(I/O) behaviors that allow us to provide definitions for systems implementation of memoryless
functions. This allows us to consider the temporal characteristics of neural nets in relation to the
functions they implement. In particular, we formulate a deterministic DEVS version of the neural net
model defined by Gelenbe [15], and show how this model implements the XOR function. In this context,
we discuss timing considerations related to the arrival of pulses, coincidence of pulses, end-to-end time
of computation, and time before new inputs can be submitted. We close this section by showing how
these concepts apply directly to characterize the I/O behaviors of Spiking Neural Networks (SNN).
We then derive a Markov Continuous Time model [17] from the deterministic version, and point
out the distinct characteristics of the probabilistic system implementation of XOR. We conclude with
implications about the characteristics of real-brain computational behaviors suggested by contrasting
the ANN perspective and the systems-based formulation developed here. We note that Gelenbe and
colleagues have generated a huge amount of literature on the extensions and applications of random
neural networks. As just described, the focus of this paper is not on DEVS modeling of such networks
in general. However, some aspects related to I/O behavior will be discussed in the conclusions as
potential for future research.

2. System Specification and I/O Behaviors

Inputs/outputs and their logical/temporal relationships represent the I/O behavior of a system.
A major subject of systems theory deals with a hierarchy of system specifications [16] which defines
levels at which a system may be known or specified. Among the most relevant is the Level 2
specification (i.e., the I/O Function level specification), which specifies the collection of input/output
pairs constituting the allowed behavior, partitioned according to the initial state the system is in when
the input is applied. We review the concepts of input/output behavior and their relation to the internal
system specification in greater depth.

For a more in-depth consideration of input/output behavior, we start with the top of Figure 1,
which illustrates an input/output (I/O) segment pair. The input segment represents messages with
content x and y arriving at times t1 and t2, respectively. Similarly, the output segment represents
messages with contents z and z′, at times t3 and t4, respectively.

Figure 1. Representing an input/output pair.
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To illustrate the specification of behavior at the I/O level, we consider a simple system—an adder—all
it does is add values received on its input ports and transmit their sum as output. However simple
this basic adding operation is, there are still many possibilities to consider to characterize its I/O
behavior, such as which input values (arriving at different times) are paired to produce an output
value, and the order in which the inputs must arrive to be placed in such a pairing. Figure 2 portrays
two possibilities, each described as a DEVS model at the I/O system level of the specification
hierarchy. In Figure 2a, after the first inputs of contents x and y have arrived, their values are saved,
and subsequent inputs refresh these saved values. The output message of content z is generated after
the arrival of an input, and its value is the sum of the saved values. In Figure 2b, starting from the initial
state, both contents of messages must arrive before an output is generated (from their most recent
values), and the system is reset to its initial state after the output is generated. This example shows that
even for a simple function, such as adding two values, there can be considerable complexity involved
in the specification of behavior when the temporal pattern of the messages bearing such values is
considered. Two implications are immediate. One is that there may be considerable incompleteness
and/or ambiguity in a semi-formal specification where explicit temporal considerations are often not
made. The second implication follows from the first: an approach is desirable to represent the effects
of timing in as unambiguous a manner as possible.

Figure 2. Variants of behavior and corresponding input/output (I/O) pairs, with (a) saving
input values when they arrived; or (b) resetting to initial state once the output is computed.
White circles indicate states, black circles initial states, and arrows transitions.

3. Systems Implementation of a Memoryless Function

Let f : X → Y be a memoryless function; i.e., it has no time or state dependence [16].
Still, as we have just seen, a system that implements this function may have dynamics and state
dependence. Thus, the relationship between a memoryless function and a system that somehow
displays that behavior needs to be clearly defined. From the perspective of the hierarchy of systems
specifications [16], the relationship involves (1) mapping the input/output behavior of the system to
the definition of the function; and (2) working at the state transition level correctly. Additional system
specification levels may be brought to bear as needed. Recognizing that the basic relationship is
that of simulation between two systems [16], we will keep the discussion quite restricted to limit
the complexities.
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The first thing we need to do is represent the injection of inputs to the function by events
arriving to the system. Let us say that the order of the arguments does not count. This is the case
for the XOR function. Therefore, we will consider segments of zero, one, or two pulses as input
segments, and expect segments of zero or one pulses as outputs. In other words, we are using a very
simple decoding of an event segment into the number of events in its time interval. While simplistic,
this concept still allows arbitrary event times for the arguments, and therefore consideration of
important timing issues. Such issues concern spacing between arguments and time for a computation
to be completed. Figure 3 sketches this approach and corresponding deterministic system for f with
two input ports P1 and P2 receiving contents P and an output port P3 sending a content P.

Figure 3. Deterministic system realization of memoryless function: (a) Input/Output Black Box;
(b) Input and Output Trajectories.

Appendix A gives the formal structure of a DEVS basic model, and Appendix B gives our
working definition of the simulation relation to be used in the sequel. Having a somewhat formal
definition of what it means for a discrete event model to display a behavior equivalent to computing
a memoryless function, we turn toward discussing DEVS models that can exhibit such behaviors for
the XOR function.

4. DEVS Deterministic Representation of Gelenbe Neuron

Figure 4a shows a DEVS model that captures the spirit of the Gelenbe stochastic neuron (as shown
in [15]) in deterministic form. We first introduce the deterministic model to prepare the ground
for discussion of the stochastic neuron in Section 7. Positive pulse arrivals increment the state
up to the maximum, while negative pulses decrement the state, stopping at zero. Non-zero states
down-transition in a time tfire, a parameter. The DEVS model is given as:

DEVS = (X, Y, S, δext, δint, λ, ta)

where,

X = {P+, P−} is the set of positive and negative input pulses,
Y = {P} is the set of plain pulse outputs,
S = {0, 1, 2} is the set of non-negative integer states,
δext(s, e, P+) = s + 1 is the external transition increasing the state by 1 when receiving a positive pulse,
δext(s, e, P+, P+) = s + 2 is the external transition increasing the state by 2 when simultaneously
receiving two positive pulses,
δext(s, e, P−) = max(s− 1, 0) is the external transition decreasing the state by 1 (except at zero) when
receiving a negative pulse,
δint(s > 0) = max(s− 1, 0) is the non-zero states internal transition function decreasing the state by
one (except at zero),
λ(s > 0) = P is the non-zero states output a pulse,
λ(s) = φ is the output sending non-event for states below threshold,
ta(s) = t f ire is the time advance, t f ire, for states above 0, and
ta(0) = +∞ is the infinity time advance for zero passive state.
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See Appendix A for definitions symbols.
Figure 4b shows an input/state/output trajectory in which two successive positive pulses cause

successive increases in the state to 2, which transitions to 1 after tfire, and outputs a pulse. Note that
the second positive pulse arrives before the elapsed time has reached tfire, and increases the state.
This effectively cancels and reschedules the internal transition back to 0. Figure 4c shows the case
where the second pulse comes after firing has happened. Thus, here we have an explicit example of
the temporal effects discussed above. Two pulses arriving close enough to each other (within tfire) will
effectively be considered as coincident. In contrast, if the second pulse arrives too late (outside the tfire
window), it will not be considered as coincident, but will establish its own firing window.

Figure 4. Two-state deterministic Discrete Event System Specification (DEVS) model of
Gelenbe neuron, with (a) DEVS state graph; (b) Closely Spaced Inputs; and (c) Widely
Spaced Inputs. The time elapsed since the last transition is indicated as e ∈ R+,∞

0 .

To implement the two logic functions Or and And, we introduce a second parameter into
the model—the threshold. Now, states greater or equal to the threshold will transition to zero state
in a time tfire and output a pulse. The threshold is set to 1 for the Or, and to 2 for the And function.
Thus, any pulse arriving alone is enough to output a pulse for Or, while 2 pulses must arrive to enable
a pulse for the And. However, there is an issue with the time advance needed for state 1 in the And case
(due to an arrival of a first positive pulse). If this time advance is 0, then there is no time for a second
pulse to arrive after a first. If it is infinity, then the model waits forever for a second pulse to arrive. We
introduce a third parameter, tdecay, to establish a finite non-zero window after receiving the first pulse
for a second one to arrive and be counted as coincident with the first. The revised DEVS model is:

DEVS = (X, Y, S, δext, δint, λ, ta)

where,

X = {P+, P−} is the set of positive and negative input pulses,
Y = {P} is the set of plain pulse outputs,
S = {0, 1, 2} is the set of non-negative integer states,
δext(s, e, P+) = s + 1 is the external transition increasing the state by 1 when receiving a positive pulse,
δext(s, e, P+, P+) = s + 2 is the external transition increasing the state by 2 when simultaneously
receiving two positive pulses,
δext(s, e, P−) = f loor(s− 1, 0) is the external transition decreasing the state by 1 (except at zero) when
receiving a negative pulse,
δint(s > 0) = f loor(s− 1, 0) is the non-zero states internal transition function decreasing the state by
one (except at zero),
λ(s ≥ Thresh) = P is the output sending a pulse for states above or equal threshold,
λ(s) = φ is the output sending non-event for states below threshold,



Systems 2017, 5, 7 6 of 15

ta(s ≥ Thresh) = t f ire is the time advance, t f ire, for states above or equal threshold, and
ta(s < Thresh) = tdecay is the time advance, t f ire, for states below threshold.

5. Realization of the XOR Function

We can use the And and Or models as components in a coupled model, as shown in Figure 5a to
implement the XOR function. However as we will see in a moment, we need the response of the And
to be slower than that of the Or to enable the correct response to a pair of pulses. So, we let tfireOr
and tfireAnd be the time advances of the Or and And response in the above threshold states. As in
Figure 5b,c, pulses arriving at the input ports P1 and P2 are mapped in positive pulses by the external
coupling that sends them as inputs to both components. When a single pulse arrives within the tdecay
window, only the Or responds and outputs a pulse. When a pair of pulses arrive within tdecay window,
the And detects them and produces a pulse after tfireAnd. The internal coupling from And to Or maps
this pulse into a double negative pulse at the input of the Or. Meanwhile, the Or is holding in State 2
from the pair of positive pulses it has received from the input. So long as the tfireOr is greater than
tfireAnd, the double negative pulse will arrive quickly enough to the Or model to reduce its state to
zero, thereby suppressing its response. In this way, XOR behavior is correctly realized.

Figure 5. Coupled Model for XOR Implementation, with (a) XOR Network Description; (b) Single
Input Pulse; and (c) Double Input Pulse. Note that t1 in (c) is the same time in (b), representing the
time an inhibited pulse would have arrived.

Assertion: The coupled model of Figure 5 with tfireAnd<tfireOr<tdecay realizes the XOR function
in the following sense:

1. When there are no input pulses, there are no output pulses,
2. When a single input pulse arrives and is not followed within tfireAnd by a second pulse,

then an output pulse is produced after tfireOr of the input pulse arrival time.
3. When the pair of input pulses arrive within tfireAnd of each other, then no output pulse

is produced.

Thus, the computation time is tfireOr, since that is the longest time after the arrival of the input
arguments (first pulse or second pulse in the pair of pulses case) that we have to wait to see if there



Systems 2017, 5, 7 7 of 15

is an output pulse. Another metric could also be considered which starts the clock when the first
argument arrives, rather than when all arguments arrive.

On the other hand, the time for the system to return to its initial state—and we can send in new
arguments for computation—may be longer than the computation time. Indeed, the Or component
returns to the zero state after outputting a pulse at tfireOr in both single and double pulse input cases.
However, in the first case, the And component—having been put into a non-zero state—only relaxes
back to zero after tdecay. Since tdecay is greater than tfireOr, the initial state return time is tdecay.

6. Characterization of SNN I/O Behaviors and Computations

Reference [5] provides a comprehensive review of SNNs, concluding that they have significant
potential for solving complicated time-dependent pattern recognition problems because of their
inclusion of temporal and dynamic behavior. Maass [11,18,19] and Schmitt [12] characterized third
generation SNNs which employ spiking neurons as computational units, accounting for the precise
firing times of neurons for information coding, and showed that such networks are computationally
more powerful than earlier neural networks. Among other results, they showed that a spiking
neuron cannot be simulated by a Boolean network (in particular, a disjunctive composition of
conjunctive components with fixed degree). Furthermore, SNNs have the ability to approximate any
continuous function [4]. As far as realization of SNN’s in DEVS, the reader may refer to reference [20]
for a generic model of a discrete event neuron in an end-to-end nervous system architecture,
and to [21] for a complete formal representation of Maass’ SNN from a DEVS simulation perspective.
Thus, while there is no question concerning the general ability of SNNs to compute the XOR function,
it is of interest to examine the properties of a particular realization—especially one that employs
dynamic features that are distinctive to SNNs vice their static neuronal counterparts. Here we draw
on the approach of Booij [22], who exhibited an architecture for SNN computation of XOR directly,
as opposed to one that relies on the training of a generic net. Like Booij, we change the input and output
argument coding to restrict inputs and outputs to particular locations on the timeline. Employing
earlier convention, Booij requires inputs to occur at fixed positions, such as either at 0 or 6, and outputs
to occur at 10 or 16. Such tight specifications enable a device to be designed that employs synaptic
delays and weights to be manipulated to rise above or stay below a threshold, as required. However,
the result is highly sensitive to noise, in that any slight change in input position can upset the delicate
balancing of delay and weight effects. In contrast, we employ a coding that enables the inputs to
have much greater freedom of location while fundamentally employing synaptic delays (although we
reduce the essential computation to a static Boolean computation).

As before, we consider the XOR function,

f : X → X

where X = {0, 1, 2}, f (x) = x + 1(mod2).
However, we slightly distinguish the decoding of domain and range. Let g1 : DEVS(ρ)→ {0, 1, 2}

specify the decoding of segments to domain of f . Let g2 : DEVS(ρ)→ {0, 1, 2} specify decoding of
segments to range of f . With βq : DEVS(ρ)→ DEVS(ρ), the I/O function of state q, we require,
∀ω ∈ Ωx, g2(βq(ω)) = f (g1(ω)). In this example, for L > 0, we define g1(ω) = number of pulses in
ω that arrive earlier than L, and g2(ω)= number of pulses in ω that arrive earlier than 2L; i.e., we require
f (number of pulses in ω that arrive earlier thanL) = number of pulses in βq(ω) that arrive earlier than 2L.

The basic SNN component is shown in Figure 6a, which has two delay elements feeding an OR
gate with weights shown. The delay element is behaviorally equivalent to a synaptic delay in an SNN,
and is described as DEVS:

Delay(d) =< {p}, {passive,active}, δext, δint, ta, λ >

where δext(passive, p, e) = active, δint(active) = passive, ta(passive) = +∞, ta(active) = d, λ(active) = p.
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The device rests passively until becoming active when receiving a pulse. It remains active for
a time d (the delay parameter), and then outputs a pulse and reverts to passive. The top delay element
in Figure 6a has delay, L, and is activated by a bias pulse at time 0 to start the computation. If an input
pulse arrives any time before time L, it inhibits the output of the OR; otherwise, a pulse is emitted at
time L. Thus, the net of Figure 6a can be called an L-arrival detector, since it detects whether a pulse
arrives before L and outputs its decision at L. Two such sub-nets are employed in Figure 6b to construct
the XOR solution employing SNN equivalent components. After the initial bias, the incoming pulses,
P1 and P2, each arrive early or late relative to L, as detected by the L-detectors. Moreover, any pulses
output at the L-arrival detectors are synchronized so that they can be processed by a straightforward
XOR gate of the kind constructed earlier (i.e., without concern for timing of arrival). We feed the result
into an L-arrival detector in order to report the output back in the form of a pulse that will appear
earlier than 2L if we start the output bias at L. Thus, the computation time for this implementation is
2L, and as is its time to resubmission. Indeed, it can function like a computer logic circuit with clock
cycle L. Note that unlike Booij’s solution, the solution is not sensitive to exact placement of the pulses,
and realistic delays in the gates can be accommodated by delaying the onset of the second bias and
reducing the output L-detector’s delay.

Figure 6. Implementation of the XOR using Spiking Neural Net (SNN) equivalent components
described in DEVS: (a) L-Arrival Component; (b) XOR Coupled Model.

7. Probabilistic System Implementation of XOR

Gelenbe’s implementation of the XOR [15] differs quite radically from the deterministic one just
given. The concept of what it means for a probabilistic system to realize a memoryless function differs
from that given above for a deterministic one.

Figure 7. Stochastic system realization of a memoryless function.

As illustrated in Figure 7, each argument of the function is represented by an infinite stream of
pulses. A stream is modeled as a Poisson stochastic process with a specified rate. An argument value
of zero is represented by a null stream (i.e., a rate of zero). We will set the rate equal 1 for a stream
representing an argument value of 1. The output of the function is represented similarly as a stream of
pulses with a rate representing the value. However, rather than a point, we use an interval on the real
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line to represent the output value. In the XOR, Gelenbe’s implementation uses an interval [0, α) to
represent 0, with [α, 1] representing 1.

Furthermore, the approach to distinguishing the presence of a single input stream from a pair
of such streams—the essence of the problem—is also radically different. The approach formulates
the DEVS neuron of Figure 4 as a Continuous Time Markov model (CTM) [17] shown in Figure 8,
and exploits its steady state properties in response to different levels of positive and negative input
rates. In Figure 8, the CTM on the left has input ports P+ and P− and output port P. In non-zero
states, it transitions to the next lower state with rate FireRate, which is set to the inverse of tfire,
interpreted as the mean time advance for such transitions in Figure 4. The Markov Matrix model [17]
on the right is obtained by replacing the P+, P− and P ports by rates posInputRate and negInputRate,
resp. Further, the output port P is replaced by the OutpuRate, which is computed as the FireRate
multiplied by the probability of firing (i.e., being in a non-zero state.)

Figure 8. Mapping DEVS Neuron Continuous Time Markov (CTM) model to Markov Matrix model.

As in Figure 9, each input stream splits into two equal streams of positive and negative pulses
by external coupling to two components, each of which is a copy of the CTM model of Figure 8.
The difference between the components is that the first component receives only positive pulses,
while the second component receives both positive and negative streams. Note that whenever two equal
streams with the same polarity converge at a component, they effectively act as a single stream of
twice the rate. However, when streams of opposite polarity converge at a component, the result is
a little more complex, as we now show.

Figure 9. Stochastic coupled model implementation of XOR.

Now let us consider the two input argument cases. Case 1: one null stream, one non-null stream
(representing arguments (0, 1) or (1, 0)); Case 2: two non-null streams (representing (1, 1)). In this
set-up, Appendix C describes how the first component saturates (fires at its maximum rate) when it
receives the stream of positive pulses at either the basic or combined intensities. Therefore, it transmits
a stream of positive pulses at the same rate in both Cases 1 and 2. Now, the second component differs
from the first in that it receives the (constant) output of the first one. Therefore, it reacts differently in
the two cases – its output rate is smaller when the negative pulse input rate is larger (i.e., it is inhibited
in inverse relation to the strength of the negative stream). Thus, the output rate is lower in Case 2,
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when there are two input streams of pulses, than in Case 1, when only one is present. However, since
the output rates are not exactly 0 and 1, there needs to be a dividing point (viz., α as above), to make
the decision about which case holds. Appendix C shows how α can be chosen so that the output rate
of the overall model is below α when two input streams are present, and above α when only one (or
none) is present, as required to implement XOR.

8. Discussion

Discussing the proposition of deep neural nets (DNN) as the primary focus of artificial general
intelligence, Smith asserts that largely as used, DNNs map vectors to vectors without considering the
immediate history of recent inputs nor the time base on which such inputs occur in real counterparts [2].
Note that this is not to minimize the potentially increased ability of relatively simple ANN models to
support efficient learning methods [5]. We do not address learnability in this paper. In reality however,
time matters because the interplay of the nervous system and the environment occurs via time-varying
signals. To be considered seriously as Artificial General Intelligence (AGI), a neural net application
will have to work with time-varying inputs to produce time-varying outputs: the world exists in time,
and the reaction of a system exhibiting AGI also has to include time [2,23]. Third-generation SNNs
have been shown to employ temporal and dynamic properties in new forms of applications that point
to such future AGI applications [4,5]. Our results provide a solid system-theoretical foundation and
simulation modeling framework for high-performance computational support of such applications.

Although typically considered as deterministic systems, Gelenbe introduced a stochastic model
of ANN that provided a markedly different implementation [15]. Based on his use of the XOR logic
gate, we formulated definitions for the behavioral realization of memoryless functions, with particular
reference to the XOR gate. The definitions of realization turned out to be substantively different for
deterministic and stochastic systems constructed of neuron-inspired components. Our definitions of
realizations fundamentally include temporal and probabilistic characteristics of their inputs, state,
and outputs. Moreover, the realizations of the XOR function that we constructed provide insight into
the temporal and probabilistic characteristics that real neural systems might display.

Considering the temporal characteristics of neural nets in relation to functions they implement,
we formulated a deterministic DEVS version of Gelenbe’s neural net model, and showed how
this model implements the XOR function. Here, we considered timing related to the arrival of
pulses, coincidence of pulses, end-to-end time of computation, and time before new inputs can
be submitted. We went on to apply the same framework to the realization of memoryless functions
by SNNs, illustrating how the formulation allowed for different input/output coding conventions
that enabled the computation to exploit the synaptic delay features of SNNs. We then derived
a Markov Continuous Time model [17] from the deterministic version, and pointed out the distinct
characteristics of the probabilistic system implementation of XOR. We conclude with implications
about the characteristics of real-brain computational behaviors suggested by contrasting the ANN
perspective and systems-based formulation developed here.

System state and timing considerations we discussed include:

1. Time dispersion of pulses—the input arguments are encoded in pulses over a time base,
where inter-arrival times make a difference in the output.

2. Coincidence of pulses—in particular, whether pulses represent arguments from the same submitted
input or subsequent submission depends on their spacing in time.

3. End-to-end computation time—the total processing time in a multi-component concurrent system
depends on relative phasing as well as component timings, and may be poorly estimated by
summing up of individual execution cycles.

4. Time for return to ground state—the time that must elapse before a system that has performed
a computation is ready to receive new inputs may be longer than its computation time, as it
requires all components to return to their ground states.
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Although present in third-generation models, system state and timing considerations are
abstracted away by neural networks typified by DNNs that are idealizations of intelligent computation;
consequently, they may miss the mark in two aspects:

1. As static recognizers of memoryless patterns, DNNs may become ultra-capable (analogous to
AlphaGo progress [24]), but as representative of human cognition, they may vastly overemphasize
that one dimension and correspondingly underestimate intelligent computational capabilities in
humans and animals in other respects.

2. As models of real neural processing, DNNs do not operate within the system temporal framework
discussed here, and therefore may prove impractical in real-time applications which impose time
and energy consumption constraints such as those just discussed [25].

It is instructive to compare the computation-relevant characteristics of the deterministic and
stochastic versions of the DEVS neuron models we discussed. The deterministic version delivers
directly interpretable outputs within a specific processing time. The Gelenbe stochastic version
formulates inputs and outputs as indefinitely extending streams modelled by Poisson processes.
Practically speaking, obtaining results requires measurement over a sufficiently extended period to
obtain statistical validity and/or to enable a Bayesian or Maximum Likelihood detector to make
a confidence-dependent decision. On the other hand, a probabilistic version of the DEVS neuron can
be formulated that retains the direct input/output encoding, but can also give probability estimates for
erroneous output. Some of these models have been explored [9,21], while others explicitly connecting
to leaky integrate-and-fire neurons are under active investigation [26]. Possible applications of DEVS
modeling to the extensive literature on Gelenbe networks are considered in Appendix D. Along these
lines, we note that both the deterministic and probabilistic implementations of XOR use the negative
inputs in an essential (although different) manner to identify the (1, 1) input argument and inhibit
the output produced when it occurs (note that the use of negative synaptic weights is also essential in
the SSN implementation, although in a somewhat different form). This suggests research to show that
XOR cannot be computed without use of negative inputs, which would establish a theoretical reason
for why inhibition is fundamentally needed for leaky integrate-and-fire neuron models—a reason that
is distinct from the hidden layer requirement uncovered by Rumelhart [7].

Although not within the scope of this paper, the DEVS framework for I/O behavior realization
would seem to be applicable to the issue of spike coding by neurons. A reviewer pointed to the recent
work of Yoon [27], which provides new insights by considering neurons as analog-to-digital converters.
Indeed, encoding continuous-time signals into spikes using a form of sigma-delta modulation
would fit the DEVS framework which accommodates both continuous and discrete event segments.
Future research could seek to characterize properties of I/O functions that map continuous segments
to discrete event segments [16,20].

Author Contributions: B.P. Zeigler developed the different models in interaction with Alexandre Muzy who
provided his expertise in mathematical system-theory and neural net modeling.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Discrete Event System Specification (DEVS) Basic Model

A basic Discrete Event System Specification (DEVS) is a mathematical structure

DEVS = (X, Y, S, δext, δint, λ, ta),

where X is the set of input events, Y is the set of output events, S is the set of partial states, δext : Q×X→ S
is the external transition function with Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} the set of total states with e
the elapsed time since the last transition, δint : S → S is the internal transition function, λ : S → Y is
the output function, and ta : S→ R0,+

∞ is the time advance function.
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Figure A1 depicts simple trajectories of a DEVS. The latter starts in initial state s0 at time t0,
and schedules an internal event occurring after time advance ta(s0), where value y0 is output, and state
changes to s1 = δint(s0). At time t2, an external event of value x0 occurs, changing the state to
s2 = δext(s1, e1, x0) with e1 the elapsed time since the last transition. Then, an internal event is scheduled
at time advance ta(s1), and so on.

X

t

S

t

Y

t
ta(s0)

s0

s1

s2

s3

s4

s5

y0

y1

y2
y3

y4

y5

t0 t2 t4

e1 ta(s2) ta(s4) ta(s5)

x1x0

e2

Figure A1. Simple DEVS trajectories.

Appendix B. Simulation Relation

Consider a function having the same domain and range,

f : X → X

For example, an XOR function where X = {0, 1, 2}, f (x) = x + 1(mod2). Let,

g : ΩX → X

That is, specify decoding of segments to domain and range of f . Let

βq : ΩX → ΩX

be the I/O Function of state q mapping input segments to output segments.
If βq(ω) = ρ, we require g(ρ) = f (g(ω)); i.e., input segment ω mapped to output segment ρ

when decoded is required to satisfy f . That is, g(βq(ω)) = f (g(ω)). Applying the requirement to
DEVS segments of pulses, let g : DEVS(p) → {0, 1, 2}; i.e., g(ω) = number of pulses in ω requiring
βq : DEVS(p)→ DEVS(p). That is, number of pulses in βq(ω) = f (number of pulses in ω).

Appendix C. Behavior of the Markov Model

We first reduce the infinite state Matrix model to a two-state version that is equivalent with respect
to the output pulse rate in steady state. As in Figure C1, all the non-zero states are lumped into a single
firing state, sFire, and we will interpret each of the probabilities in terms of the original rates as follows:

1. There is only one way to transition from s0 to sFire, and that is by going from s0 to s1 in the original
model, which happens with posInputRate. Therefore, P01 = posInputRate.

2. Similarly, there is only one way to transition from sFire to s0, and this happens with negInputRate+
FireRate. Therefore, P10 = negInputRate + FireRate.
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3. The probability of remaining in the sFire, P11 = 1− P10 (these must sum to 1).
4. Similarly, P00 = 1− P01.

Figure C1. Reduction to two-state Markov Matrix model.

Now, in the reduced model, the steady state probabilities are easy to compute in terms of
the transition probabilities. Indeed, the probability of being in the firing state, PFire =

P01
P01+P10 = 1 for

P01 ≈ 1.
Additionally, the rate of producing output pulses

OutputRate = PFire × FireRate =
posInputRate

posInputRate + negInputRate + FireRate
× FireRate

The case of saturation occurs when the positive input rate is “very large" compared to
the rates that lower the state, especially when the negative input rate is 0, so that PFire = 1 and
OutputRate = FireRate.

Thus, the output of the first component saturates at the maximum, FireRate. This is input to
the second component so that we have for it:

OutputRate = PFire × FireRate

=
FireRate

FireRate + negInputRate + FireRate
× FireRate

=
FireRate

2 +
negInputRate

FireRate

So, we see that the output rate is inversely related to the negative pulse input which, by design,
the second component receives, but not the first.

Appendix D. Possible Applications of DEVS Modeling to Random Neural Networks

Random neural network (RNN)—a probabilistic model inspired by neuronal stochastic spiking
behavior—have received much examination. Here we focus on two main extensions: synchronous
interaction and spike classes. Gelenbe developed an extension of the RNN [28–33] to the case
when synchronous interactions can occur, modeling synchronous firing by large ensembles of cells.
Included are recurrent networks having both conventional excitatory–inhibitory interactions and
synchronous interactions. Although modeling the ability to propagate information very quickly over
relatively large distances in neuronal networks, the work focuses on developing a related learning
algorithm. Synchronous interactions take the form of a joint excitation by a pair of cells on a third
cell. One can assign Q(i, j, m) as the probability that when cell i fires, then if cell j is excited, it will
also fire immediately, with an excitatory spike being sent to cell m. This synchronous behavior can
be extended to an arbitrary number of cells that can simultaneously fire. DEVS modeling includes
zero time advance possibility to capture such behavior, as was illustrated in application to physical
action-at-a-distance by Zeigler [14]. The standard RNN approach has been concerned with equilibrium
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analysis, and it may be interesting to see how the DEVS equivalent modeling can throw light on
the plausibility of such zero time advances and any difference they would make in the temporal I/O
behavior of interest to us here.

RNNs with multiple spike classes of signals were introduced to represent interconnected neurons
which simultaneously process multiple streams of data, such as the color information of images or
networks which simultaneously process streams of data from multiple sensors. One network was used
to generate a synthetic texture that imitates the original image. To exchange spikes of different types,
neurons have potentials that generate corresponding excitatory spikes in a manner similar to the single
potential case. Inhibitory spikes are of only one type, and affect class potential in proportion to their
levels. DEVS models can represent such neurons, but there seems to be no evidence for biological
plausibility of such a structure. It would be interesting to see if the structure and behavior manifested
by multi-class RNNs can be realized by groups of ordinary neurons in the roles of spike processing
classes; e.g., interacting cell assemblies specifically tuned to red, green, and blue color wavelengths.
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