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Abstract: Given a stress-free system as a perfect crystal with points or atoms ordered in a 

three dimensional lattice in the Euclidean reference space, any defect, external force or 

heterogeneous temperature change in the material connection that induces stress on a 

previously stress-free configuration changes the equilibrium configuration. A material has 

stress in a reference which does not agree with the intrinsic geometry of the material in the 

stress-free state. By stress we mean forces between parts when we separate one part from 

another (tailing the system), the stress collapses to zero for any part which assumes new 

configurations. Now the problem is that all the new configurations of the parts are 

incompatible with each other. This means that close loop in the earlier configuration now is 

not closed and that the two paths previously joining the same two points now join different 

points from the same initial point so the final point is path dependent. This phenomenon  

is formally described by the commutators of derivatives in the new connection of the  

stress-free parts of the system under the control of external currents. This means that we 

lose the integrability property of the system and the possibility to generate global 

coordinates. The incompatible system can be represented by many different local references 

or Cartan moving Euclidean reference, one for any part of the system that is stress-free. 

The material under stress when is free assumes an equilibrium configuration or manifold 

that describes the intrinsic “shape” or geometry of the natural stress—the free state of the 
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material. Therefore, we outline a design system by geometric compensation as a prototypical 

constructive operation. 

Keywords: intrinsic geometry; holonomic constraints; nonholonomic systems; dissipative 

systems; free stress material; Cartan moving reference; Maxwell-like Gauge approach; 

generalized Gauge as compensation; non-conservative gravity; gravity with torsion; 

physical theory as system; crystal defects; memristors 

 

1. Introduction 

Given the stress-free system in the Euclidean reference space, any field of forces between particles 

due to gravity, electromagnetic, heterogeneous temperature, dissipation, or crystal defects will be 

called stress field. The defects or the physical fluxes change the material connection that induce stress 

on a previously stress-free configuration as in the holonomic system and as the equilibrium 

configuration or geometry change. Now the problem is that all the new configurations of the parts are 

incompatible with each other, with a geometry that differs from the intrinsic geometry of the system. 

This incompatibility creates defects in the reference. The coordinates of non-intrinsic geometry are not 

commutative and any loop cannot return to the initial value. This means that the integration operator is 

not unique and the system is not conservative. A simple example of incompatible geometry is given by 

rotation movement in the flat geometry. The geometry without curvature is not the intrinsic geometry 

of the rotation so stress forces appear as centripetal and centrifugal forces to compute the movement. 

When we use the intrinsic geometry for rotation as curvilinear coordinates, the reference is stress-free. 

The incompatible system for the defects (singularity) cannot be represented by a global reference but 

can be represented by many different references or Cartan moving references, one for any part of the 

system that is stress-free or locally compatible. The material under stress when is free assumes an 

equilibrium configuration or manifold that describes the intrinsic “shape” or geometry of the natural 

stress-free state of the material. The article underlines that the appearance of non-conservative facets in 

systems is a universal aspect which may be explained analyzing the structural links between quantum 

mechanics and Maxwell’s equations, and also between gravitation and Maxwell's equations, thus 

outlining a general theory of open and nonholonomic systems. All that generalizes “input” and “output” 

concepts in Systems Theory (every “law” is a systemic connection among a series of input/output(s), 

under specific boundary conditions) has already been overcome by Einstein geometry that radically 

changes the old Newtonian concept of input (force) and output (acceleration). 

The main examples of the intrinsic geometry for gravity force as a stress are the Einstein general 

relativity with curvature (defects in rotations) without torsion and the example of Cartan moving 

reference in gravity is the “Teleparallel” with torsion (defects in translation) without curvature. In this 

paper, we use a Maxwellian-like generalized gauge approach to get the intrinsic geometry in different 

systems. Here, we follow Caianello’s idea [1] that any description of a physical theory or model 

represents a “system”—in formal and conceptual senses—and new possibilities of description emerge 

when we introduce new hypotheses to modify the logical closeness of this system.  
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2. Local Intrinsic Geometry Used to Map Global Intrinsic Geometry  

With a moving local reference it is possible to detect the geometric nature of the system. 

Historically we remember the Galileo principle for which systems with constant velocity are all equal 

by local reference that moves with the system (inertial movement). Any local reference cannot be 

detected if the system moves and the velocity itself, too, cannot be detected. In this Galilean situation, 

any local reference has the same geometry of the global reference, the topology of the system is always 

the same (conservative system). In Figure 1, we show a transformation of the system that cannot 

change the connection elements or geometry between one point and another point. The local geometry 

is the intrinsic geometry of all the system. 

Figure 1. The Cartesian reference has no defects and local geometry is the same of the 

global geometry. After the transformation, we have another reference that has the same 

properties of the original Cartesian coordinates (Definition: A system is compatible if the 

local geometry is the same as the global geometry). 

 

To know if a system has no defects or is compatible we take a local reference that we move to form 

a loop. If, after the loop, we return to the same point and to the same states, the system is compatible 

and conservative. We know that the Euclidean geometry in the Cartesian reference is a compatible 

geometry without defect for which any derivative commutes one with the other in this way 

2 2
, ( ) 0

x y x y y x x y y xi j i j j i i j j i

 
 

 
       

      
          
 

   (1)

 

We can see the compatible property by this categorical diagram 

ai  

 

 

  

 

 

 

 

where 

b j
  

0a b b ai j j i    

b j
  

ai   
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,a bi jx yi j

 
 
        (2)

 

Given the rotation system, we know that the tangent vector in any point in the Cartesian reference is 

given by the tangent vector 

y
v

x

 
  
 

       (3)
 

The directional derivative is given by the scalar product of the vector  

x x

y y



 


    
    
     
    
       

      (4)

 

With v . So we have 

( )

T
y x

D y x
x x y

y

 

 
    
          
  

    (5)

 

For  

( ) 0y x
x y


 

  
        (6)

 

We have that 2 2 2x y R     so circles with different radius are the new coordinates that design 

the intrinsic geometry.  

Figure 2. Intrinsic geometry of circles which derivative is ( )D y x
x y

 
 

  
 

. 

 

When we move on the intrinsic geometry circles (Figure 2), the derivative is equal to zero so we 

have no stress or virtual forces. When we consider the Cartesian coordinates and we move on the circle 

we have the relation between the partial derivatives for x and y  
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x

x y y

 


         (7) 

and 

2 2

2 2 2 2

, ( ) ( )

( ( )) 0

x x

x y x y y x y y y y y y

x x x x

y y y y y y y y

  




          
    

          

   
     

   
 

  (8)

 

The Cartesian coordinates and geometry are not the intrinsic geometry because include the (0,0) 

point that is a singular point or defect. In this situation, the commutator is different from zero. Because 

the direction derivative on the tangent vector to the circle is a derivative for polar coordinates that is the 

intrinsic geometry, we have no particular problem to introduce the singular point. The derivative is denoted 

as the Lie derivative. We remark that the Lie derivative can be obtained also by the differential form 

0xdx ydy        (9) 

In fact, we have 
 

0 , 

1
( ) 0

0

dx dy dx y dy
x y

dt dt dt x dt

but

d dx dy y dy dy dy
y x

dt x dt y dt x dt x y dt x y x dt

and

d
y x

x y dt

      

  

   

     
        
     

 
   

 

     (10)
 

but 

 

and 

 
0 , 

1
( ) 0

0

dx dy dx y dy
x y

dt dt dt x dt

but

d dx dy y dy dy dy
y x

dt x dt y dt x dt x y dt x y x dt

and

d
y x

x y dt

      

  

   

     
        
     

 
   

   

where the invariant form for the intrinsic geometry is the circle 2 2 2x y R    . 

2.1. Change of Intrinsic Geometry by Moving Reference 

In the Cartesian reference and geometry, the equation for inertial movement is 

2
 = 0

2

id x

dt       (11) 

We can see that no force appears so the system is in the stress-free state. Given the transformation 

of the curvilinear coordinates q in the Cartesian coordinates x 

( ) ( )i i ix x q x q


        (12) 

We have the change of the velocity 

1 2( ) ( ) ( ) ( ) ( ) ( )
......

1 2

( )

pi i i i i idx dx q x q dq x q dq x q dq x dq t dq tiepdt dt dt dt dt dt dtqqq q

ixi ie x q J
q

 



 

   
      

 


   


 (13) 

 
0 , 

1
( ) 0

0

dx dy dx y dy
x y

dt dt dt x dt

but

d dx dy y dy dy dy
y x

dt x dt y dt x dt x y dt x y x dt

and

d
y x

x y dt

      

  

   

     
        
     

 
   

 
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In many cases this is true of only the local transformation of the derivative but, in general, it is 

impossible to write a global expression. So, it is true of only the transformation  

( )idx dq tie
dt dt



       (14) 

The reference e (q(t))
i


 is the basis moving reference that is a function of the new coordinates q 

changing in time as we can see in Figure 3. 

Figure 3. The basis of the new reference is a function of the position q and time t in the 

Euclidean space. 

 

We remark that the new moving reference in a Cartesian space loses the commutative property 

e (q(t)) e (q(t))
0

i i

q q

 

 

 
 

 
 

     (15)

 

In the new reference, the acceleration takes this form 

2 2 e (q(t))
 = ( e (q(t)) ) e (q(t)) + 0

2 2

2 e (q(t))
= e (q(t)) + = 0 

2

                             

ii dd x d dq d q dqi i

dt dt dt dtdt dt

i
d q dq dqi

q dt dtdt

  

 

  

 

 





  (16)

 

Because the basis is orthonormal and complete, as we can see in Figure 2; therefore, we have 

 

1 0 ... 0

0 1 ... 0
  

... ... ... ...

0 0 ... 1

i

ie e

where

 

 











 
 
 
 
 
 

      (17) 

where  

1 0 ... 0

0 1 ... 0
  

... ... ... ...

0 0 ... 1

i

ie e

where

 

 











 
 
 
 
 
   

So, we have 
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2 e (q(t))

 e (q(t)) + = 0 
2

2 e (q(t))
e (q(t)) + = 0

2

and

2 2e (q(t))
e (q(t)) e (q(t)) + e (q(t)) + e (q

2 2

 can be written in this way

i
d q dq dqi

q dt dtdt

i p sd q dq dqi s

q dt dtdt p

i p sd q dq dq d qi s
i i iq dt dtdt dtp

that

  

 





 
  
















e (q(t))
(t))

2
+ 0

2 ,

                             

i p sdq dqs

q dt dtp

p sd q dq dq

p q dt dtdt









 

 

that can be written in this way 

 

and  

(18)

 

By the inertial movement of the basis, we compute the movement in a stress-free intrinsic geometry 

whose geodesic equation computes the connection on the manifold where the basis moves, which 

value is given by the variables 
,p q


 . Because the previous equation can be written in this way 

2
= - 

2 ,

p sd q dq dq
F

p q dt dtdt


 

       (19)

 

The force F


 is the stress force that we must use to compute the kinematic movement in the 

Cartesian coordinates where the basis moves. In the Cartesian space, we have to treat stress as an 

external element, i.e., “it breaks the system”, but when we use the intrinsic geometry with curve and 

torsion, the kinematic movement is stress-free. This occurs, for example, when the basis moves on the 

spherical surface as intrinsic geometry, as we can see in Figure 4. 

Figure 4. Spherical intrinsic geometry. Locally, the space is flat but globally we have a 

curvature for which the basis moving on the sphere is not commutative. 

 

The dynamical equation of a Geodesic movement on a sphere is given by the previous equation, and 

this can be represented by Figure 5. 

2 e (q(t))
 e (q(t)) + = 0 

2

2 e (q(t))
e (q(t)) + = 0

2

and

2 2e (q(t))
e (q(t)) e (q(t)) + e (q(t)) + e (q

2 2

 can be written in this way

i
d q dq dqi

q dt dtdt

i p sd q dq dqi s

q dt dtdt p

i p sd q dq dq d qi s
i i iq dt dtdt dtp

that

  

 





 
  
















e (q(t))
(t))

2
+ 0

2 ,

                             

i p sdq dqs

q dt dtp

p sd q dq dq

p q dt dtdt









 

 (18) 

2 e (q(t))
 e (q(t)) + = 0 

2

2 e (q(t))
e (q(t)) + = 0

2

and

2 2e (q(t))
e (q(t)) e (q(t)) + e (q(t)) + e (q

2 2

 can be written in this way

i
d q dq dqi

q dt dtdt

i p sd q dq dqi s

q dt dtdt p

i p sd q dq dq d qi s
i i iq dt dtdt dtp

that

  

 





 
  
















e (q(t))
(t))

2
+ 0

2 ,

                             

i p sdq dqs

q dt dtp

p sd q dq dq

p q dt dtdt









 

 (18) 
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Figure 5. Geodesic triangle and geodesic trajectories. On the surface of the intrinsic geometry 

(spherical geometry), the geodesics are straight lines without curvature and so are stress-free. 

 

Now, we have the problem to compute the derivative from the Cartesian coordinates to the general 

moving basis e . We solve the previous problem by projecting the vector A  on the moving basis so 

we have the vector field 
i

iA A e       (20) 

The derivative is  

 

(21) 

 

we can write the term 
ei

x j




 as the linear combination of the basis 

,

e ki ei j kx j


 


      (22) 

We remark that if  

0
ee ji

x xj i


 

 
      (23) 

The connection terms ,
k
i j  are not commutative in the index , ,

k k
i j j i    we have that ,

k
i j  are not 

Christoffel symbols but are simple connections with torsion , , ,
k k kTi j i j j i   . Now, we have 

 

,

, ,

( ) 
, ,

iA A i ke A ei i j kx xj j

but

k ie ei j ik k j

i iA Ak i k ie A e A ei i ik j k jx xj j

 
  

 

  

 
    

 

     (24)

 

but 

 

,

, ,

( ) 
, ,

iA A i ke A ei i j kx xj j

but

k ie ei j ik k j

i iA Ak i k ie A e A ei i ik j k jx xj j

 
  

 

  

 
    

 
 

 
                              (21)

i iA e eA A ii ie Aix x x xj j j j

  
  

   
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Now, in index notation, the covariant derivative of 
iA is given by 

( )
,

iAi k iD A Aj k jx j


  


      (25) 

and 

, ( )D D A D D D D A R A
   

     
    
  

     (26) 

where A


 is a vector and R



 is the Riemann tensor curvature.  

If we have a point moving on a curve in time, we have 

( )
j j

x x t       (27) 

and the directional derivative to the tangent vector is 

( ) 
,

( ) ( ) 
, ,

i idx dx dxA edA A Aj j jk ii A eik jdt x dt x dt x dtj j j

i idx dx dxA dAj j jk i k iA e A ei ik j k jx dt dt dt dtj

 
    
  


     



   (28) 

In the geodesic line we have 

0
,

i dxdA jk iA
k jdt dt

        (29) 

The derivative in the direction of the tangent vector is equal to zero. So, the geodesic is a line  

without stress. 

2.2. Electrical Circuit and Moving Reference 

Given the electrical circuit inertial equation (free from stress) for the voltages 

2
0

2

id v

dt
       (30) 

When we change the reference from fixed and inertial movement for the voltage to the current 

moving reference we know that we have the relation 

 

0  and  0

i i idv R di e di

or

i i i idv R di dv e di

 
 

 
 

 

   

     (31)
 

or 

 

0  and  0

i i idv R di e di

or

i i i idv R di dv e di

 
 

 
 

 

   
 

The first equation is the phenomenological relation between currents and voltage by the resistor 

tensor 
iR . The second is the geometry representation of the movement by the movie reference tensor 

without stress 
ie . The previous relations can be written by the tangent vectors in this way 
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( ( )) ( ( ))

idv di dii idt e dt R dt
dt dt dt

or

idv di dii ie i t R i t
dt dt dt

 

 

 

 

 

 

     (32)

 

or 

 

( ( )) ( ( ))

idv di dii idt e dt R dt
dt dt dt

or

idv di dii ie i t R i t
dt dt dt

 

 

 

 

 

 
 

For the compatibility between the phenomenological equation and intrinsic geometry, we have  

the identity 
 

,

, ,

R ki Ri j kx j

and

R k k k ki R R Ri j i jkx j


 




   



      (33)

 

and 

 

,

, ,

R ki Ri j kx j

and

R k k k ki R R Ri j i jkx j


 




   


 

Given the connection term, we can design the resistor tensor in a way to have geodesic 

transformation and covariant derivative in the wanted space of the currents. For example, given the 

spherical geometry by the transformation  

1

2

3

sin( )cos( )

sin( )sin( )

cos( )

x

x

x

  

  

 





 

      (34) 

The tangent vector is 
 

1 1 11

2 2 2 2 ,

3 3 3 3

x x xdx
dR

Rdt dt
dx x x x d

dt R dt

dx dx x x

dtdt R

 



 



 

    
          
     
   
     
          
          

     (35) 

And the moving basis is 

1 1 1

sin( )cos( ) cos( )cos( ) sin( )sin( )
2 2 2 sin( )sin( ) cos( )sin( ) sin( )cos(

cos( ) sin( ) 0

3 3 3

x x x

R

x x xie
R

x x x

R

 
       

       
 

   

 

   
 
   

        
    
     

 
    

  (36) 

For the phenomenological identity, we have the resistor matrix 

 

(37) 

 

 

  

sin( )cos( ) cos( )cos( ) sin( )sin( )

sin( )sin( ) cos( )sin( ) sin( )cos(              (37)

cos( ) sin( ) 0

iR

       

       

   

 
 


 
  
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And the electrical circuits with current-controlled voltage sources (CCVS) and resistors (Figure 6). 

Figure 6. Moving reference on the sphere. 

 

We know that the connection terms of the intrinsic geometry are 

,

iR k iRji j





 


      (38) 

Now, we represent the circuit with current-controlled voltage source (CCVS) 
iR  where i   and 

variable resistor for i  . 

In Figure 7, we have three circuits providing the derivative in time of the current. The big circle 

represents the sources of the voltage that are constant or change proportionally to the time. The term 

R  is ordinary resistors, while the other is sources of voltages v
  controlled by current i  in other 

circuits by the proportional value R

   

Figure 7. Moving reference in the electrical circuit. 
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To complete possible electrical circuits, we have another three derivative transformations 

j
dq dv dvj j

e C
dt dt dt

id di dii ie L
dt dt dt

kdq d dk ke M
dt dt dt

 

 

 


 

 
 

 

 

 

 

     (39) 

where j
C , 

iL
 ,

kM
  are the capacitor tensor, the induct tensor and the memristor tensor [2,3]. The 

variables , , ,i v q   are the currents, the voltages, the charges and the magnetic fluxes.  

2.3. Deformation and Displacement in Media with Defects for Rotation (Disclination) and Translation 

(Dislocation)  

Given a space where the general coordinates are  1 2, ,....., nq q q q , the bases are the vectors 

s
e

q
 





 where s is the displacement vector (Figure 8). 

Figure 8. Angular displacement q =  and mind control of initial and final positions. 

 

With the basis vectors 
s

e
q

 





we can compute the affine connection 
,


   in this way 

 
,

e
e

x


 


 


. Now, when 

, ,
 
      , we have curvature and metric , ( ) ( )Tg e e     but 

no torsion. When 
, ,

 
       , we have the torsion  

, , ,S  
             (40) 

Intrinsic geometry can have curvature and torsion that can be seen as an external element as we can 

see in the Euler Lagrange equation with torsion  

2

1

,

,

2

    ,    

t

t

d L L L
S v

dt v q v

dq dq dq
L dt g v

dt dt dt

 

   

  


 

  
 

  

 

    (41) 
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Examples of curvature and torsion (Figure 9): 

Figure 9. Rotation and torsion geometry.  

 

We provide that any deformation of the reference as a crystal totally ordered is given by the 

transformation 

( )i i iy x s x        (42) 

The difference of the distance L between points (atoms) before and after the deformation is given 

by the expression 

2 2 2
jidL dL x xy x ij       (43) 

where ij  is the strain tensor 

1
( )

2

ks ss sj i k
ij x x x xi j i j


  

  
   

     (44) 

In the work by Ruggero and Tartaglia [4], we find some important remarks. After the deformation, 

we may have two different situations:  

(1) The deformed elements fit perfectly or they do not. In the latter case, we must apply a further 

deformation to re-compact the body. In the first case, we speak of a compatible deformation. 

(2) In the second case, we have an incompatible deformation. Let us imagine that during the 

deformation the coordinates are dragged with the medium. In the compatible deformation, the 

internal or intrinsic observer cannot see any difference as the Galileo internal observer for 

inertial system. In the incompatible deformation, the internal observer notices a change in the 

number of particles along a cycle in the medium as excess of holes or particles. The internal 

point of view is useful to find an incompatible deformation, due to the presence of defects. 

Mathematically, an incompatible deformation corresponds to the non-integrability of the 

differential form jds  where js is the displacement. The non-integrability means that the 

displacement field ( )js x  is multivalued, and thus discontinuities or defects arise when passing 

from one point to another. This fact is expressed by, 

[ , ] 0j

k h

s
x x

 


 
      (45) 

http://upload.wikimedia.org/wikipedia/commons/f/f7/Parallel_transport_sphere.svg
http://en.wikipedia.org/wiki/File:Torsion_along_a_geodesic.svg
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In this situation, intrinsic geometry will no longer be Euclidean. The intrinsic view suggests that 

relations can be found between the geometric properties and the densities of defects that influence 

them. From ideal crystal or ideal reference as Cartesian reference, after the deformation we have 

Crystal incompatibility or disclination where there is deformation in the rotation and without torsion 

(Figure 10). 

Figure 10. Change of reference or crystal medium by curved system where the center is a 

singularity or defect in the disclination. 

 

With the scalar f there is the torsion connection [5] 

, ( )
,

D D f D D D D f T D f


      
    
  

    (46) 

Tensor 
,

T

 

 is the torsion tensor. The torsion is given by Figure 11. 

Figure 11. Torsion as defects in translation. 

 

The torsion is a defect in translation (dislocation) as we can see in Figure 12. 

Figure 12. Defects in translation or crystal dislocation. 

 

The defect or singularity is given by defect in the reference due to translation transformation.  
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3. Incompatible Condition for Commutators and Wave Field Control by Active Secondary Sources 

For the wave equation, we have 

2

2

2 2
 0

2
c

tj x j

ie
e

 


 

 
 






      (47) 

where   is the field with noise and  is the field without noise or incompatibility. 

2 2
2 0

2 2

2 2
( ) ( )

2 2

2
2( ) (

2

ie ie
e e

c
j x tj

ie ie ie ie ie
e e ie e ie e ie ie e ie

x x x x x xj x xj j j j j jj j

ie ie ie ie ie
c e e ie e ie e ie ie e ie

t t t t t tt

 
 

           
 

          
 

 
 

 
 

           
     
      

          
    
     

2
0

2

2 2
( ) ( )

2 2

2 2
2( ) ( 0

2 2

2 2
22 )

2 2

2
2( 2

2

t

ie ie ie ie ie
x x x x x xj x xj j j j j jj j

c ie ie ie ie ie
t t t t t tt t

ie e ie
x x x xj x xj j j jj j

c
t



       
 

       
 

     
 

 






       
     
      

       
     
      

     
   

    

 




2
2 ) 0

2

2 0

ie e ie
t t t t t

D D c D Dt tj jj

   
 

 

   
  

   

 

(48) 

where 

 
,

  ,

D ieA D ietj jx tj

where Aj x tj

 

 
    
 

 
  
 

     (49)

 

where 

 
,

  ,

D ieA D ietj jx tj

where Aj x tj

 

 
    
 

 
  
 

 
When we use the space time reference ( , , , )

1 2 3
y x x x ictj   we have 

2 2 242 0
2 2 21

c
j kx t yj k

    
   

  

     (50)

 

For 
ie

e


 


  we have 
2 2 24 42 0
2 2 21 1

c D D
k kj k kx t yj k
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
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     

   

    (51)
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where 
 

,   CD ieC where
k k ky y

k k

 
  
 

 where 
 

,   CD ieC where
k k ky y

k k

 
  
 

     (52)

 

We remark that  

[ , ] ( )( ) ( )( )

2 2( ) ( ) ( )

2 2( ) ( ) ( )

( )

D D ieC ieC ieC ieC

ie C ieC ieC e C C
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  
 

         

        

       


   

 

  (53)

 

For the wave equation, the change of the wave function generates incompatible medium where there 

are defects as we can see in Figure 13. 

Figure 13. From compatible medium on the left, there is incompatible medium on the screen. 

 

The new derivative does not commute but the wave equation does not change its form and the wave 

sources are always the same. In fact, for  

2 2 242 
2 2 21

c S
j kx t yj k

    
   
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     (54)

 

We have  
4

1
D D S

k kk
 

       (55)
 

In the Jessel book [6] we found the connection between sources and transformation of field 

variable. Now, we use this method to explain better the meaning of the non-commutativity of the 

derivates and the incompatibility. 

In fact, the transformation 
ie

e


 


  of the equation 2

2

2 2
 

2
c S

tj x j
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 (56) 

In the transformation, the derivatives are those in the compatible medium but we must change the 

source from S as the original sources of the wave to new artificial sources or secondary sources 

2 2
2 2 2* (2 ) (2 )

2 2
j

S ie e ie c ie e ie
x x x x t t t tx tj j j j j

         
   

         
     

        


 

That gives us the physical image of the incompatibility in the medium when we transform one field 

to another. By the new sources we can generate the new field with the same derivatives. M. Jessel uses 

the new sources to design a wanted field from the initial one. This is the beginning of a new 

computation where we design a new intrinsic geometry in the field by artificial sources. This is an 

example of field control by the active or secondary sources S* [7]. 

InVuksanovic and Nikolic [8] we have the multichannel active noise control (see Figure 14). 

Figure 14. Active noise control (ANC) by the algorithm or DSP for S*. 

 

The active noise control (ANC) is the process of reducing an unwanted or incompatible sound by 

combining it with a sound of the same amplitude but of opposite phase. The proposed ANC system 

uses an active sound barrier of secondary sources S* to cancel the unwanted sound or incompatibility 

from the primary source at an array of error microphones. By cancelling the sound at the error 

microphones distributed across the controlled region, the secondary sources create a zone of reduced 

noise over this area as we can see in Figure 14 where the DSP algorithm uses the expression for S* to 

generate a wanted field without noise. 
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4. Schrödinger and Maxwell Equations Commutators and Incompatible Equations 

In the work by Russer [9], we can see that the Maxwell equation can be represented by exterior 

differential forms. Now, in this chapter, because of a suggestion by Pessa [10], we show the invariance 

of the Schrodinger equation for a given transformation of the wave function; therefore, we obtain the 

Maxwell equations by commutators that are connected by the incompatibility of the medium. So, given 

the celebrate Schrodinger equation, 
21
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     (57) 

When we substitute the new variable, we have 
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and 
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2
j ji m D D

t j

where

U e


 




  



  

     (62)
 

where 

 1
 

2
j ji m D D

t j

where

U e


 




  



    

When  

0, 0
jx t

  
 

 
      (63)

 

The phase is constant in space and time and we have the compatible condition 
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[ , ] [ ] 0D D                 (64)
 

We have no curvature and torsion and the medium has no defects. However, when 

,Ajx tj

 


 
 

 
      (65)

 

We have the incompatible condition 

[ , ] ( )( ) ( )( )

2 2( ) ( ) ( )

2 2( ) ( ) ( )

( )

D D ieA ieA ieA ieA

ie A ieA ieA e A A

ie A ieA ieA e A A

AA
ie ieF

x x

          

           

           

  
 

         

        

       


   

 

  (66)

 

For a reference with torsion, we obtain the incompatible equation 

 
, ( )  

, ,

 
, ,

D D f D D D D f T D f ieF

and

T D f ieF


        


   

       
  



   (67)
 

and 

 
, ( )  

, ,

 
, ,

D D f D D D D f T D f ieF

and

T D f ieF


        


   

       
  


 

When we solve this equation, we can provide a new geometric representation of the electromagnetic 

equation by torsion of the reference and defects in the medium. In crystal, there is a separation of the 

charges and the reference for the electromagnetic field is deformed by a torsion as in the dislocation of 

the crystal. 

In the electromagnetic theory, we have that 

[ ,[ , ] ([ , ] ) [ , ] [ ( ) ]

[( ) ] ( )                                                     (68)

D D D D D D D D D ie D F F D

ie D F F D F D ie D F

               

         

   

   
 

where 

,D F J v          (69) 

,J v   are the currents of the defects or electrical particles.  

Because we have  

[ ,[ , ] [ ,[ , ] [ ,[ , ] 0D D D D D D D D Dv v            (70) 

We have the invariant property for the currents 

0, , ,J J Jv v v            (71) 

Given the Maxwell equations in the tensor form  

4

0

F J
c

F F F

 


    


 


     

    (72) 



Systems 2014, 2 680 

 

 

where the contravariant four-vector which combines electric current density and electric charge density 

Jv = (cp, Jx, Jy, Jz) is the four-current, the electromagnetic tensor is 𝐹???? = 𝑎? ??? 𝐴?? − 𝑎? ??? 𝐴?? that can 

be connected with the commutators’ property and the incompatible condition that we have explained in 

the prrevious chapters.  

The Maxwell-like scheme for an incompatible system is given by the set of equations 

( )

[ , ]

[ ,[ , ] ,

D kA x
x

D D F

D D D J v

 


   

    


 






     (73) 

where the covariant derivative includes a connection term that is the potential, the commutator is the 

compensatory field for the incompatible system and the second commutator is the density current of 

the defects. The three equations can be used as models for all possible dynamical systems that include 

defects or sources. In the next chapter, we use this new scheme to improve the Einstein gravitational 

geometry. 

5. Dynamic Equations with Torsion in Non-Conservative Gravity Maxwell-Like Equations 

To introduce the new wave equation for gravity [11,12] and for the “constructive logic” of the 

gauges theories [13], we remember that 

, V R V
    

    
 

 (74) 

where the Riemann tensor is 

R      
                    (75) 

With the double commutator we have the dynamic equation  

[ ,[ , ]] ( [ , ]) [ , ]( )

( ) ( )

K K K

R K R K

         

 
    

          

    
   (76) 

where 𝑅 is the Riemann tensor, a? ?𝑘 is the covariant derivative and 𝐾?? is the vacuum field. Now we 

connect the commutator with the gravity current in this way 

( ) ( )J K R K R K       
         (77) 

For the conservation of the current, after contractions, we have the equation 

a? ??? [R????+? ? (T???? +
1

2
g????T)] K?? + R????(a? ??? K??) = 0   (78) 

when a? ?𝑘 𝐾?? = 0 we have the Einstein equations. 

Most applications of differential geometry, including General Relativity, assume that the connection 

is “torsion free”: that is, vectors do not rotate during parallel transport. Because some extensions of GR 

do include torsion, it is useful to see how torsion appears in a modern geometrical language. The 

torsion corresponds intuitively to the condition that vectors must not be rotated by parallel transport. 
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Such a condition is natural to impose, the theory of General Relativity itself includes this assumption. 

However, differential geometry is equally well.defined with torsion as well as without, and some 

extensions of general relativity include torsion terms. The first of these was “Einstein-Cartan theory”, 

as introduced by Cartan in 1922. We define the torsion tensor by the connection symbols in this way 

T  
           (79) 

We now show in an explicit way that it is possible to present the previous dynamical equation by a 

wave equation with a particular source where the variables include symmetric and anti-symmetric 

connection symbols as well as torsion in one geometric picture. In Appendix A, we define the new 

type of wave with an explicit computation of the commutator and of the double commutator. 

6. Conclusions 

Symmetry and its physical implications on conservation principles have a long history in physics. 

The same importance, if not higher, is shown by the concepts of symmetry breaking and local gauge as 

the constructive principle to characterize interactions as a “compensation mechanism”. In particular, this 

was made possible by a unified geometrical vision of fundamental interactions in Gauge Theories [14]. 

The structural logics of these theories are not an exclusive prerogative of particle physics or relativistic 

geometrodynamics. In this work, we delineated a parallel development of such ideas we called 

“Compensative Geometry” which has old systemic roots. It is within such a context—at the crossroad 

of Theoretical Physics, Cybernetics, Category and Group Theory and Logical System Theory—that the 

constructive approach here introduced has been developed [3,7,11] (for some fundamental steps,  

see [15–17]; for the consequences on the computation concept, see [18,19]). Such class of theories is 

based on few principles related to different orders of commutators between covariant derivatives. Their 

physical meaning is very simple, and lies in stating that the local transformations of a suitable substratum 

(the space-time or a particular phase space) and the imposed constraints define a “compensative 

mechanism” or the “interaction” we want to characterize. 

We stress the mathematical aspects which make this approach a “theory to build geometric-based 

unified theories”. 

The conceptual core of the procedure can be expressed in a five-point nutshell: 

(a) The description of a suitable substratum and its global and local properties on invariance; 

(b) The field potentials are compensative fields defined by a gauge covariant derivative. They 

share the global invariance properties with the substratum; 

(c) The calculation of the commutators of the covariant derivatives in (b) provides the relations 

between the field strength and the field potentials; 

(d) The Jacobi identity applied to commutators provides the dynamic equations satisfied by the 

field strength and the field potentials; 

(e) The commutator between the covariant derivatives (b) and the commutator (c) (triple Jacobian 

commutator) fixes the relations between field strength and field currents. 

We chose an example connected to the recent developments of the extended gravity theories in 

order to show the generality of the approach. Actually, the GR syntax seems to regenerate itself from 
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inside and to produce many schemes of classical coupling Raum–Zeit–Materie. This autopoietic 

feature is a distinctive and propulsive of Theoretical Physics considered as a totality of structures that 

fixes the conditions of thinkability for its entities and “beables”.  

In conclusion, the geometrical approach here delineated has significant potential in relation to the 

classical themes of systemics (system/environment; contextuality; computation; logical openness) 

thanks to the strategy allowing, in a simple and general way, to recognise the gauging as cognitive 

compensation between known and unknown domains. 
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Appendix A 

Given the general covariant derivative 

V
D V V

x


   




 


     (1A) 

where the connection terms are unknown variables that we define by the new gravitational equation 

obtained by the first and second commutator. We remark that the connection terms are not Christoffel 

elements but are a general connection which values will be defined by the new gravitational equations. 

To know the connection terms we begin with the computation of the first commutator 

, ( ) ( ),
V V

F D D V D D V D D V D V D V
x x

  
              



 
       
   

 (2A) 

So we have 

𝐹𝜇𝜈,𝛼 = [𝐷𝜇 , 𝐷𝜈]𝑉𝛼 = (
𝜕𝐵𝜈,𝛼

𝜕𝑥𝜇
− Γ𝜈,𝜇

𝜆 𝐵𝜈,𝜆 − Γ𝛼,𝜇
𝜆 𝐵𝛼,𝜆) − (

𝜕𝐵𝜇,𝛼

𝜕𝑥𝜈
− Γ𝜇,𝜈

𝜆 𝐵𝜇,𝜆 − Γ𝛼,𝜈
𝜆 𝐵𝛼,𝜆) (3A) 

with 

𝐵𝜈,𝛼 = (
𝜕𝑉𝛼

𝜕𝑥𝜈
− Γ𝜈,𝛼

𝜆 𝑉𝜆) 

𝐵𝜇,𝛼 = (
𝜕𝑉𝛼

𝜕𝑥𝜇
− Γ𝜇,𝛼

𝜆 𝑉𝜆) 

and 
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𝐹𝜇𝜈,𝛼 = [𝐷𝜇 , 𝐷𝜈]𝑉𝛼 = −(𝑅𝛼𝜇𝜈
𝜆 𝑉𝜆 + T𝜇𝜈

𝜆 𝐷𝜆𝑉𝛼) 

where 

𝑅𝛼𝜇𝜈
𝜆 = (

𝜕Γ𝜈,𝛼
𝜆

𝜕𝑥𝜇
−

𝜕Γ𝜇,𝛼
𝜆

𝜕𝑥𝜈
+ Γ𝜇,𝑞

𝜆 Γ𝜈,𝛼
𝑞

− Γ𝜇,𝛼
𝑞

Γ𝜈,𝛼
𝜆 ) 

In conclusion, we have 

−𝐹𝜇𝜈,𝛼 = −[𝐷𝜇 , 𝐷𝜈]𝑉𝛼 = (
𝜕Γ𝜈,𝛼

𝜆

𝜕𝑥𝜇
−

𝜕Γ𝜇,𝛼
𝜆

𝜕𝑥𝜈
) 𝑉𝜆 + (Γ𝜇,𝑞

𝜆 Γ𝜈,𝛼
𝑞

− Γ𝜇,𝛼
𝑞

Γ𝜈,𝑞
𝜆 )𝑉𝜆 + (Γ𝜇,𝜈

𝜆 − Γ𝜈,𝜇
𝜆 )𝐷𝜆𝑉𝛼 = 𝐺𝜇𝜈,𝛼 + Ω𝜇𝜈,𝛼  (4A) 

where  

𝐺𝜇𝜈,𝛼 = (
𝜕𝛤𝜈,𝛼

𝜆

𝜕𝑥𝜇
−

𝜕𝛤𝜇,𝛼
𝜆

𝜕𝑥𝜈
) 𝑉𝜆 

and  

Ω𝜇𝜈,𝛼 = (𝛤𝜇,𝑞
𝜆 𝛤𝜈,𝛼

𝑞
− 𝛤𝜇,𝛼

𝑞
𝛤𝜈,𝑞

𝜆 )𝑉𝜆 + (𝛤𝜇,𝜈
𝜆 − 𝛤𝜈,𝜇

𝜆 )𝐷𝜆𝑉𝛼 

Now, we have that 

x

 
 




  


 

obtaining 

2 2
( ), ,G V G

x x x x x x


 

   
    

  
    

     
   (5A) 

So, we have that the field 𝐺 is invariant. Now, we impose the Lorenz-like gauge condition in this way 

0
x










      (6A) 

Now, we have 

 , , ,

, , , ,, ,
( ) ( ) ( )  

, , , ,, ,

G G G
x x x

v
V V V

x x x x x x x x xv

v

x x x x x x x x x x x xv

 

     


   
         

  
     

   
         

        

  
 

  

     
     
        

        
      
           

0  

(7A) 

The Lagrangian gravitational density is 

𝐿 = 𝐹𝜇𝜈,𝛼𝐹𝜇𝜈,𝛼 = (𝐺𝜇𝜈,𝛼 + Ω𝜇𝜈,𝛼)(𝐺𝜇𝜈,𝛼 + Ω𝜇𝜈,𝛼) = 𝐺𝜇𝜈,𝛼𝐺𝜇𝜈,𝛼 + Ω𝜇𝜈,𝛼Ω𝜇𝜈,𝛼 + 2𝐺𝜇𝜈,𝛼Ω𝜇𝜈,𝛼(8A) 

where 𝐺𝜇𝜈,𝛼𝐺𝜇𝜈,𝛼 and Ω𝜇𝜈,𝛼Ω𝜇𝜈,𝛼 + 2𝐺𝜇𝜈,𝛼Ω𝜇𝜈,𝛼 are the Lagrangian density for the free gravitational 

field and the reaction field of the vacuum. The interaction term 𝐺𝜇𝜈,𝛼Ω𝜇𝜈,𝛼 connects the gravitation 

field with the field of the vacuum.  
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The dynamic equation for Non Conservative Gravity can be obtained in this way 

[𝐷𝛽 , [𝐷𝜇 , 𝐷𝜈]] 𝑉𝛼 = 𝐷𝛽[𝐷𝜇, 𝐷𝜈]𝑉𝛼 − [𝐷𝜇 , 𝐷𝜈]𝐷𝛽𝑉𝛼 = 𝐷𝛽𝐹𝜇𝜈,𝛼 − [𝐷𝜇, 𝐷𝜈]𝐷𝛽𝑉𝛼 = 

= −𝐷𝛽(𝐺𝜇𝜈,𝛼 + Ω𝜇𝜈,𝛼) − [𝐷𝜇, 𝐷𝜈]𝐷𝛽𝑉𝛼 = 𝐽𝜇𝜈,𝛼𝛽     (9A) 

and 

𝐷𝛽𝐺𝜇𝜈,𝛼 = −𝐽𝜇𝜈,𝛼𝛽 − 𝐷𝛽Ω𝜇𝜈,𝛼 − [𝐷𝜇, 𝐷𝜈]𝐷𝛽𝑉𝛼     (10A) 

where 

𝐷𝛽𝐺𝜇𝜈,𝛼 =
𝜕𝐺𝜇𝜈,𝛼

𝜕𝑥𝛽
− 𝐺𝑗𝜈,𝛼Γ𝜇𝛽

𝑗
− 𝐺𝜇𝑗,𝛼Γ𝜈𝛽

𝑗
− 𝐺𝜇𝜈,𝑗Γ𝛼𝛽

𝑗
      (11A) 

so  

𝜕𝐺𝜇𝜈,𝛼

𝜕𝑥𝛽
− 𝐺𝑗𝜈,𝛼Γ𝜇𝛽

𝑗
− 𝐺𝜇𝑗,𝛼Γ𝜈𝛽

𝑗
− 𝐺𝜇𝜈,𝑗Γ𝛼𝛽

𝑗
= −𝐽𝜇𝜈,𝛼𝛽 − 𝐷𝛽Ω𝜇𝜈,𝛼 − [𝐷𝜇 , 𝐷𝜈]𝐷𝛽𝑉𝛼  (12A) 

and 

𝜕𝐺𝜇𝜈,𝛼

𝜕𝑥𝛽
= 𝐺𝑗𝜈,𝛼Γ𝜇𝛽

𝑗
+ 𝐺𝜇𝑗,𝛼Γ𝜈𝛽

𝑗
+ 𝐺𝜇𝜈,𝑗Γ𝛼𝛽

𝑗
− 𝐽𝜇𝜈,𝛼𝛽 − 𝐷𝛽Ω𝜇𝜈,𝛼 − [𝐷𝜇, 𝐷𝜈]𝐷𝛽𝑉𝛼  (13A) 

,
,

G
J

x

 
 







 

Now, we have 

𝜕𝐺𝜇𝜈,𝛼

𝜕𝑥𝛽
=

𝜕

𝜕𝑥𝛽
(

𝜕𝛤𝜈,𝛼
𝜆

𝜕𝑥𝜇
−

𝜕𝛤𝜇,𝛼
𝜆

𝜕𝑥𝜈
) 𝑉𝜆 = (

𝜕2𝛤𝜈,𝛼
𝜆

𝜕𝑥𝛽𝜕𝑥𝜇
−

𝜕2𝛤𝜇,𝛼
𝜆

𝜕𝑥𝛽𝜕𝑥𝜈
) 𝑉𝜆   (14A) 

For 𝑥?2 = 𝑥?? we have  

𝜕𝐺𝜇𝜈,𝛼

𝜕𝑥𝜇
= (

𝜕2𝛤𝜈,𝛼
𝜆

𝜕2𝑥𝜇
−

𝜕2𝛤𝜇,𝛼
𝜆

𝜕𝑥𝜇𝜕𝑥𝜈
) 𝑉𝜆 = (

𝜕2𝛤𝜈,𝛼
𝜆

𝜕2𝑥𝜇
−

𝜕2𝛤𝜇,𝛼
𝜆

𝜕𝑥𝜈𝜕𝑥𝜇
) 𝑉𝜆   (15A) 

However, for the Lorentz-like gauge we have 

𝜕2𝛤𝜇,𝛼
𝜆

𝜕𝑥𝜈𝜕𝑥𝜇
=

𝜕

𝜕𝑥𝜈
(

𝜕𝛤𝜈,𝛼
𝜆

𝜕𝑥𝜇
) = 0     (16A) 

and 

𝜕𝐺𝜇𝜈,𝛼

𝜕𝑥𝜇
=

𝜕2𝛤𝜈,𝛼
𝜆

𝜕2𝑥𝜇
𝑉𝜆 = (

𝜕2𝛤𝜈,𝛼
𝜆

𝜕2𝑥
− 𝑐2 𝜕2𝛤𝜈,𝛼

𝜆

𝜕2𝑡
) 𝑉𝜆 = 𝐽𝜈𝛼     (17A) 

When the currents are equal to zero we have that 

𝜕𝐺𝜇𝜈,𝛼

𝜕𝑥𝜇
=

𝜕2𝛤𝜈,𝛼
𝜆

𝜕2𝑥𝜇
𝑉𝜆 = (

𝜕2𝛤𝜈,𝛼
𝜆

𝜕2𝑥
− 𝑐2 𝜕2𝛤𝜈,𝛼

𝜆

𝜕2𝑡
) 𝑉𝜆 = 0    (18A) 

The variable 𝛤𝜈,𝛼
𝜆  has a wave-like behaviour. 

Now we look at the currents 

𝐽𝜇𝜈,𝛼𝛽 = 𝐺𝑗𝜈,𝛼Γ𝜇𝛽
𝑗

+ 𝐺𝜇𝑗,𝛼Γ𝜈𝛽
𝑗

+ 𝐺𝜇𝜈,𝑗Γ𝛼𝛽
𝑗

− 𝐽𝜇𝜈,𝛼𝛽 − 𝐷𝛽Ω𝜇𝜈,𝛼 + [𝐷𝜇 , 𝐷𝜈]𝐷𝛽𝑉𝛼 = 𝑅𝜇𝜈,𝛼𝛽 − 𝐽𝜇𝜈,𝛼𝛽 (19A) 

where 𝑅 is a reaction of a virtual matter or medium (vacuum) and 𝐽 is the ordinary currents for the 

ordinary matter represented by the energetic tensor. The non-linear reaction of the self-coherent system 
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produces a current that justifies the complexity of the gravitational field and non-linear properties of 

the gravitational waves. 

(
𝜕2𝛤𝜈,𝛼

𝜆

𝜕2𝑥
− 𝑐2 𝜕2𝛤𝜈,𝛼

𝜆

𝜕2𝑡
) 𝑉𝜆 = 𝑅𝜈𝛼 − 𝐽𝜈𝛼     (20A) 

In conclusion, we show that the non-conservative gravitational field is similar to a wave for  

64 variables 
j
v

  in a non-linear material where we have complex non-linear phenomena inside the 

virtual material that represents the vacuum. In the previous equations, in the free field of the medium 

the Proca terms   , the Chern-Simons terms (   )  and the Maxwell-like terms (   ) (   ) 

are present. So, we have the mass terms, the topologic terms and the electromagnetic-like field terms. 

We can model the gravitational wave with torsion as a particle in a non-linear medium which gives the 

mass of the particle, in a way that can be compared to usual SSB processes of the standard model, for 

an orientation in extensive literature [20–22]. 
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