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Abstract: Agent based modelling has been widely accepted as a promising tool for urban 

planning purposes thanks to its capability to provide sophisticated insights into the social 

behaviours and the interdependencies that characterise urban systems. In this paper, we 

report on an agent based model, called TransMob, which explicitly simulates the mutual 

dynamics between demographic evolution, transport demands, housing needs and the 

eventual change in the average satisfaction of the residents of an urban area. The ability to 

reproduce such dynamics is a unique feature that has not been found in many of the like 

agent based models in the literature. TransMob, is constituted by six major modules: 

synthetic population, perceived liveability, travel diary assignment, traffic micro-simulator, 

residential location choice, and travel mode choice. TransMob is used to simulate the dynamics 

of a metropolitan area in South East of Sydney, Australia, in 2006 and 2011, with demographic 

evolution. The results are favourably compared against survey data for the area in 2011, 

therefore validating the capability of TransMob to reproduce the observed complexity of an 

urban area. We also report on the application of TransMob to simulate various hypothetical 

scenarios of urban planning policies. We conclude with discussions on current limitations of 

TransMob, which serve as suggestions for future developments. 
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1. Introduction 

The growing population in many parts of the world is highly urbanised and the complexity of large 

cities make urban planning increasingly challenging. Urban planners need not only tools that help 

realistically predict the demands of the urban population (e.g., transport and housing), but more 

importantly those that give sophisticated insights into social behaviours and the interdependencies that 

characterise urban systems. Traditional and widely applied Land Use Transport (LUT) models are 

relatively computationally inexpensive and comprehensive in simulating the spatial dependency 

between land use and transport planning. They are however nondynamic, failing to capture the processes 

(i.e., learning and decision making) that are instrumental to social behaviours and thus unable to provide 

a microscopic view of urban systems [1]. Agent based modelling, with its ability to computationally 

reproduce individuals and households together with their characteristics and behaviours, has been widely 

adapted in assisting urban planning process. 

Indeed agent based models for urban planning purposes have been increasingly introduced over the 

last decades. Miller et al. [2] developed the ILUTE (Integrated Land Use, Transportation, Environment) 

software to simulate the evolution of the whole Toronto region in Canada with approximately 2 million 

households and 5 million people over an extended period of time. Besides giving useful information to 

analyse a wide range of transport and other urban policies, ILUTE also explicitly models travel demand 

as an outcome of the integration between individual and household decisions based on activities that 

they commence during a day. Raney et al. [3] presented a multi-agent traffic simulation for all of 

Switzerland with a population of around 7 million people. Balmer et al. [4] demonstrated the flexibility 

of agent based modelling by successfully developing an agent based model that satisfactorily simulate 

the traffic demands of two scenarios: (i) Zurich city in Switzerland with 170 municipalities and 12 districts; 

and (ii) Berlin/Brandenburg area in Germany with 1008 traffic analysis zones. Many other agent based 

models for transport and urban planning can be found in the literature, with different geographical scales 

and at various levels of complexity of agent behaviours and autonomy [5–14]. They proved that with a 

large real world scenario, agent based modelling, while being able to reproduce the complexity of an 

urban area and predict emergent behaviours in the area, can have no significant performance issues [12]. 

They also show that for traffic and transport simulation purposes, agent based modelling has been 

considered as a reliable and well worth developing tool that planners can employ to build and evaluate 

alternative scenarios of an urban area. It is worth noting that in many models that have been reported in 

the literature, the dynamic interactions between demographic evolution, the resulting transport/traffic 

demands, and residential mobility (and thus housing demands) were not explicitly simulated. In a bid to 

bridge that gap, we propose in this paper an agent based model that encapsulates such dynamics and, 

more importantly, the resulting changes in the liveability perception of the population in an urban area. 

The model, called TransMob, was developed to capture the population and its dynamics for a 

metropolitan area in South East Sydney in New South Wales (NSW), Australia. The underlying 

modelling framework however is transferable and readily applicable for modelling any (larger) area and 

population provided that the supporting data is available. 

Individuals are represented in this model as autonomous decision makers that make decisions 

affecting their environment (i.e., travel mode choice and relocation choice) as well as decisions in 

reaction to changes in their environment (e.g., family situation, employment). More importantly, they 
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are associated with each other by their household relationship, which not only define interdependencies 

of their transport demands and housing needs but constrain their decision makings (e.g., in relation to 

transport mode and residential relocation). With respect to transportation, each individual has a travel 

diary, which comprises a sequence of trips the person makes in a representative day as well as trip 

attributes including origin, destination, travel mode, trip purpose, and departure time. The actual travel 

time of trips on the road network (e.g., by private cars) in the study area is simulated by a novel traffic 

micro-simulator, where each agent has a neural network that perceives local traffic condition and then 

this allows for the dynamic re-routing of trips during the simulation. Outputs of the traffic micro-simulator 

(e.g., actual travel time and traffic density) then partly inform the decision making of an individual of 

transport mode choice and change in his/her liveability perception of the neighbourhood. 

The remaining of the paper is organised as below. The six major computational modules that 

constitute TransMob, including the novel traffic micro-simulator, are presented in Section 2. Please note 

that details of these six modules have been peer-reviewed and published elsewhere, and thus enhance 

the credibility of TransMob. Section 2 therefore gives only an overview of their functionality and how 

they were developed. The prime purpose of the present paper is reporting how these individual modules 

fit together for integrated simulation and analysis of the dynamics of an urban system. Section 3 presents 

the validation of TransMob against a number of survey datasets including demographics attributes, 

transport demands, and housing demands. Section 4 demonstrates the application of TransMob for 

exploratory study of emergent behaviours of an urban area via a number of hypothetical scenarios of 

planning policies. Section 5 discusses limitations in the current version of TransMob and suggestions 

for future developments. 

2. Computational Modules of TransMob 

Six major modules interacting with each other constitute the core of TransMob: Synthetic population, 

Perceived liveability, Travel diaries, Traffic micro-simulator, Transport mode choice and Residential 

relocation choice. These six modules are designed to capture the mutual dynamics of key elements of an 

urban area with regards to transport and land use. More specifically, thanks to these modules, TransMob 

is able to predict the change of demographics in the urban area of interest, how this change impacts 

housing and transport needs of the population and the way they make collective decisions regarding 

relocation. The traffic micro-simulator enables TransMob to translate such transport needs of the 

population into traffic density on the road network and the travel experience of the population (in terms 

of travel time). TransMob uses this information not only to update the individuals’ satisfaction to their 

neighbourhood, but also to help individuals and households make their travel mode decisions. 

An overview of each of the modules, the interactions between them along with their supporting 

dataset are given in Figure 1 and the subsections below. The datasets required are the Census data, the 

Journey to Work (JTW) data, the Household Travel Survey (HTS) data, Computer Assisted Telephone 

Interviewing (CATI) data, Geospatial Information System (GIS) data of the road network and the 

Household, Income and Labour Dynamics in Australia (HILDA) data. Extensive details on the 

TransMob architecture and integration of these modules are given in [15]. 
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Figure 1. Computational modules of TransMob. 

2.1. Synthetic Population 

A synthetic population is instrumental in any agent based model that simulates social behaviours 

particularly in relation to transport and residential mobility. The synthetic population in TransMob serves 

the same purpose as its counterpart did in agent-based models for transport and land use simulation 

previously reported in the literature [2–14]. More specifically, it is a valid computational representation 

of the real population in the study area that matches the distribution of individuals and households as per 

the demographics from census data. The synthetic population module in TransMob is responsible for 

two tasks, constructing the initial synthetic population and evolving the synthetic population at every 

simulation step. 

The algorithm constructing initial population in TransMob follows the sample-free approach and is 

among the very few in the literature that do not rely on a sample survey data to construct a synthetic 

population, even though it can take advantage of such data to improve the quality of the synthetic 

population. The generator relies solely on aggregated demographics attributes of the target area  

(i.e., tables in census data) and is further constrained by biological laws (e.g., the mother-child age gap). 

The resulting population comes in the form of disaggregated records, each represents a synthetic 

individual characterised by six attributes including age, gender, household relationship, household type, 

identification of the synthetic household he/she belongs to, and the identification of the travel zone the 

synthetic household resides in. Full details on the algorithm for constructing a synthetic population for 

agent based modelling purposes that was used in TransMob can be found in [16]. Travel zones are 

geographical units that the Bureau of Transport Statistics (Transport for NSW, Australia) used at the 

time the model was developed for data collection, transport modelling and analysis. Key land use 

attributes defining travel zones include employment, housing and transport infrastructure. For trip 

generation purposes, travel zones are configured so that they are relatively smaller for areas with high 

land use densities and larger for those with lower densities [17]. In TransMob, travel zones are used as 

geographical unit for the modelling and analysis of transport demand (e.g., informing the location of trip 

destinations), perceived liveability and residential relocation choices of individuals and households. 

The evolution of the synthetic population involves the aging of each individual and the simulation of 

age-dependent life events (death, birth, divorce, and marriage). The occurrence of these life events 

influences both individuals as well as household entities, i.e., the consequent changes in the structured 

of households as a results of individual evolution are captured. A divorced couple, for example, creates 
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a new household one of the divorcees will move into. The existing household and remaining residents 

will have their relationship status changed accordingly, so do their transport and housing needs. The 

evolution steps are summarised in Figure 2. Full details of the evolution algorithms can be found at [18]. 

An immigration population may be added to the existent population of the study area at the end of each 

simulation step. 

 

Figure 2. Steps of synthetic population evolution. 

2.2. Perceived Liveability 

A significant departure of the current model to other existing approaches is the assumption that 

residential location choice is based not only on availability and affordability principles but also on the 

perception that individuals have of the quality of the environment in which they live. The perceived 

liveability component uses a semi-empirical model to estimate individual levels of attraction to and 

satisfaction with specific locations. The semi-empirical model is a statistical weighted linear model 

calibrated on a CATI survey data collected in the study area. Full details of the survey and the  

semi-empirical model built from the model can be found in [19,20]. 

2.3. Travel Diaries 

Each individual in the synthetic population is assigned with a travel diary which comprises a sequence 

of trips the person makes in a representative day as well as trip attributes such as travel mode, trip 

purpose, departure time, origin and destination. Because these details of travel behaviours of the 

population are not completely available in any single source of data (for confidentiality reasons), the 

process of assigning travel diaries to individuals comprises two steps. The first step assigns a trip 

sequence each individual makes in a representative day using the HTS data. Details of each trip in this 
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trip sequence include trip purpose, travel mode, and departure time. The second step assigns locations 

to the origin and destination of each trip in the trip sequence, supported by the JTW data. Full details of 

semi-deterministic algorithm that assigns trip sequence to a synthetic individual are given in [21]. Full 

details of an algorithm that allocates origin and destination to trips, as well as an algorithm for updating 

travel diaries of the evolved population at every simulation step are given in [22]. 

2.4. Traffic Micro-Simulator 

Traffic flows simulation is the natural follow up of the travel demand forecast (i.e., travel diaries) 

performed in Section 2.3. The traffic micro-simulator is in charge of executing the daily plans of the 

agents, hence reproduce the dynamics of traffic density on the road network. It resembles the central 

part of established traffic micro-simulators such as MATSim [23], TRANSIMS [24], DynaMIT [25] and 

AIMSUN [26]. 

The aforementioned traffic micro-simulators typically compute a (stochastic) user equilibrium by 

means of iterative simulations. These successive steps generate traffic flows until the travel time of each 

agent becomes stationary. At the end of every step, the performance of each agent is assessed and the 

micro-simulator modifies the plans of the most problematic agents (e.g., by assigning a new path or 

modifying the departure time). Consequently this iterative nature might results in a high computational 

cost, in particular when the number of agents is large and/or the road network is complex [27]. 

Furthermore these equilibrium approaches rely on strong assumptions and have several limitations now 

well identified [28]. Hence we opt for a behavioural approach in building a traffic micro-simulator  

in this study. 

An original dynamic traffic assignment (DTA) model relying on reactive and autonomous agents has 

then been chosen as the traffic-micro simulator in TransMob. This new DTA scheme relies on the 

assumption that travellers take routing policies rather than paths: each agent has the ability to apply a 

strategy letting him or her to possibly re-route his/her path depending on the perceived local traffic 

conditions and time already spent travelling. The re-routing process allows the agents to be truly 

autonomous as they can directly react to any change in the road network, a major deviation from the 

more classical approaches where the agents follow predefined plans. This ability given to the agents 

removes the need of restarting the whole simulation process and consequently decreases the computational 

cost with respect to more classical equilibrium approaches. For the sake of simplicity, the strategy is 

modelled using a simple neural network [29]. The inputs of such neural network read the local 

information about the road network and the output gives the action to undertake, stay on the same path 

or modify it. As the agents use only local information, the overall road network topology does not really 

matter, thus the strategy is able to cope with large road networks, i.e., the model is highly scalable [29]. 

The micro-simulator current implementation relies on the C++ programming-language-based Repast 

for High Performance Computing (HPC) modelling platform [30]. The outcome is a highly efficient 

software being able to run on simple workstation as well as HPC facilities, taking advantage of their 

multiple computational cores. For instance, the simulation of 100,000 agents performing a total number 

of 360,000 trips over a day (24 h period) and moving across a road network consisting of 7000 nodes 

and 17,000 links required only 1/16th of the computational time needed by TRANSIMS for a single 

iteration (The numerical experiments for TRANSIMS and our model have been performed on an Intel® 
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Core™ i5-4570 with 16 GB of RAM). More specifically on the computational time, TRANSIMS took 

approximately 24 h for one iteration, MATSim took around 0.5 h for 20 iterations and our behavioural 

traffic micro-simulator took 1.5 h for one iteration. 

2.5. Transport Mode Choice 

The purpose of the travel mode choice algorithm is to accurately describe the decision-making 

processes of individuals travelling on the transport network in the study area, thus enabling the prediction 

of the choice of travel modes of individuals in the population. Travel modes considered in this study are 

car driver, car passenger, public transport, taxi, bicycle, walk, and others. 

A multinomial logit (MNL) model is developed for this purpose. At the heart of the MNL formulation 

is a linear part-worth utility function that calculates the utility of each alternative travel mode choice. 

Independent variables for this function include the difference of fixed cost and difference of variable 

cost of the selected travel mode with the cheapest mode [31]. The variable cost is dependent on the 

estimated travel time, which is the output of the traffic micro-simulation. Another independent variable 

is the individual’s income, acting as a proxy for the individual’s perception of value of time. Multinomial 

logit regression is used on the HTS data to estimate the utility coefficients vector for the possible travel 

modes. Full details on the development of this multinomial logit model for transport mode choice can 

be found in [32]. 

2.6. Residential Relocation Choice 

Household relocation modelling is an integral part of both the residential and transport planning 

processes, as household locations determine demand for community facilities and services, including 

transport network demands. The approach used to model residential location choice includes two distinct 

processes: the decision to relocate, and the process of finding a new dwelling. A multinomial logit model 

is used to represent the process by which households make decision to relocate. The attributes of this 

model are change in household income, change of household configuration (e.g., having a newborn, 

divorced couples, newly wed couples), and the tenure of the household. The data from the HILDA survey 

is used to regress the coefficients associated to each of these attributes needed in the binomial logit 

model. Full details on the development of the model for triggering household relocation can be found in [33]. 

Once a household is selected for relocation, the second decision determines where the household will 

relocate and whether they will be renting or buying a dwelling in the target location, if a suitable dwelling 

is found. This process of finding a new dwelling is modelled as a constraint satisfaction process, whereby 

each household will attempt to find a suitable dwelling based on three factors, availability, liveability, 

and affordability. 

With regards to housing availability, the initial simulated dwelling stock for four categories of house 

size (1 bedroom, 2 bedrooms, 3 bedrooms, and more than 3 bedrooms) is calibrated from the census data 

in 2006 and distributed across all travel zones. The dwelling stock from census data in 2011 is used to 

interpolate the dwelling availability in each year in between and into the future (via linear extrapolation). 

Alternatively, TransMob accepts user input for dwelling stocks in each dwelling category (house size) 

for each travel zone to facilitate the examination of housing supply scenarios. These user-input tables of 

housing stock will override the interpolated/extrapolated data. 



Systems 2015, 3  184 

 

 

With regards to dwelling pricing model, the sale and rental prices in travel zones in the study area are 

determined from the data provided by the Bureau of Transport Statistics (part of the Government 

department known as Transport for New South Wales, Australia) on the average sale prices. The Rent 

and Sales Report published by the New South Wales Department of Family and Community Services is 

also used to approximate the sale and rental price for different house size categories. In the current 

version of TransMob, the house prices are kept static over time, a limitation of our model due to the lack 

of data. 

The algorithm for simulating the process of finding a dwelling of a household is presented in Figure 3. 

First the house size (in terms of number of bedrooms) required by the relocating household is 

heuristically decided based on the number of adults (over 15 years old), whether they are a couple, and 

the number of children in the household. It is assumed in TransMob that the relocating household will 

look for houses that have the number of bedrooms equal to or maximum of one higher than the number 

bedrooms required. Travel zones with at least one vacant dwelling satisfying this dwelling size is added 

into a list of travel zones to be considered. The relocating household then looks into the most liveable 

travel zone in the list and decides if it can afford to buy a property there. If not, it searches into the next 

most liveable travel zone, and so on. If the household cannot afford buying any property in the listed 

travel zones, it will then re-search the list, starting with the most liveable ones, for a property that it can 

afford to rent. If eventually the relocating household is unable to afford to either buy or rent a property 

in any of the listed travel zones, it is considered relocated to outside of the study area and is removed 

from the model. 

 

Figure 3. Algorithm for simulating the search for an affordable dwelling of a  

relocating household. 

Note that the modelling of dwelling affordability of a household is simplified in TransMob to ensure 

the correct focus is placed in the target dynamics of residential relocation choice. The purpose of the 

model is not to measure the economic dynamics of housing markets, but rather the residential migration 

rates and mobility patterns. To this end, a simple algorithm has been used to account for cumulative 
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equity of a household. If a household is paying mortgage, the mortgage repaid is added to its equity at 

the end of each simulation step. If a household is renting, it has savings that will be used in considerations 

of buying a property in the future simulation steps. This savings rate is assumed one third of household 

income per annum, in line with [34]. In the search for an affordable property to relocate (as described in 

Figure 3), a household compares its weekly total income with the weekly mortgage payment or rental 

cost. If the household’s weekly income is higher than the repayments on the dwelling price (including 

stamp duty) with an assumed 7% interest, distributed using the standard monthly payment formula on a 

fixed rate mortgage over a nominal thirty-year payment period, then the dwelling is deemed affordable 

for purchase. If the income is not greater than the estimated mortgage payment, but is greater than the 

rental cost, the dwelling may be rented. Over time, changes in household income will only occur when 

individuals in the household change employment status as decided as part of the synthetic population 

evolution (described in Section 2.1). Given that household costs remain static over time in our model 

(due to a lack of data), this formulation will not lead to any significant rises or decreases in the number 

of affordable dwellings available to a household as income will not change unless an individual in the 

household changes job. This model of dwelling affordability is acknowledged to be a gross 

simplification of the process of residential relocation. However, given that the focus of the model is to 

provide representative impacts of residential relocation, it is considered that these assumptions are valid 

for the purposes of the model. 

3. Validations of Simulation Results 

TransMob is applied to simulate the dynamic interactions between population growth, transport 

demands and urban residential mobility for a metropolitan area consisting of Randwick and Green 

Square in the south east of Sydney, Australia. The simulation period is from 2006 to 2011, the year that 

we last have census data for, where each simulation step represents a year. For each year, however, the 

simulation is carried out for one representative day. It is for this day that the travel patterns of the 

population are modelled and simulated. Variation of the travel patterns from one day to another (due to 

weather or mood swing for example) is not informed in the Household Travel Survey Data (which is the 

main data source for modelling travel demand in this study), or anywhere else, and thus is not simulated 

in TransMob. We acknowledge that there are likely considerable differences between travel patterns of 

a representative weekday and those of a representative weekend. Modelling travel patterns of a 

representative weekend will be considered as part of future developments of TransMob. 

Having said that, the insights that are gained from studying/modelling the travel patterns of a 

representative workday would be sufficient for urban transport planning purposes. This is because 

workdays normally have the majority in a calendar year, normally have higher travel demands and thus 

pose more stress on the road network compared to weekend and holidays. Also such limitation is fine 

for a simulation model for strategic planning purposes. The impacts of travel patterns due to special 

events (e.g., carnivals) can be studied by designing a specific scenario inputted into TransMob. 

In order to validate the capability of TransMob in reproducing observed complexity of an urban area, 

the final simulation results are rigorously compared against all the real life datasets available in 2011 

across various attributes of the study area, including population demographics, housing structures, 

transport demands, and road traffic density. 
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3.1. Validation of Population Demographics 

The study area has approximately 106,000 individuals living in around 48,000 households that reside 

in private dwellings. The initial population is constructed using the 2006 census data, released by the 

Australian Bureau of Statistics (ABS). This initial synthetic population is validated by Huynh et al. [18] 

that it matches the demographics of the real population at both individual level and household level, and 

thus is a realistic computational representation of the real population in the study area [18]. 

The demographics of the synthetic population at the end of the simulation are compared against the 

census data of the study area available in 2011 (released by ABS) at both individual level (Figure 4) and 

household level (Figure 5). Please note that census data in 2011 is the latest that can be used to validate 

the demographics evolution from 2006. The next census will not be available until 2016, which we are 

keen to use to further validate the evolution. A full description of household types being simulated in 

TransMob using the household types as given in the source census data is listed in Table 1. 

Note that due to the lack of relevant data and in order to preserve the demographics at the household 

level, we assume a net 300 households equally distributed across the 17 household types immigrating 

into the study a year. These households are randomly drawn from the initial synthetic population  

(year 2006) and added to the population in each year. TransMob also accepts user input for the 

demographics of immigrants in each year to allow for the examination of changes of demographic 

structure due to immigration policies. Such user input will overwrite the default values of immigrants 

predefined in the model. 

  

(a) (b) 

Figure 4. Proportion of males and females by household relationship in study area in  

(a) 2006 and (b) 2011. 
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(a) 

 

(b) 

 

(c) 

Figure 5. Proportion of household types in study area (a) in 2006 by number of residents 

and number of households; (b) in 2011 by number of households; (c) in 2011 by number  

of residents. 
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Table 1. Household type in census data and their denotation in the synthetic population  

in TransMob. 

Census Data Denotation in Synthetic Population 

Couple family with no children HF1 

Couple family with children under 15 and  

dependent students and non-dependent children HF2 

dependent students and no non-dependent children HF3 

no dependent students and non-dependent children HF4 

no dependent students and no non-dependent children HF5 

Couple family with no children under 15 and  

dependent students and non-dependent children HF6 

dependent students and no non-dependent children HF7 

no dependent students and non-dependent children HF8 

One parent family with children under 15 and  

dependent students and non-dependent children HF9 

dependent students and no non-dependent children HF10 

no dependent students and non-dependent children HF11 

no dependent students and no non-dependent children HF12 

One parent family with no children under 15 and  

dependent students and non-dependent children HF13 

dependent students and no non-dependent children HF14 

no dependent students and non-dependent children HF15 

Other family HF16 

Non family household NF 

The comparisons in Figures 4 and 5 show that TransMob, while simulating the evolution of the 

population discretely at individual level, is able to predict reasonably well the demographic distributions 

of the whole population in 2011. More specifically, Figure 4 shows that in 2011, synthetic households 

of types NF, HF1, and HF5 maintain relatively higher proportions in the population compared to other 

household types. The figure also shows a slight drop in the proportions of household types HF3 and 

HF12 compared to 2006, whereas those of other household types remain relatively unchanged. At an 

individual level, TransMob successfully predicts that individuals in a relationship (married or de facto) 

occupy a higher proportion in the population compared to other individual types. The proportions of 

lone parents are relatively much lower, with significantly higher number of female lone parents 

compared to male lone parents. 

However, there are mismatches in the simulation results of evolution compared to the 2011 census 

data. For example, TransMob fails to match the proportions of group household members and lone 

persons. It is also unable to predict the drop of non-family households in 2011 compared to 2006. These 

deviations could be attributed to a number of factors. Firstly, the age dependent evolution rates that drive 

the evolution through each of the 5 years in the simulation are for the whole of Australia in 2006. These 

rates thus when applied to the population in a much smaller urban area are prone to produce discrepancies 

between the predicted population and the census data for the area. The evolution algorithm in its current 

design is also unable to capture the complexity in the dynamics of urban households, for example adult 

children leaving their parent’s house, and the formation of three (or) more generation households. 
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3.2. Validation of Housing Structures 

Based on the 2011 census data on ownership status by number of bedrooms by travel zones (released 

by ABS), the relation between the percentage of small dwellings in a travel zone and the percentage of 

small dwellings being rented in that travel zone is plotted for all travel zones in the study area (blue dots 

in Figure 6). The same relation for large dwellings is also plotted in Figure 6 (red dots). We define small 

dwellings as those having two or less bedrooms, and large dwellings as those having three bedrooms or 

more. The two sets of data points show that across the study area, travel zones that have a smaller 

proportion of small houses tend to have less of them occupied under a rental arrangement. The opposite 

trend applies to larger dwellings, i.e., travel zones that have a larger proportion of larger dwellings tend 

to have more of them occupied by homeowners. 

 

Figure 6. Distribution of rented dwellings by house size for travel zones in study area in 

census (ABS) data for 2011. 

The two distributions for small and large dwellings from the simulation results are plotted in Figure 7, 

which reflect the same trends that are observed in census data. This validates that the (simplified) 

algorithm of housing affordability in TransMob can reasonably reproduce the reasoning processes of 

people when choosing relocating to a new house. It is, however, not perfect, particularly with the 

assumptions that we made (see Section 2.6), and this explains the deviations between the simulation 

results and the census data. These assumptions, particularly on house prices and household equity, can 

be relaxed provided relevant data is made available to the model. 
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Figure 7. Distribution of rented dwellings by house size for travel zones in study area from 

TransMob for 2011. 

3.3. Validation of Travel Demands 

Figures 8 and 9 respectively show the percentage of trips by travel mode and trip purpose with respect 

to the number of trips made by the whole population for year 2006 (initial year) and year 2011 (the final 

simulation year). Figure 10 compares the percentage of individuals in the synthetic population against 

that in the HTS data by the number of trips made daily. The distributions of simulation results in these 

graphs are in very good agreement with the HTS data for the whole Sydney Greater Metropolitan Area. 

Note that the HTS data used for comparisons in Figures 8 to 10 is the collective data of years from 2006 

to 2011. This is to comply with the suggestion that three or more years of data are pooled to give reliable 

estimates of travel at a particular geographical level [35]. 

 

Figure 8. Percentage of trips by modes from simulation years 2006 and 2011 versus  

2006–2011 HTS data. 
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Figure 9. Percentage of trips by purposes from simulation years 2006 and 2011 versus  

2006–2011 HTS data. 

 

Figure 10. Percentage of population by number of daily trips for simulation years 2006 and 

2011 versus 2006–2011 HTS data. 

Figure 11 presents trip counts by trip purposes over 24 h of a representative day in year 2011. 

TransMob not only satisfactorily reproduces the peak of trips to work and trips to school between  

8.00 am and 9.00 am; it shows that the count of work trips is higher than that of school strips at earlier 

hours (6.00 am–8.00 am), which reflects early workers. Trips to work also have a smaller peak between 

1.00 pm and 2.00 pm to reflect afternoon and/or night shifts. Trips for shopping, social activities, 

recreational and personal services reach their peak at around 9.00 am to 12.00 midday and gradually drop 

in the afternoon. These observations affirm that TransMob can generate plausible patterns of travel demand 

of the population in the study area as well as the change of these patterns as the population evolves. 
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Figure 11. Trip counts by purposes over 24 h of a representative day in year 2011. 

3.4. Validation of Road Traffic Density 

Traffic density from the behavioural dynamic traffic assignment model (described in Section 2.4) on 

road links around the University of New South Wales at 8:00am are compared against the corresponding 

congestion real-world profiles from Google Traffic [36], as shown in Figure 12. The novel micro-traffic 

simulator incorporated into TransMob is able to reproduce relatively accurately the observed congestion 

patterns from Google Traffic. Figure 13 shows that the simulated congestion level of every road link on 

the road network in the study area at 8.00 am, which highlights Anzac Parade (the major artery running 

across the area) as the most congested, agreeing with the observed traffic in real life. However such 

agreements do not occur on all parts of the road network. This can be due to missing data from Google 

Traffic (or Google’s sources) and/or the assumptions of the traffic model as a closed system (i.e.,  

no through traffic in the study area). Another source of discrepancies comes from the randomness in 

assigning a location to the destination of trips in the travel diary of the synthetic population. While the 

assignment of a destination location to work related trips is constrained by Journey to Work data, the 

randomness in assigning destination locations to trips of other purposes does not guarantee a realistic 

representation of traffic profiles in the model. Note that non-work trips have a significant proportion in 

the total number of trips made by the population in the study area (see Figures 9 and 11). 
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(a) (b) 

Figure 12. Traffic density around the University of New South Wales at 8.00 am. (a) From 

the behavioural traffic micro-simulator; (b) From Google Traffic. 

 

Figure 13. Saturation of road network in the study area at 8.00 am. 

In order to benchmark the novel behavioural dynamic traffic assignment model against a traditional 

and widely recognised traffic micro-simulator, the results from the novel simulator are compared against 

the outputs from MATSim using the same set of inputs of travel demands and road network. In Figure 14, 

the traffic counts over the full simulation period (24 h) from the behavioural dynamic traffic assignment 

model and from MATSim are represented by the horizontal axis and the vertical axis, respectively. Each 

data point in the figure represents the traffic counts from our new traffic model and from MATSim for 

a road link. The strong positive correlation between the counts as observed in the figure (Pearson 

correlation coefficient of 0.905) indicates that our new traffic model produces traffic patterns similar to 
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those from MATSim. This is an encouraging outcome for a work-in-progress traffic micro-simulator, 

particularly in considering that it originates from agent-based modelling paradigm that allows for 

emergent behaviours of vehicle drivers, including dynamic rerouting during the simulation. 

 

Figure 14. Benchmarking the behavioural traffic micro-simulator against MATSim. 

4. Results and Discussion 

The previous section has presented the comparisons of TransMob results against various survey data 

in a bid to validate its capability in satisfactorily reproducing the observed complexity of the dynamics 

of the selected urban area. The current section will demonstrate the application of TransMob for 

exploratory study of emergent behaviours of an urban area via a number of hypothetical scenarios of 

planning policies. The simulation period is 20 years for all scenarios starting in 2006. Details of the 

simulated scenarios are as follows 

- Scenario 1 (base line): This is the continuing of the validation simulation (for 5 years) 

presented in Section 3 for 15 more years into the future. 

- Scenario 2: Unlimited supply of dwelling stocks in the study area over the simulation period. 

- Scenario 3: An enhanced proportion of a Double Income No Kids (DINK) population. 

- Scenario 4: Introduction of a light rail corridor into the study area and unlimited supply of 

dwelling stocks in travel zones along the light rail corridor. 

The above scenarios are selected to give comparative understanding of the model outcomes that can 

be generated from the use of a scenario exploration approach. More importantly they aim at 

demonstrating the capability of TransMob to properly react to various inputs. The assumptions made in 

these illustrative scenarios, therefore, are drastic in order to introduce extreme conditions in the model 
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inputs. The remaining of this section describes inputs into TransMob for each scenario (compared to the 

base line scenario) and their simulation outputs. The results of the runs for each scenario did not vary in 

a significant way (intra-scenario) and for clarity we only illustrate one run. 

4.1. Scenario 1—Base Line 

The simulation in this scenario is the continuation of validation simulation presented in Section 3 for 

a total simulation time of 20 years. At the end of the simulation, the population in the area increases by 

18% to almost 126,000 individuals and over 58,000 households. Factors affecting the population growth 

include the net immigration, the availability and pricing of dwelling stocks, and the evolution rates used 

in evolving the population. 

The change in the number of occupied dwellings by size over the course of the simulation is shown 

in Figure 15. Dotted lines represent the demand of dwellings of a particular size calculated based on the 

number of adults (over 15 years old), whether they are a couple, and the number of children in the 

household. Solid lines represent the dwellings actually occupied by households in the population. These 

two lines are not necessarily close to each other because the relocation algorithm allows a household to 

move into a dwelling one bedroom larger than its needs if the household can afford it (see Section 2.6). 

This feature is better illustrated in Table 2, which details of the number of dwellings needed by 

households in the synthetic population and the number of dwellings actually occupied by these 

households at the end of the simulation. 

 

Figure 15. Change of number of dwellings by size over simulation period for base  

line scenario. 
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Table 2. Comparison of number of dwellings needed and number of dwellings actually 

occupied by synthetic households in year 2026 for base line scenario. 

Types of  

Dwellings 

Dwellings Needed (Based on 

Composition of Residents of 

Households in the Population) 

Dwellings 

Occupied 

Households Searching  

for Dwellings with 1 Bedroom 

Larger Than Needed 

Dwelling 

Stocks 

1 bedroom 32,072 8557 23,515 11,451 

2 bedrooms 13,490 28,086 8919 30,981 

3 bedrooms 7958 13,028 3849 18,159 

4 bedrooms or 

more 
4752 8601 0 12,852 

At the end of the simulation (year 2026), only 8557 out of 32,072 households that need one bedroom 

actually live in one-bedroom dwellings. The remaining 23,515 households search for, and eventually 

live in, two-bedroom dwellings. This means that out of 13,490 households that need two bedrooms,  

only 4571 of them live in two-bedroom dwellings. There are 8919 of these households searching for and 

eventually living in three-bedroom dwellings. Note that this is not a result of the unavailability of  

two-bedroom dwelling stocks because there are almost 3000 (30,981 minus 28,086) dwellings of this 

type remain unoccupied. Instead, these 8919 households end up live in three-bedroom dwellings, which 

can be explained by the mechanism described in Section 2.6. Specifically, these households (i) prefer 

living in a travel zone with higher liveability index and (ii) can afford a dwelling larger than their needs. 

The same explanation applies to households living in larger dwellings (with three bedrooms or more), i.e., 

out of 7958 households that need three bedrooms, only 4109 of them end up residing in three-bedroom 

dwellings. The remaining (3849 households), together with 4752 households that actually need four 

bedrooms or more, live in 8601 dwellings having more than three bedrooms. 

The average satisfaction of the population in three age groups for each travel zone is plotted in  

Figure 16. Note that as only people over 15 years old were interviewed in the liveability survey, 

TransMob is able to calculate liveability and satisfaction index only for individuals over 15 years of age 

in the simulation. As Figure 16 shows, the majority of the population in all travel zones in the study area 

are between 30 and 64 years old, while younger group of people (15–29) and older group of people have 

approximately equal proportions. People above 65 years old appear to be more satisfied with their travel 

zones compared to people between 30 and 64 years old, who in turn, appear to be more satisfied with 

the people in the youngest age group. This is further illustrated in the histograms of average satisfaction 

of these three age groups in Figure 17. 

With regards to transport demands, the distribution of trips over 24 h of a simulated day by trip 

purposes resembles that in Figure 11. The total number of trips however is higher due to a higher 

population in year 2026 compared to 2011. It is worth noting that trips that are declared as work related 

and going to school occupy totally only around 34% the total number of trips made in the morning peak 

hours. Even if we assume that the majority of trips marked as “serve passengers” are for dropping off 

children at school or people at work, over 50% of trips made in peak hours of a weekday are not 

work/school related. Driving drops from approximately 47% of mode share in 2006 to 40% in 2026 but 

remains the most popular/preferred transport mode, followed by walking (23%), car passengers (13%), 

and bus (9%). 
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Figure 16. Average satisfaction versus proportion of three age groups in the population for 

base line scenario. 

  

(a) (b) 

 

(c) 

Figure 17. Histograms of average satisfaction of three age groups in the population for base 

line scenario. (a) Age group 15–29; (b) Age group 30–64; (c) Age group ≥65. 

4.2. Scenario 2—Unlimited Supply of Dwelling Stocks 

The inputs into this scenario are similar to those for Scenario 1 (base line scenario), except that the 

supply of dwelling stocks is abundant throughout the simulation period (2006–2026) across the whole 

study area. Thanks to this change in inputs, households have more chance to find a suitable dwelling and 
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thus do not have to relocate to outside of the study area. This results in a higher population growth in 

this scenario compared to Scenario 1. The total population reaches 134,445 people and 61,751 households 

in 2026 in this scenario. Change of number of dwellings by size over the simulation period is shown in 

Figure 18. Note that the demand for dwellings in Scenario 2 is similar (in terms of the quantity in each 

year and the growth rate across the years) to the demand for dwellings in Scenario 1 across all dwelling 

types. However, the gap between the numbers of needed dwellings (i.e., the dotted line) and the numbers 

of occupied dwellings (i.e., the solid line) for one-bedroom dwellings and two-bedroom dwellings  

(the top two graphs in Figure 18) are significantly smaller than those in Scenario 1. However these gaps 

for three-bedroom dwellings or larger (the bottom two graphs in Figure 18) remain very similar to those 

in Scenario 1. An explanation to these observations is given below. 

 

Figure 18. Change of number of dwellings by size over simulation period for Scenario 2. 

As aforementioned, thanks to the unlimited supply of dwelling stocks while the distributions of 

household income and distributions of house price are unchanged, more households who search for small 

dwellings (having less than three bedrooms) could successfully find one as opposed to Scenario 1,  

in which affordable dwellings would be very quickly run out of stock. This explains the smaller gap 

between the number of dwellings searched for and number of dwellings actually occupied in Scenario 2 

compared to Scenario 1 for one- and two-bedroom dwellings. Meanwhile, households who search for 

larger dwellings, while not facing the problem of limited stocks, may still have to face the higher price 

tags of these dwellings (compared to their budget and income) as they would in Scenario 1. Thus in 

Scenario 2, it is equally financially difficult for large households to find a suitable dwelling compared 
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to Scenario 1, which explains the same gaps between the number of dwellings searched for and number 

of dwellings actually occupied compared to Scenario 1 for dwellings with three bedrooms or more. 

It is also noted that “occupied” one-bedroom dwellings remain below “needed” one-bedroom dwellings 

even though the supply of dwellings is unlimited in this scenario. An explanation is that the search for a 

relocating dwelling is constrained by both availability and affordability (and liveability). More specifically, 

a household searches into most liveable travel zone(s) first for a suitable dwelling, which for the current 

case has either one bedroom or two bedrooms. Please note that only if they cannot find any affordable 

dwellings that they move to the next (and less liveable) travel zone(s). Thanks to the unlimited dwelling 

stocks, there is always something available in a particular travel zone. The household however may not 

afford a one-bedroom dwelling but can afford a two- bedroom dwelling. Furthermore, if it can afford 

either a one-bedroom or a two-bedroom dwelling, the algorithm randomly selects one of the two options. 

As the choice of a relocating travel zone in Scenario 2 is less constrained, some travel zones will end 

up having higher population (and some lower) compared to Scenario 1. Because the number of facilities 

and services available in each travel zone is the same between the two scenarios, residents in travel zones 

with higher population will have a lower access to the facilities and services, leading to a drop of 

satisfaction perception in these travel zones as compared to Scenario 1. This is because the value of 

average facilities (number of facilities and services accessible by a person) of a travel zone is an 

influential attribute in the calculation of satisfaction index of a person [19,20]. This relationship between 

average facilities of a travel zone and the average satisfaction of the population in the travel zone is 

illustrated in Figures 19 and 20. These figures compare the number of facilities and services per capita 

in travel zones in Scenario 2 versus Scenario 1 and the corresponding average satisfaction of residents 

in the travel zones. Three ranges of average facilities for a travel zone are presented, within 500 m, 1 km, 

and 2 km radii of the centroid of the travel zone. The average satisfaction is presented for three groups 

of people, young (under 30), middle age (between 30 and 64), and elderly (above 65). 

  

(a) (b) 

Figure 19. Average satisfaction of travel zones in Scenario 2 having lower average facilities 

compared to Scenario 1. (a) Average facilities within three radii from travel zone centroid; 

(b) Average satisfaction of three age groups. 
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(a) (b) 

Figure 20. Average satisfaction of travel zones in Scenario 2 having higher average facilities 

compared to Scenario 1. (a) Average facilities within three radii from travel zone centroid; 

(b) Average satisfaction of three age groups. 

With regards to transport profiles, the composition of trips made by the population by modes and by 

trip purposes in Scenario 2 resembles that from Scenario 1. This is because there are no changes in the 

demographics composition of the population between the two scenarios. The total number of trips 

however is larger (by 6.7%) in Scenario 2 than in Scenario 1, which reflects the higher transport demands 

of a larger population in this scenario. 

4.3. Scenario 3—Double Income No Kids Households 

In this scenario, we model the case when the proportion of Double Income No Kids (DINK) 

households in the study area is increased rapidly over the simulated years. This is achieved by doubling 

the rates of marriage, halve the birth rate across all female ages, and halve the divorcing rates.  

The remaining of the inputs into this scenario is similar to those in Scenario 1. 

Thanks to these changes in inputs, the population growth in Scenario 3 is slower compared to Scenario 1. 

The final population is only 7.1% higher than the initial population, as compared to over 18% in  

Scenario 1. The average household size in the population at the end of the simulation in Scenario 3  

is also smaller, at two persons per household compared to 2.16 persons per household in Scenario 1.  

A direct result of this is that the demand for small dwellings (e.g., having one bedroom) is significant 

higher in Scenario 3 as compared to Scenario 1, and vice versa for large dwellings (having three 

bedrooms or more), as evidenced in Figure 21. 
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(a) (b) 

Figure 21. Comparing the proportion of dwellings by size as needed and occupied  

by households in Scenarios 1 and 3 in year 2026. (a) Needed dwellings; (b) Occupied 

dwellings. 

Another effect of lower birth rates to the population structure in this scenario is primarily in the lower 

number of children under 15 years old at the end of the simulation compared to Scenario 1. The number 

of people between 15 and 29 years of age is also slightly smaller than that in Scenario 1. This is because 

in Scenario 3, there are fewer babies born in the first five years of the simulation compared to Scenario 1, 

who will reach the age of 15 (and older) after 20 years. There would not be a very big difference in the 

proportion of people in older age groups in the population in this scenario compared to Scenario 1 (which 

would be the case had the death rates were increased). This is evidenced in Figure 22, which compares 

proportions of the population in three age groups in Scenario 3 against those in Scenario 1. Because of 

this, the average facilities (number of facilities available to a person over 15 years old) in this scenario 

is not so different to that in Scenario 1 in the majority of the travel zones, as evidenced in Figure 23a, 

leading to very similar the average satisfaction for people over 15 years old between the two scenarios 

across all travel zones (Figure 23b). 

 

Figure 22. Comparing proportion of population in three age groups in Scenario 3 against 

Scenario 1. 
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(a) (b) 

Figure 23. Comparison of average facilities and average satisfaction of travel zones in 

Scenario 3 against Scenario 1. (a) Average facilities within the three radii (500 m, 1 km, and 

2 km) from travel zone centroid; (b) Average satisfaction of three age groups (15–29, 30–64 

and 65+).  

With regards to transport, the total number of trips made in a representative day in 2026 is less than 

that in Scenario 1, reflecting the smaller demands of a smaller population. More interestingly, the 

composition of the trips exhibits some noticeable differences between the two scenarios (see Figures 24 

and 25). Because there are less children under 15 in Scenario 3 at the end of the simulation, the 

percentage of trips to university/schools drops in the morning peak hours (between 7.00 am and  

10.00 am) from 11.78% in Scenario 1 to around 8% in Scenario 3. The percentage of trips to serve 

passengers, which are composed considerably by trips for picking up and dropping off children at 

schools, is also lower in Scenario 3 for both the morning and afternoon peak hours. The effects of having 

less children in the population are also reflected in mode shares, with a drop in the percentage of car 

passengers in Scenario 3 for both the morning and afternoon peak hours (Figure 25a,c). A higher 

proportion of car drivers in Scenario 3 could be attributed to the fact that there are more adults/elderly 

people in the population of this scenario. 

   
 

(a) (b) (c) (d) 

Figure 24. Percentage of trips by modes and by purposes in AM and PM peak hours in 

Scenario 1 in year 2026. (a) Trips by modes AM; (b) Trips by purposes AM; (c) Trips by 

modes PM; (d) Trips by purposes PM. 
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(a) (b) (c) (d) 

Figure 25. Percentage of trips by modes and by purposes in AM and PM peak hours in 

Scenario 3 in year 2026. (a) Trips by modes AM; (b) Trips by purposes AM; (c) Trips by 

modes PM; (d) Trips by purposes PM. 

4.4. Scenario 4—New Light Rail Corridor with Population Densification along the Corridor 

This scenario investigates a proposed light rail line to the main campus of the University of  

New South Wales located in the study area. However, it should be noted that this work is illustrative 

only and does not form part of, or validate, any economic evaluations of options of infrastructure 

development that may be undertaken by the Government. A map of the simulated light rail corridor and 

the surrounding travel zones is shown in Figure 26. It is assumed in Scenario 4 that light rail is available 

at full capacity from the 1st simulated year, and that light rail services depart every 5 min for all of a  

24 h day, at a capacity of 104 passengers per light rail vehicle. In order to reproduce the impacts of the 

new light rail corridor to housing developments, the supply of housing stocks is assumed unlimited, i.e., 

housing availability in this subarea is completely demand driven. Finally, the immigrating population is 

assumed three times higher than that in Scenario 1. 

The population growth in Scenario 4 is highest among the scenarios examined, reaching almost 

155,000 individuals and over 69,000 households at the end of the simulation. This is primarily due to 

the large amount of immigrants introduced into the population at every simulated year, as well as the 

unlimited supply of dwelling stocks along the light rail corridor, which helps retain more population 

inside the study area. This is further evidenced by the results in Table 3, which show that for travel zones 

along the corridor at the end of the simulation, the number of occupied dwellings in Scenario 4 is much 

higher as compared to Scenario 1 across all dwelling sizes. Similar to the discussion of results of average 

satisfaction in Scenario 2, a higher density of population along the light rail corridor leads directly to 

lower average facilities, and thus a lower average satisfaction of the population in this area. Meanwhile 

as the population does not change too much across the remaining of the study area, the average facilities 

and the average satisfaction of the population in travel zones outside the corridor are relatively similar 

to Scenario 1. 
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Figure 26. Travel zones along the simulated light rail corridor. 

Table 3. Comparing occupied dwellings by sizes in travel zones inside the light rail corridor 

at the end of the simulation between Scenarios 4 and 1. 

 1 Bedroom 2 Bedrooms 3 Bedrooms ≥4 Bedrooms 

Scenario 1 1771 5556 1543 682 

Scenario 4 5928 7644 2577 1248 

With regards to transport, a major change compared to Scenario 1 is the adoption of light rail as an 

alternative travel mode. In particular, in the three hours of the morning peak (7.00 am–10.00 am) there 

are around 4000 light rail trips. The afternoon peak hours see approximately the same amount of light 

rail traffic. Note that this number of trips is very close to the assumed capacity of the light rail line. With 

a light rail train departing every 5 min over 24 h of a simulated day and a capacity of 104 passengers 

each train, there are over 3700 individual passengers that can be carried over a three-hour period from 

the first station to the end of the line. The number of trips in the morning peak hours and afternoon peak 
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hours from TransMob is slightly larger than the theoretical value of 3700 passengers because an 

individual passenger can make multiple light rail trips between stations along the light rail line. 

Mode shares over the whole simulated day in the final year of the simulation period are shown in 

Figure 27. The total number of light rail trips over the whole day (around 20,500 trips) is lower than the 

daily theoretical capacity (29,600 individual passengers) because this capacity is estimated with an 

assumption of constant passengers boarding the light rail across 24 h of a day, which is unrealistic. 

Indeed, the demand for light rail follows the travel demand (travel diary) of the population across the 

day, which only becomes significant between around 5.00 am to around 10.00 pm. 

  

(a) (b) 

Figure 27. Mode shares for the whole simulated day for Scenario 4. (a) Initial mode shares; 

(b) Mode shares at the end of simulation. 

5. Conclusions 

This paper has presented an agent based model, TransMob, for the simulation of the dynamics 

between demographic evolution, transport demand, housing needs and the eventual change in the 

liveability perception of the population. The ability to explicitly simulate such dynamics is a unique 

feature that has not been found in many other agent based models for urban transport and/or urban 

planning purposes. The model thus is highly suitable for studies exploring long-term consequences of 

various transport and land use planning scenarios. 

TransMob is composed of six major modules, synthetic population, perceived liveability, travel diary 

assignment, traffic micro-simulator, residential location choice, and travel mode choice. We have 

reported the application of TransMob to simulate the urban dynamics for Randwick and Green Square, 

a metropolitan area in south east of Sydney, Australia between from 2006 to 2011 (Section 3).  

The simulation results in 2011 are vigorously compared against real life survey data available in 2011 

across various attributes of the area, including population demographics, housing structures, transport 

demands, and road traffic density. Satisfactory agreements from these comparisons validate the 

capability of TransMob in reproducing observed complexity of an urban area. 

In a bid to demonstrate the capability of TransMob to properly react to various inputs, we have 

presented the application of TransMob to simulate hypothetical scenarios of urban planning policies. 
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The assumptions made in these scenarios are quite drastic so that extreme input conditions in various 

aspects can be introduced to model. These aspects include the availability of residential property 

(Scenario 2), demographic structure of the population (Scenario 3), public transport options (Scenario 4), 

and rapid growth of the population (Scenario 4). 

Results presented in Section 4 have shown that major modules in the model (i.e., transport, 

demographic population, satisfaction, residential mobility) are able to response accordingly to these 

extreme conditions. With unlimited supply of dwelling stocks (in Scenario 2), the TransMob predicts a 

much larger population residing inside the study area, and higher transport demands in peak hours across 

all trip purposes and transport modes. It successfully reproduces the reasoning of households in choosing 

a dwelling to relocate under such a special condition of dwelling stock supply. Given a demographic 

structure that would result in a higher growth of DINK (double income no kids) households, the model 

predicts a smaller population (compared to baseline scenario), higher demands for small dwellings 

(having two bedrooms or less), and a lower number of trips to school in the morning peak hours. It also 

successfully predicts a lower proportion of people between 15 and 29 years old after 20 years, as a result 

of lower number of babies born in the first five years of the simulation. With the introduction of a new 

public transport option (light rail) and high growth of the population (via immigration) in a specified 

area, TransMob is able to pick up this new travel mode in simulating the reasoning of an individual for 

transport mode choice. It also predicts a higher transport demand and dwelling demands thanks to the 

large number of immigrants. Finally TransMob is able to provide insights into the change of satisfaction 

of the population under the drastic conditions in these scenarios. 

It is worth noting that TransMob was calibrated using the data for a specific urban area. The results, 

analyses and conclusions in terms of the influence of an urban element (e.g., demographics or housing 

supply) made in the scenarios in Section 4 are therefore rather specific to this area, not generic or 

applicable to other areas/cities. Furthermore the scenarios in Section 4 investigate only the impacts of 

changing each of the existing elements of the urban system to its future. Examining whether one element 

(e.g., demographics), has a greater impact than another element (e.g., freight transport or housing 

supply), will require a scenario that allows for the comparison of combined effects made by the changes 

of these elements. Such a scenario needs to be carefully designed so that one can make sense of 

simulation outputs in relation to what was inputted. However before carrying out such exercise, it is 

helpful to have a good understanding of what each of the existing elements does to the simulation 

outputs, which is exactly what this paper aims at in reporting the scenario simulations in Section 4. 

Despite the demonstrated capabilities, TransMob has numerous limitations which will be the  

focus for future developments. We report here some of the major limitations. Firstly, TransMob has no 

macro-economic model for employment. A simple ‘job event’ probability is used to trigger a salary 

update and for residential relocation test. Such probability is informed by the employment statistics that 

is available from the Australian Bureau of Statistics. Secondly, there is currently no proactive real estate 

market in the model. A bootstrapping approach is used (in the base line scenario) based on the evolution 

of dwelling stocks and prices in each travel zone between 2006 and 2011. The next limitation is the 

omission of urban zoning or planning mechanisms, meaning TransMob is unable to model and simulate 

the evolution of urban land use. With regards to transport and traffic modelling, thanks to the lack of 

reliable survey data, the exact location of destinations are assigned to trips on a random basis, particularly 

for non-work trips. Such randomness obviously cannot guarantee a realistic representation of traffic 
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demands in the simulation model. Finally, there is no freight transport being modelled. With the 

consideration of Sydney airport and Port Botany (Australia’s second busiest container port) located in 

the south of the study area, such freight movements would contribute considerably to the through traffic 

across the study area, further burden the road network, and may have significant effects on the simulation 

results of mode choice and average satisfaction of the population. 
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