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Abstract

Parking shortages and high costs in Chinese central business districts (CBDs) remain
major urban challenges. Emerging automated vehicles (AVs) are expected to diversify
parking options and mitigate these problems. However, AV users’ parking preferences and
their influencing factors within existing urban zoning frameworks remain unclear. This
study examines Nanjing as a representative case, proposing six distinct AV parking modes.
Using survey data from 4644 responses collected from 1634 potential users, we employed
nested logit models and random forest algorithms to analyze parking choice behavior.
Results indicate that diversified AV parking modes would significantly reduce CBD parking
demand. Users with medium- to long-term needs prefer home-parking, while short-term
users favor CBD proximity. Key influencing factors include parking service satisfaction,
duration, congestion time, AV punctuality, and individual characteristics, with satisfaction
attributes showing the greatest impact across all modes. Comparative analysis reveals
that random forest algorithms provide superior predictive accuracy for parking mode
importance, while nested logit models better explain causal relationships between choices
and influencing factors. This study establishes a dual analytical framework combining
interpretability and predictive accuracy for urban AV parking research, providing valuable
insights for transportation management and future metropolitan studies.

Keywords: behavior analysis; nested logit model; machine learning model; automated
vehicles; parking choices

1. Introduction

Parking issues in central business districts (CBDs) remain a persistent challenge for
metropolises worldwide, especially in developing countries. In recent years, this challenge
has been exacerbated by the rapid increase in vehicle ownership in China. The primary
parking issues in the context of human-driving are as follows: First, parking spaces remain
insufficient. In large metropolises in China, the parking space-to-vehicle ratio ranges from
0.4:1 to 0.7:1, which is much lower than the 1.3:1 ratio common in developed countries [1].
Therefore, finding proper parking spaces during peak hours is often a huge challenge.
Second, parking costs have increased. Because existing parking facilities in big cities cannot
meet the increasing demand for parking, this imbalance between supply and demand
has driven up parking costs. For example, daily parking costs in urban areas in China
can reach as high as 300 CNY [2]. Third, walking issues remain a problem after parking.
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93% of commuters expressed concerns about the distance they have to walk after parking
as a decisive factor in choosing a parking location [3], especially people with disabilities.

These parking issues primarily occur with human-driven vehicles (HVs). However,
the emergence of automated vehicles (AVs) is expected to change this dilemma. The
development of the AV industry has received much attention in China in recent years.
Regions such as Shanghai, Nanjing, Suzhou, and Shenzhen have successively established
industrial demonstration zones for AVs and proposed the concept of “vehicle-road-cloud
integration” as a consensus for industry development. Compared with traditional human-
driven vehicles (HVs), automated vehicles (AVs) possess the potential to fundamentally
change traditional parking modes and parking planning strategies [4,5].

In this paper, we focus on Level 5 (L5) electric automated vehicles, which represent
fully autonomous vehicles, with particular attention to parking scenarios when users travel
to the central business district (CBD). Figure 1a,b, respectively, illustrate the contrasting
parking patterns between HVs and AVs when traveling to the urban central business district.
In traditional human-driven vehicle scenarios, when users drive to the destination in the
CBD, they need to park their cars first and then walk to target buildings. Consequently,
users typically seek parking locations as close as possible to their destinations within CBD
parking areas. Research indicates that parking choice decisions are primarily influenced by
available parking space, parking fees, and proximity to destinations [6]. Automated driving
technology fundamentally transforms this parking paradigm. AVs can be instructed to
transport users to CBD destinations and subsequently navigate autonomously to designated
parking locations based on user preferences and instructions. This technological capability
enables diverse parking strategies: users may prioritize safety by directing vehicles to return
home for parking, adopt cost-optimization approaches by selecting suburban parking lots
with lower fees despite greater distances, choose convenience by parking within CBD
areas, or implement dynamic cruising strategies on city roads during working hours as an
alternative to parking [7]. Therefore, the introduction of AVs addresses traditional CBD
parking constraints by expanding available options beyond proximate parking spaces.
This diversification enables users to optimize parking decisions according to multiple
criteria—including cost, safety, convenience, and time—rather than being limited by the
proximity imperative that characterizes human-driven vehicle parking. Consequently,
automated vehicle technology offers systematic solutions to urban parking challenges by
providing flexible, personalized parking alternatives that can better accommodate varied
user preferences and requirements.
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Figure 1. (a) Parking modes of human-driven vehicles (HVs). (b) Parking modes of automated
vehicles (AVs).

In terms of solving current parking problems through AVs, a series of studies have
been conducted mainly focusing on two areas: parking management methods [7-9] and
user parking behavior [10]. The previous literature on parking management has mainly
conceptualized AV parking methods from various perspectives, including cost savings and
congestion reduction. These methods have produced remarkable results, but the personal
parking preferences and choices of AV users have been overlooked in most cases. Indeed,
an effective functional parking management model should prioritize users’ willingness,
preferences, and requirements. Because of the great flexibility inherent in AVs, which allows
them to be adapted to different parking environments, user personalities, and parking
needs, it is necessary to understand in detail the choice preferences of AV users before
proceeding with urban parking design and management. On the other hand, studies of
AV parking behavior have so far mainly focused on users’ willingness to move, parking
choices, and related environmental impacts. However, the city’s unique natural, historical,
and parking zoning characteristics also influence AV parking modes, a phenomenon that
has rarely been addressed in the previous literature. Implementation of AVs is a gradual
process that includes stages of acceptance and subsequent familiarity [11,12]. During this
process, planners and operators should incorporate an inherent urban parking zoning
system, local parking behavior characteristics, and socioeconomic attributes into urban
parking studies. This approach will ensure that AV parking strategies better reflect current
urban realities and user needs.

This study is based on Nanjing, a city with a history of more than 2500 years and nearly
500 years as the historical capital. In this city, Zhongshan Mountain, Qinhuai River, and the
Yangtze River form a complex topography that forms the typical “mountain—-water—city”
layout. Numerous historical relics, complex topography, and road networks combine to
define the city’s existing parking zoning system. The current Nanjing Vehicle Parking
Management Regulations [13] categorizes parking zones into four types: Core area, Level
1 area, Level 2 area, and Level 3 area. To ensure compatibility with the existing parking
zoning regulation when the parking mode for AVs is introduced, the existing four types of
parking zoning systems are used as the basis for adding AV-specific parking modes, namely
cruising and home-parking. Therefore, a total of six parking modes are considered in this
paper: cruising, home-parking, core area parking, level 1 area parking, level 2 area parking,
and level 3 area parking. In this context of urban parking zones, we do not yet know the
choice behavior of AV users in the six parking modes. Moreover, previous studies of AV
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parking behavior have been analyzed mainly using conventional discrete choice models.
Consequently, there is a dearth of research on AV parking behavior using machine-learning
models, and the question of whether machine-learning models yield anomalous results
remains unanswered. In this study, we propose an AV parking model based on the common
zoning system for urban parking, using discrete choice models and a machine-learning
model. Prior research on automated vehicle parking behavior has predominantly focused
on parking behavior attributes and individual socioeconomic characteristics, with limited
consideration given to urban parking service attributes. These often-overlooked attributes
include satisfaction degree with urban traffic safety (SSD), satisfaction degree with parking
conditions across the entire city (PSD), and satisfaction degree with parking conditions
in the CBD area (CSD). Consequently, this study incorporates the consideration of urban
parking service attributes into its analysis.

Given the current unavailability of fully automated vehicles in the commercial market,
a stated preference (SP) survey is used to collect data on six options for parking modes in
CBD areas. The data collected will be used in the second phase to develop parking choice
models, including the nested logit (NL) model and the random forest model. These models
are used to analyze the parking decisions and preferences of AV users for four types of
parking duration. Specifically, this study addresses three key research questions:

(i) What are the parking choice preference characteristics of AV users within existing
urban parking zoning frameworks?

(ii) Which factors significantly influence AV users’ travel choice behavior, and what are
the interrelationships among these influencing factors?

(iii) What are the similarities and differences between results generated by discrete choice
models and machine learning models?

The findings will contribute to the design of parking systems tailored to the diverse
needs of different user groups within the original context of urban parking zoning. Since
our study is conducted in existing urban parking zoning systems, it will inform the devel-
opment of ecologically sustainable parking management strategies for AVs. In addition, it
also provides a theoretical basis and practical guidelines for long-term parking planning
and parking management for AVs.

The rest of this article is organized as follows. Section 2 provides an overview of
previous research on parking management and behavior. This is followed by Section 3,
which explains the experimental design and data collection. Section 4 introduces the
methodology for model development. Section 5 describes sample results, model parameter
estimates, and comparative analysis of discrete choice models and machine learning models.
Finally, Section 6 summarizes key results and future research.

2. Literature Review

The acceptance and future development of automated driving have attracted growing
attention in recent years [12,14-16]. Researchers from an increasing number of countries
have begun to explore AV parking choices and management. Some researchers have exam-
ined the AV parking modes in which automated vehicles were arranged to park in more
costs-effective suburban locations far from travelers’ destinations, and the impact of adjust-
ing parking costs to influence such decisions was also explored [9]. This article achieved
valuable research results on AV parking, but it mainly focused on parking choices distant
from destinations, without considering other potential parking strategies. Subsequently,
the feasibility of implementing an AV parking method in a designated area with multiple
parking facilities was investigated [5]. The proposed solutions included the implementa-
tion of costs-optimizing structures designed to distribute overall parking demand among
available parking spaces. A control theory was employed to address parking allocation;
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however, the behavioral heterogeneity of users was not discussed. Other follow-up studies
have simulated scenarios in which AVs were assigned to cruise when parking is required.
These studies have designed measures such as dynamic pricing and congestion charges
to alleviate traffic congestion caused by prolonged cruising [7,8]. However, Amirgholy
et al. [17] believed that parking fees represent a more practical alternative to congestion
pricing, as they avoid the social resistance that congestion charges often provoke. They
developed a spatiotemporal parking pricing strategy and a new parking supply design,
proposing a measure that leverages parking fees to incentivize travelers to adjust their
departure times. This approach is presented as a pragmatic substitute for conventional
dynamic congestion pricing. Overall, research on AV parking management has made sig-
nificant progress, but the in-depth exploration of individual preferences and users’ demand
characteristics still needs further study. Moreover, current studies often fail to propose
context-specific AV parking designs tailored to the specific natural, historical, and existing
characteristics of individual cities.

Understanding parking preferences and choices among AV users is a critical founda-
tion for AV parking systems planning and design. Only with a full understanding of users’
parking preferences and demands can the design and planning of parking facilities be man-
aged usefully and efficiently [18]. Previous research has extensively discussed the parking
preferences and demand of human-driven vehicles and identified parking costs [6,19-21]
and parking durations [20,22] as the most critical factors influencing parking decisions for
human-driven vehicles. Research on parking choices for AVs remains relatively limited.
Existing research on autonomous vehicles mainly focused on shared autonomous vehi-
cles (SAVs) and privately owned autonomous vehicles (PAVs). As for SAVs, the factors
affecting users’ willingness to accept SAVs and their parking behavior have been analyzed
in detail [23], including travel time, parking costs, and so on. For PAVs, research on the
users’” parking behavior has investigated several factors, such as trip purpose, parking
distance, parking duration, and parking costs [24]. Most of these studies have employed
discrete choice models as the primary analytical framework. Additionally, some studies
have incorporated unique perspectives, such as measuring willingness-to-relocate (WTR)
to quantify the time travelers were willing to spend relocating their PAVs [10], considering
time windows and vehicle retrieval frequency [25], and examining the energy consump-
tion of PAV parking [26]. These contributions have provided beneficial references to AV
parking behaviors and user preferences. However, it is noteworthy that existing studies
have largely ignored the impact of urban-specific parking zoning on AV parking behav-
ior and have not examined the effects of varying parking durations on specific parking
choices. In addition, the application of machine learning models as analytical tools in
AV parking behavior research remains unexplored. Unlike discrete choice models which
rely on predetermined assumptions, machine learning can uncover complex, nonlinear
relationships within data as an advanced branch of artificial intelligence [27,28]. In this
paper, we attempt to use machine learning models to analyze the parking preference of AV
users in six parking modes.

3. Stated Choice Experiment
3.1. Survey Overview

This study focuses on the parking choices of AVs in scenarios within the CBD of
Nanjing, China. It primarily relies on real-world data, including parking costs, energy
consumption costs, and zoning maps of Nanjing, to extend the findings to other major
Chinese cities in the future. This research focuses specifically on fully automated electric
vehicles. For advance clarity, both urban roads and suburban roads in China are toll-free.
Moreover, this study assumes that when AVs are widely adopted in the future, the costs of
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autonomous driving services will be integrated into monthly subscription plans, following
the current practices of Tesla [29].

The six parking modes were introduced in the introduction, and the parking zoning
system in Nanjing is depicted in Figure 2. For the stated preference (SP) parking experiment,
three primary attributes were mainly considered: four parking duration levels (1 h, 3 h,
6 h, and 8 h), two vehicle arrival punctuality conditions (on-time and delayed arrival),
and four congestion duration scenarios (0 min, 5 min, 10 min, and 15 min). Six distinct
parking modes were presented as choice alternatives in the survey questionnaire: cruising
as a parking substitute, returning home for parking, parking in the core area, level 1 area,
level 2 area, and level 3 area.
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Figure 2. Distribution of parking zoning system in Nanjing.

For the four parking modes in the core area, level 1 area, level 2 area, and level 3 area,
parking fees were set according to the standards defined in the Nanjing Regulations on
Vehicle Parking Service Charges [30] which are about 8 CNY/h, 6 CNY/h, 4 CNY/h, and
2 CNY/h, respectively. In contrast, the cruising mode eliminates the need for parking space
search, while the home-parking option assumes direct access to private residential parking
facilities. Consequently, both cruising and home parking modes incur zero parking fees,
as they do not require commercial parking space utilization. To facilitate the calculation
of energy consumption costs during parking periods, we integrated energy consumption
expenses with parking fees, expressing the combined cost as an average hourly rate. This
unified metric represents the total cost per unit time, comprising both parking fees and
energy consumption expenses. This methodological approach serves to mitigate potential
multicollinearity issues in subsequent discrete choice modeling analyses.

Parking durations are closely related to travel purposes, and this study considers two
primary purposes: commuting and non-commuting. For commuting trips, the parking
durations are set at 8 h. For non-commuting trips, parking durations are categorized into
three levels: 1 h (short-term parking), 3 h (medium-term parking), and 6 h (long-term
parking). Thus, the parking duration analyzed in this study includes four levels: 1 h, 3 h,
6 h, and 8 h. Considering that the increased empty vehicle miles traveled (VMT) during
cruising and home-parking could potentially exacerbate road congestion, we introduced
two attributes: arrival punctuality and congestion duration. The punctuality of arrivals
refers to whether AVs can pick up users on time after leaving the parking facility, which
depends on several factors, including traffic congestion and the vehicle’s departure time. In
this study, punctuality is classified into two categories: on-time and delayed. Additionally,
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traffic congestion during the journey from the parking facility to the user’s location is
considered, as it may impact vehicle arrival time. Congestion time is included as an
attribute for analysis. Based on domestic traffic congestion levels [31], congestion times
vary significantly throughout the day, with the most common delays ranging from 0 to
20 min. Therefore, this study defines congestion time at four levels: 0 min, 5 min, 10 min,
and 15 min.

Previous studies [32] have shown that user satisfaction significantly influences parking
location choices. Therefore, three key satisfaction factors are considered in this study:
satisfaction degree with the parking conditions in the CBD area (CSD), satisfaction degree
with the parking conditions across the entire city (PSD), and satisfaction degree with
urban traffic safety (SSD), to represent parking service level. Additionally, individual
socioeconomic characteristics, such as gender, age, monthly per capita household income,
driver’s license ownership, educational level, and occupation, are also included in the
analysis, as shown in Table 1.

Table 1. The list of influencing factors corresponding to the three types of attributes.

Factor Type Factor Symbol Factor Definition
SSD Satisfaction degree with urban traffic safety
PSD Satisfaction degree with the parking conditions across the
Parking service attributes entire city
CcSD Satisfaction degree with the parking conditions in the
CBD area
GEN Gender
AGE Age
FI Monthly household income per capita
Socioeconomic attributes DL driver’s license ownership
EDU Education
CA Career or occupation
EXP Experience with auto-pilot vehicles
P_PF1 Hourly costs for cruising
P_PE2 Hourly costs of home-parking
P_PF3 Hourly parking costs if parking in the core area
P_PF4 Hourly parking costs if parking in the level 1 area
Parking behavior attributes P_PF5 Hourly parking costs if parking in the level 2 area
P_PF6 Hourly parking costs if parking in the level 3 area
CT Congestion time
PA Punctuality of arrival
PD Parking durations

3.2. Parking Choice Experiment Design

A survey was conducted using the SoJump platform [33]. First, we invited two
researchers with expertise in empirical studies to conduct an expert review and three
respondents to participate in cognitive interviews. Based on their feedback, ambiguous
words were revised, and irrelevant questions that did not match the survey objectives were
removed. The final version of the survey consisted of four sections and 25 items.

The first section contained general introductory information and educational materials.
Before the beginning of the survey, we explained the background and motivation of the
study, assuring respondents that their personal information would remain confidential
and not be used for commercial purposes. We then introduced the concept of automated
vehicles (AVs), highlighting their recent developments and applications, to provide respon-
dents with a clear and intuitive understanding of AVs. We also provided respondents with
an introduction to automated parking systems [34] and a short video on auto-pilot driv-
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ing [35]. These materials were designed to help respondents fully understand the study’s
background and strive to minimize any potential misunderstandings among participants,
thereby improving response rates and data quality. The second section focused on travel
background characteristics. A stated preference (SP) survey was conducted to collect data
on respondents” current travel behavior. The survey included questions about driver’s
license ownership, the most commonly used travel mode for daily commuting, and other
related factors. The third section investigated respondents’ parking mode choices for AVs.
This section used a stated preference (SP) approach with 16 scenarios designed through
orthogonal experimental design. Here an example question from scenario 1 is shown in
Figure 3. The fourth section collected respondents’ socioeconomic attributes. This section
included questions on gender, age, educational background, and other related factors.

Imagine you are commuting to the city center for work using a CAV (Connected and Autonomous Vehicle). On that day, you need to
find a parking space for your CAV, and the parking duration is about 8 hours. After work, your CAV will arrive on time to pick you
up, and there will be no congestion on the way to pick you up. Given that AVs can begin cruising immediately, we set the Distance
and Access Time for the cruising option to zero. Which of the following parking options would you prefer?

A. Cruising

B. Home-parking

C. Parking in D. Parkingin the E. Parkingin the F.Parking in the
the Core Area Level 1 Area Level 2 Area Level 3 Area

Cruising
hour

Distance 0

Access
Time

-

Cost per 4 ¥

ﬁ = Eb & 0/0 q&
Parking Parking Parking Parking Parking
Costper (225 ¥ | Costper 8025 ¥ Cost per  §.100 ¥ Costper 4175 ¥ | Costper 2350 ¥
hour hour hour hour hour
Distance 9 km Distance 1 km Distance 4 km Distance 7 km Distance 14 km
Access Access ; Access Access Access

5 mi . 1.5 mins > i : %

Time 13.5mins | Time Time 6 mins Time 10.5 mins Time 21 mins

_

Figure 3. Example of choice sets presented to the respondent.

3.3. Sample and Sample Characteristics

The survey was conducted in Nanjing, Jiangsu Province, from 21 June to 17 July.
A combination of online surveys and field surveys was used to collect data. The field
surveys were conducted at the Xinjiekou CBD parking lots, while online surveys were
distributed via internet platforms. A total of 1634 questionnaires were collected. After data
cleaning, 1161 valid questionnaires were retained, yielding an effective response rate of
71%. From these valid responses, 4644 observations were obtained for analysis and model
estimation. Strict screening criteria were used in data cleaning, including a reliability check
and a consistency check.

The sample size met the minimum requirements for random sampling as calculated
using the formula proposed by Krejcie and Morgan [36]. At the same time, the sample size
also met the minimum requirements for orthogonal experiments as defined by [37].

According to the latest census data [38], 51.05% of the population is male and 48.95% is
female. In this survey, 51.85% of the respondents were male and 48.15% were female, indi-
cating that the gender distribution is close to the actual demographic structure. The Nanjing
Statistics Bureau classifies annual household income per capita into four categories: low-
income households (below 38,000 CNY), middle-income households (38,000-120,000 CNY),
upper-middle-income households (120,000-240,000 CNY), and high-income households
(above 240,000 CNY) [39]. Among respondents, the proportions of these income groups
were 6.20%, 49.10%, 27.13%, and 17.57%, respectively, with the majority belonging to the
middle-income group. Moreover, the survey revealed that 84.24% of respondents held a
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valid driver’s license, while 15.76% did not. Table 2 summarizes the sociodemographic
characteristics of the respondents.

Table 2. Summary of demographic-related information (n = 1161).

Variable Category N %
Gender Male 602 51.85%
Female 559 48.15%
Age 18-30 473 40.74%
30-50 475 40.82%
>50 213 18.35%
Education High school graduate or lower 66 5.69%
Bachelor’s degree or Associate’s degree 628 54.09%
Graduate or professional degree 467 40.22%
Occupation Undergraduate students and graduate students 334 28.77%
Corporate employees 722 62.19%
Freelancers and nonprofit organizations 64 5.51%
Others (e.g., retirees and unemployed individuals) 41 3.53%
Annual household income per capita (CNY) <36,000 72 6.20%
36,000-120,000 570 49.10%
120,000-240,000 315 27.13%
>240,000 204 17.57%
Driver’s license ownership Yes 978 84.24%
No 183 15.76%

4. Model Design

4.1. Discrete Choice Model: Nested Logit Model
4.1.1. The Choice of Discrete Choice Model

Discrete choice models have been widely applied in studies of travel behavior se-
lection [40-43]. This study adopts the nested logit model to construct decision-making
structures tailored to the research objectives [44,45].

The NL model is selected for several reasons. First, they group similar alternatives
into nests, allowing for higher correlation among choices within the same nest while
maintaining independence across nests. This structure aligns well with users” parking
mode selection behavior. Second, they effectively capture hierarchical decision-making
processes. For example, in this study, users initially decide whether they “need to find
parking” or “do not need to find parking,” which are represented as categories A and
categories B, respectively. Subsequently, within the selected category, they choose specific
parking options. The NL model can mitigate the limitations of the multinomial logit (MNL)
model, particularly its restrictive assumption of the independence of irrelevant alternatives
(ITA) [46]. The two-layer nested logit model is illustrated in Figure 4.

Parking Modes

& ]

Core Area Level 1 Area Level 2 Area Level 3 Area
Parking Parking Parking Parking

Cruising Home-parking

Figure 4. Model structure of the nested logit model.
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4.1.2. Parameter Estimation of Nested Logit Model

This study employs the Biogeme 3.2.14 to estimate parameters using sample data.
The model assumes that individuals choose alternatives that maximize their utility. The
nested logit model consists of two layers of choices. The upper layer contains J alternative
nests, and each nest j includes K; options. The utility derived by individual i from selecting
option k within nest j is expressed as:

u]'k = x'jkﬁ+z’j'yj+s]~k(j = 1,...,],‘]( = 1,,K) (1)

where Uy represents the total utility of option k within nest j, which includes both the
systematic utility and the random error term ¢ . x]’-k B measures the utility contribution of
the attributes of option k. z;-'yj represents the utility contribution at the nest level, which is a
key component of the nested logit model, reflecting the differences between nests.

In the corresponding nested logit model, the choice probability for option k within
branch j is given by:

ot _ool(<ho)

; 2)
2;21 exp(zlmr)/ + Tmlm) Zfil exp (x/ﬂ'B]/’Z.']>

Pjk = Pj X Pk|j =

In the nested logit model, several key probabilities and parameters are defined as
follows: P; represents the probability of selecting nest j. Py; is the conditional probability of
selecting option k given the choice of nest j. y means the coefficient vector for the option
level, representing the effects of option-specific attributes on utility. j; represents the
coefficient vector for the nest level, representing the effects of nest-specific attributes on
utility. 7; is the scale parameter for nest j, reflecting the degree of similarity among options
within the same nest. ; is the inclusive value for nest j, which captures the aggregate
attractiveness of all options within the nest.

The log-likelihood function is defined as the sum of the logarithms of the probabilities
for all observed choices in the dataset. It can be expressed as:

Kj

P Ynjk - ln(ij) ©)

N ]
=y y
n=1j=1

where v, = 1 indicates that decision-maker 7 selected option k within nest j; otherwise,
Yujk = 0.

This study employs robust t-values and robust p-values to assess the significance of
the regression coefficients in the model [47]. Adjusted Rho-square is used to measure the
goodness-of-fit of the model [48].

4.2. Random Forest Algorithm

In recent years, machine learning (ML) techniques have been increasingly applied in
travel analysis [49-53]. An existing study [54] has suggested that ML methods can either
replace discrete choice models (DCMs) or achieve higher predictive accuracy compared to
DCMs. The random forest (RF) method, a prominent ML method, was formally introduced
by Breiman [55] and is based on the principles of ensemble learning. RF integrates multiple
independent decision tree models using bootstrap sampling and combines their predic-
tions through majority voting (for classification tasks) or averaging (for regression tasks).
This approach enhances the generalization ability of the model and improves predictive
performance for both classification and regression tasks.



Systems 2025, 13, 891

11 of 24

The primary reasons for selecting the random forest model are as follows: First, RF has
been demonstrated to be one of the most accurate classifiers for handling high-dimensional
data and is widely used in travel behavior prediction [56]. Second, by introducing ran-
domness, RF effectively reduces the variance of individual models, thereby improving
the overall generalization ability. Furthermore, RF captures nonlinear relationships be-
tween features and target variables, enabling the evaluation of feature importance. This
characteristic addresses the strict multicollinearity requirements of discrete choice models.
Based on these advantages, the RF model is employed for simulation and computation in
this study. The implementation of the random forest classifier was performed using the
RandomPForestClassifier module from the Python scikit-learn library. This framework was
utilized to conduct classification analysis and prediction based on sample data.

5. Model Results
5.1. Parking Choice Behavior Characteristics

Building upon the experimental setup and methodology detailed in the preceding two
chapters, we conducted a feature analysis based on attributes of parking service and parking
behavior from the survey data. As presented in Table 3, dissatisfaction with downtown
parking conditions (27.31%) was higher than satisfaction (23.86%), while satisfaction with
overall downtown parking conditions (27.48%) was higher than dissatisfaction (22.57%).
Thus, we can conclude that parking problems in the CBD are more severe than parking
problems in the city as a whole, which is consistent with real observations [2]. Furthermore,
most respondents (69.76%) indicated that they were satisfied with traffic safety in the past
six months, while only 7.84% were dissatisfied.

Table 3. Summary of parking service information (n = 1161).

Variable Category Frequency (n =1161) Percentage
satisfaction degree Very disse?tisﬁ.ed. 99 8.53%
with the parking Somewhat dissatisfied 218 18.78%
conditions in the Neutral . e 267 48.84%
CBD area (CSD) Somewhat :sa’gsﬁed 206 17.74%
Very satisfied 71 6.12%
satisfaction degree Very disse?tisﬁ.ed. 70 6.03%
with the parking Somewhat dissatisfied 192 16.54%
conditions across Neutral . 580 49.96%
the entire city (PSD) Somewhat satisfied 252 21.71%
Very satisfied 67 5.77%
Very dissatisfied 20 1.72%
satisfaction degree =~ Somewhat dissatisfied 71 6.12%
with urban traffic Neutral 260 22.39%
safety (SSD) Somewhat satisfied 604 52.02%
Very satisfied 206 17.74%

As shown in Figure 5, we can also conclude that parking at home will be the most
preferred option (37.47%) when users drive to the CBD with AVs, followed by parking
in the core area (23.51%), level 1 parking (14.04%) and cruising (12.92%). Level 3 and
level 2 parking will be chosen the least, at 6.37% and 5.68%, respectively. Specifically, the
survey results reveal user preferences for six parking options at four different parking
durations, as shown in Figure 6:
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Figure 6. Parking choices of AV users in Nanjing under different parking durations.

When AV users drive to the CBD for work and need to park for 8 h, parking at home
will be the most preferred option (37.49%), followed by parking in the core area (23.84%),
level 1 parking (13.48%) and cruising (13.16%). In this context, level 3 parking (6.33%) and
level 2 parking (5.71%) will be chosen the least.

For the 1 h parking duration, parking in the core area will be the most frequently
chosen option (37.12%), followed by parking at home (23.34%), cruising (17.05%), and level
1 parking (13.35%). Level 2 parking (4.74%) and level 3 parking (4.39%) will receive the
fewest selections.
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For the 3 h parking duration, home-parking will be the most popular choice (36.26%),
followed by core area parking (22.05%), level 1 parking (15.33%), and cruising (14.38%).
Level 2 (6.29%) and level 3 (5.68%) parking will be the least preferred.

For parking duration of 6 h, home-parking will remain the most preferred option
(42.03%), followed by core area parking (18.86%), level 1 parking (13.52%), and cruising
(11.02%). Level 3 parking (8.27%) and level 2 parking (6.29%) will receive the lowest
selection percentages.

5.2. Results Analysis of Discrete Choice Model

Before analyzing the results of the discrete choice model, it is essential to assess
whether there is multicollinearity between variables. We eliminated variables with high
multicollinearity by generating a heat map using Python 3.9.19. Then the nested logit
model was estimated in an iterative manner using the Biogeme library of Python 3.9.19,
and the running results with a good degree of fit were obtained, as shown in Table 4.

Table 4. Estimation results of nested logit model.

Variable Value Rob. t-Test Rob. p-Value
Cruising
Parking Duration_cruising 1.080 11.400 0.000
Parking Costs_cruising —0.123 2.820 0.005
Age_cruising 0.147 3.990 0.000
Gender_cruising 0.171 5.300 0.000
CSD_cruising 1.630 6.030 0.000
PSD_cruising 1.750 5.970 0.000
SSD_cruising 0.951 3.060 0.002
Home-parking
Parking Duration_home-parking 1.190 15.700 0.000
Age_home-parking 0.214 5.810 0.000
Driver Licence_home-parking 0.095 2.300 0.022
Gender_home-parking 0.159 5.000 0.000
CSD_home-parking 1.840 7.000 0.000
PSD_home-parking 1.210 4.250 0.000
SSD_home-parking 1.220 3.900 0.000
Core area parking
Parking Duration_core —0.506 2.010 0.045
Parking Costs_core —1.190 29.400 0.000
CSD_core 1.540 9.500 0.000
PSD_core 1.910 10.700 0.000
Level 1 area parking
Parking Duration_Level 1 area 0.106 2.010 0.045
Punctuality of arrival_Level 1 area 0.211 9.370 0.000
Experiences with Auto-pilot_Level 1 area 0.157 6.550 0.000
Career_Level 1 area 0.072 2.100 0.036
PSD_Level 1 area 2.270 10.800 0.000
CSD_Level 1 area 1.520 7.760 0.000
Level 2 area parking
Parking Duration_Level 2 area 0.499 7.300 0.000
Punctuality of arrival_Level 2 area 0.059 2.230 0.026
Career_Level 2 area 0.233 4.690 0.000

PSD_Level 2 area 0.861 3.300 0.001
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Table 4. Cont.
Variable Value Rob. t-Test Rob. p-Value
Level 3 area parking
Parking Duration_Level 3 area 0.577 9.040 0.000
Congestion Time_Level 3 area —0.114 3.050 0.002
Career_Level 3 area 0.151 3.570 0.000
Experiences with Auto-pilot_Level 3 area 0.133 4.800 0.000
Gender_Level 3 area 0.160 5.720 0.000
PSD_Level 3 area 1.930 8.780 0.000
SSD_Level 3 area 0.223 29.300 0.000
Null log-likelihood —9320.931
Final log-likelihood —7044.643
Adjusted Rho-square 0.242

To ensure model interpretability, we evaluated the discrete choice models based on
the adjusted Rho-squared. The adjusted Rho-square for the nested logit model was 0.242,
indicating that the nested logical model has a strong fit. Consequently, we can analyze the
factors affecting users’ parking mode choices based on the nested logit model.

As illustrated in Table 4, the results of the nested logit model indicate that the at-
tributes of parking services, parking behavior, and individual socioeconomic status exert
a significant influence on the selection of parking mode. Among these three categories,
the influence of parking service attributes is the most substantial. Specifically, satisfaction
with parking conditions in the CBD area (CSD), satisfaction with parking conditions in the
city (PSD), and satisfaction with traffic safety in the city (S55D) emerged as crucial factors
influencing parking mode selection. It is worth noting that PSD has been found to exert a
significant positive influence on the selection of all six parking modes, with coefficients of
1.75,1.21,1.91, 2.27,0.861, and 1.93, respectively. Consequently, it can be concluded that an
enhancement in satisfaction with parking conditions within the city has a favorable impact
on the selection of parking modes.

Parking behavior attributes (including parking duration, parking costs, punctuality
of arrival, congestion time, etc.) also significantly influence the choice of parking modes.
Notably, in Table 4, parking duration significantly influences all parking modes, and the
difference in the coefficients illustrates the different effects of parking duration on the
probability of choosing different modes. The effects of parking duration on home-parking,
cruising, and level 1, level 2, and level 3 area parking modes are all positive, suggesting
that longer parking durations increase the likelihood of choosing these modes. The largest
effect is observed for home-parking (value = +1.190), indicating a stronger preference for
home-parking as the parking duration increases, followed by cruising and level 3 area
parking modes. On the other hand, the coefficient of the effect of parking duration on the
core area parking is —0.506, indicating that an increase in parking duration reduces the
likelihood of choosing to park in the core area, which may be due to the limited availability
and higher cost of parking in the core area. In addition, we find that punctuality of arrival
has a significant impact on users’ choice of parking options in level 1 and level 2 area
parking modes, with an impact coefficient of 0.211 and 0.059, respectively, suggesting
that the arrival of AVs at the designated time significantly increases the likelihood that
users will choose to park at level 1 and level 2 areas. An increase in congestion time has
been shown to reduce the probability that users will choose to park in the level 3 area
(value = —0.114). Thus, it can be concluded that a reduction in congestion time tends to
render the level 3 area parking more appealing.

Socioeconomic characteristics (e.g., age, gender, occupation, driver’s license owner-
ship, and experience with auto-pilot vehicles) also had a significant impact on the choice of
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different parking modes, although their impact coefficients were lower compared to those
of parking services and parking behavior characteristics. Specifically, the factor age exhib-
ited a positive and significant influence on both cruising and home parking, with a higher
impact coefficient for home parking (value = +0.214), suggesting that senior users are more
inclined to opt for home parking. Furthermore, the gender factor exhibited a substantial
impact on the selection of cruising, parking at home, and parking in a tertiary area, with
coefficients of 0.171, 0.160, and 0.159, respectively. These findings suggest that the male
group is more inclined to opt for cruising, parking in a tertiary area, and home-parking
compared to the female group. Furthermore, the analysis revealed a substantial positive
impact of autopilot experiences on parking mode selection, particularly at Levels 1 and 3.
This finding suggests that autopilot experiences may serve as a crucial factor in influencing
users’ parking decisions.

Of the six parking modes, parking in the core area is least affected by factors. The
main determinants of parking in the core area, in order of importance, are PSD, CSD,
parking costs, and parking duration. In contrast, Level 3 area parking mode is influenced
by the greatest number of significant factors, including PSD, SSD, parking duration, gender,
occupation, experiences with autopilot, and congestion time.

5.3. Results of the Random Forest Algorithm

To further capture the complex relationships among variables, in addition to the
discrete choice models, we also employed a random forest model to analyze the sam-
ples. In this study, the random forest model used a total of 4644 samples, of which 70%
(3251 samples) were assigned to the training set and 30% (1393 samples) were assigned
to the test set. The performance of the random forest algorithm is affected not only by
the quality of the data and feature characteristics, but also, more importantly, by hyper-
parameters such as the number of trees, the number of features considered at each split,
the depth of the trees, and the minimum number of samples needed to split a node [57].
A grid search approach was used to identify the best parameter combination, which was
then used to train the final model. The optimized parameters include max_features set to
log2, n_estimators set to 200, max_depth set to 20, and min_samples_split set to 5.

To evaluate the performance of the model on the test set, we used multiple metrics,
including accuracy, precision, recall, F1 score, and Cohen’s Kappa [58]. As shown in
Table 5, the six parking choice models meet the required standards for precision, recall, F1
score, training accuracy, and Cohen’s Kappa. These results indicate that the model shows
strong performance. The calculated precision confirms that the model has high predictive
accuracy. Cohen’s Kappa further highlights the high consistency between the predicted and
actual values [58].

Table 5. Evaluation index of random forest model.

Precision Recall F1-Score ~ Accuracy  Cohen’s Kappa
Cruising 0.96 0.90 0.93 0.96 0.86
Home-parking 0.96 0.96 0.96 0.96 0.92
Core area 0.96 0.95 0.96 0.96 0.90
Level 1 area 0.96 0.97 0.97 0.98 0.93
Level 2 area 0.92 0.89 0.90 0.98 0.80
Level 3 area 0.95 0.94 0.95 0.99 0.89

The feature importance calculated by the random forest algorithm for the six parking
modes is displayed in Figure 7. In this figure, darker bar colors represent the higher
importance of a feature, indicating the extent to which the model relies on each feature
when making decisions. Higher feature importance indicates a greater impact on the
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Figure 7. (a). The feature importance for cruising and home-parking. (b). The feature importance for
core area parking and level 1 area parking. (c). The feature importance for level 2 area parking and
level 3 area parking. Notes: Parking service attributes: SSD: satisfaction degree with urban traffic
safety; PSD: satisfaction degree with the parking conditions across the entire city; CSD: satisfaction
degree with the parking conditions in the CBD area. Socioeconomic attributes: GEN: Gender; AGE:
Age; FI: Monthly household income per capita; DL: driver’s license ownership; EDU: Education;
CA: Career or occupation; EXP: Experience with auto-pilot vehicles. Parking behavior attributes:
P_PF1: Hourly costs for cruising; P_PF2: Hourly costs of home-parking; P_PF3: Hourly parking costs
if parking in the core area; P_PF4: Hourly parking costs if parking in the level 1 area; P_PF5: Hourly
parking costs if parking in the level 2 area; P_PF6: Hourly parking costs if parking in the level 3 area;
CT: Congestion time; PA: Punctuality of arrival; PD: Parking durations.

The results indicate that parking service attributes, namely SSD, CSD, and PSD, are
consistently the most significant features in the six parking modes, as their contributions to
the model’s predictive outcomes exceed 0.100. These three attributes represent satisfaction
with urban traffic safety, parking conditions in the CBD, and parking conditions across the
entire city, respectively. The high importance of these attributes underscores their crucial
roles in model prediction and classification decisions.

In addition, socioeconomic attributes such as FI (Monthly household income per
capita), EDU (education), EXP (experience with auto-pilot vehicles), GEN (gender), AGE
(age), CA (occupation), and DL (driver’s license ownership) are of moderate significance.
Their contributions to the model’s predictive outcomes for the six parking modes range
from 0.04 to 0.08, with slight variations in specific values. A representative factor is FI
(monthly household income per capita), which has a significance of 0.048 in level 3 area
parking but increases to 0.082 in home-parking. This suggests that household income
influences parking choices differently across various parking modes. It has less influence
on the choice of level 3 area parking, but more on home-parking. We further speculate that
economic factors may significantly influence parking choices. Meanwhile, gender has the
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greatest impact on cruising (0.079) but the least on level 2 area parking (0.049), reflecting
the diversity in parking preferences across different gender groups.

In contrast, parking behavior attributes related to parking duration (PD), congestion
time (CT), punctuality of arrivals (PA), and parking costs (P_PF2, P_PF3, P_PF4, P_PF5,
P_PF6) generally show low importance, typically around 0.01. Notably, the costs of cruising
(P_PF1) have almost no impact on all tasks, suggesting minimal contribution to predicting
parking choices. A reasonable explanation is that the driving fees of electric automated
vehicles are relatively low, especially compared to the parking costs of other modes, which
diminishes their influence on users’ parking mode choices.

6. Discussion
6.1. Parking Choice Preferences of AV Users

Based on the aforementioned research findings, we observed that across all parking
durations—both short-term (1 h) and long-term (3, 6, 8 h)— the “home-parking” and “the
core area parking” were the two most frequently chosen parking modes among the six
available options. Conversely, “the level 2 area parking” and “the level 3 area parking”,
located farther from the destination (Central Business District), were consistently the least
preferred choices. More specifically, user groups requiring 8 h, 6 h, and 3 h parking
durations showed the strongest preference for “home-parking”, followed by “the core area
parking” and “the level 1 area parking”. In contrast, users with a 1 h parking requirement
predominantly favored the core area parking, with home-parking and cruising as their
subsequent preferences.

Prior research on autonomous vehicle parking preferences is relatively scarce. Among
the limited existing studies, Garus et al. [26] solely considered four parking modes: cruising,
garage parking, sending the AV home, and on-street parking, without differentiating by
parking duration. Their study found that sending the AV home was the most popular
choice due to its convenience. This finding aligns with our conclusion that users with 8 h,
6 h, and 3 h parking durations are most inclined to select the home-parking option.

Furthermore, a specific observation of users who chose cruising instead of parking in
our study revealed a decreasing trend in cruising preference as parking duration increased.
This conclusion is also consistent with previous research [26], where they attributed the
unpopularity of cruising primarily to environmental concerns.

6.2. Factors Influencing AV Parking Choice

Through the analysis employing both traditional statistical modeling and machine
learning approaches, we identified parking service attributes as the primary influencing
factors on user parking mode choice. These attributes include satisfaction degree with
urban traffic safety (S5D), satisfaction degree with parking conditions across the entire city
(PSD), and satisfaction degree with parking conditions in the CBD area (CSD). Previous
studies [23,26] have rarely considered the impact of parking service attributes, primarily
focusing on factors such as parking behavior attributes and individual socioeconomic
characteristics. Our findings reveal that PSD exerts a significant positive influence on the
selection of all six parking modes. This underscores the critical importance of improving
overall city-wide parking condition satisfaction for AV users. Simultaneously, we found
that parking behavior attributes and socioeconomic attributes also significantly affect park-
ing mode choices. This aligns with the conclusions drawn by Jia et al. [10] and Ye et al. [23],
whose research similarly acknowledged the impact of travel attributes (e.g., parking dura-
tion, travel time, and trip purpose) and individual socioeconomic characteristics on parking
behavior decisions.
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6.3. Policy Implications

Our analysis indicates that “the core area parking” remains a highly popular parking
option, especially for short-term users. The key influencing factors for this mode include
parking satisfaction, parking fees, and parking duration. Therefore, we recommend imple-
menting a progressive pricing model in the core area that varies with parking duration. An
initially lower price for the first hour of parking could attract short-term users, followed
by a substantial increase in fees for extended durations. This strategy aims to enhance
parking space turnover, meet the genuine needs of short-term users for quick errands,
and incentivize long-term parkers to choose alternative options. Such a refined pricing
mechanism would not only cater to the diverse needs of different user groups but also
facilitate the efficient allocation of urban transportation resources.

Furthermore, our findings show that “the level 1 area parking” is also a frequently
chosen option, ranking just below “home-parking” and “the core area parking”. Its primary
influencing factors include parking satisfaction, the punctuality of AVs for picking up
passengers, and parking duration. Therefore, by focusing on improving parking service
satisfaction and pickup punctuality, we can develop the level 1 area into the buffer park-
ing area for the Central Business District, capable of accommodating a larger volume of
parking demand.

While “cruising” and “home-parking” may appear to be less costly for individual
users than parking in the city center, and “home-parking” allows for the full utilization
of a user’s home parking space, both strategies inevitably lead to an increase in vehicle
miles traveled (VMT). From an environmental perspective, this increase in VMT translates
to higher electricity consumption and elevated emissions. Simultaneously, the added
VMT may also exacerbate traffic congestion. Although individual users might save on
parking fees through these two modes, from a system-wide perspective, they significantly
increase societal costs, including energy waste, heightened emissions, and road congestion.
Therefore, future traffic authorities must implement policy interventions targeting these
two parking modes. For instance, a VMT fee could be imposed on Autonomous Vehicles
(AVs) when their empty cruising time or empty travel time for returning home exceeds
a certain threshold (e.g., 10 min). This measure aims to reduce excessive empty VMT.
Concurrently, traffic authorities could also offer incentives such as public parking discounts
or short-distance parking incentives. Such measures would reduce the necessity for AVs to
undertake long-distance return trips, thereby aligning individual cost minimization with
broader societal sustainable development goals.

6.4. Comparative Analysis of Discrete Choice and Random Forest Models

The results of the two models have both similarities and differences. The similarity
is that the primary factor in the results of both models is the parking service attributes.
However, the second-tier and third-tier influences differ between the two methods. In
the discrete choice model, parking behavior attributes had a greater influence than so-
cioeconomic attributes. In contrast, in the random forest model, socioeconomic attributes
had a greater influence than attributes of parking behavior. These differences reflect the
different emphases of the variable attributes of the models. The discrete choice model is
primarily based on economic theory, which assumes that users’ choices follow the prin-
ciples of random utility theory and that the relationships among variables are linear [59].
In the nested logit model, a clear hierarchical structure was predefined, with the decision
to seek parking as a branching decision. This assumption imposed strong constraints
on correlations between options and clarified the logical relationships between parking
behavior attributes (e.g., parking duration and costs) and parking decisions. Consequently,
the nested logit model effectively emphasized the effects of parking-related variables but
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struggled to capture the nonlinear relationships and indirect associations that arose from
personal socioeconomic attributes. In contrast, the random forest model automatically
learned the relationships among variables from the data without relying on assumptions
about previous distributions or predefined utility functions and decision rules. Instead, it
identified the variables that most effectively reduced prediction error by splitting feature
nodes [55]. Thus, the random forest model relies heavily on the characteristics of the data
itself and captures complex nonlinear relationships and interactions. In this way, the com-
plex nonlinear relationships introduced by socioeconomic characteristics are represented
more effectively in the random forest model.

The second difference is that the machine learning model reveals a greater variety of
significant factors compared to discrete choice models. This result aligns with previous
research [60], which can be attributed to the random forest model’s weaker distributional
assumptions, superior capacity to capture nonlinear relationships and interaction effects,
and its robustness in handling complex data structures. In addition, the random forest
model’s insensitivity to multicollinearity allows it to retain more variables. However, it
is important to note that the significant factors identified by the random forest model
may only reflect correlations between data rather than causal relationships, while the
discrete choice model more effectively explains the causality underlying parking choices.
The third difference between the two models is their operational differences. The dis-
crete choice model required more complex design and modeling processes, longer com-
putation times, and higher performance demands on computer systems. In contrast,
the random forest model offered higher computational speeds and lower computational
power requirements.

7. Conclusions and Limitations

With the continued advancement of automated vehicle technologies, the choice of
parking modes in urban areas has become an unavoidable situation in the future. AVs
with autonomous remote travel capabilities will enable users to select optimal park-
ing locations that best meet their needs. This study used Nanjing, a representative
city in China, as a case study to design a stated preference (SP) experiment that col-
lected data on parking preferences among potential AV users. The analysis focused on
users’ parking behavior under four parking duration scenarios and six parking mode
options, using discrete choice models and machine-learning models. This study examined
the factors influencing parking mode options and categorized factors into three groups:
parking service attributes, individual socioeconomic attributes, and parking behavior at-
tributes. The similarities and differences between the two modeling approaches were
then compared.

This study shows that the introduction of AV technology is expected to significantly
change users’ parking behavior. The emergence of multiple parking modes enabled by AVs
will provide alternatives to the parking problems downtown. Multiple parking modes for
AVs will be expected to significantly reduce parking demands in CBD areas and redefine the
parking preferences of users in these areas. The results reveal distinct user preferences for
AV parking when traveling to urban centers. Home-parking emerges as the most preferred
option, selected by 37.47% of respondents. Peripheral parking zones (level 1, level 2, or
level 3 areas) collectively attract 26.09% of users, whereas parking in CBD areas is chosen by
only 23.51% of participants. The cruising mode, wherein vehicles continue operating rather
than parking, demonstrates the lowest preference rate at 12.92%. Parking preferences vary
significantly by duration. Medium- to long-term users (3, 6, and 8 h) prefer home-parking,
while short-term users (1 h) favor central business district proximity.
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Among all factors, parking service attributes, which include satisfaction with parking
conditions in the CBD area (CSD), satisfaction with parking conditions citywide (PSD),
and satisfaction with city traffic safety (55D), have the greatest influence on users’ parking
choices. This finding is consistent with the results reported by Niu et al. [32], who empha-
sized that higher satisfaction was an important factor for repeated parking choices in shared
parking situations. The importance of parking service characteristics underscores that user
experience is the most important determinant of users’ parking decisions. Attributes of
parking behavior, including parking duration, parking costs per hour, punctuality of arrival,
and congestion time, also influence parking choices. These results are consistent with previ-
ous related studies [23], which also highlight the importance of parking behavior attributes
in parking decisions. Regional differences in parking preferences are also observed: AV
users who want to park in the core area will prioritize parking costs, those who choose to
cruise or park at home will focus on parking duration, and users who park in peripheral
areas (level 1 area, level 2 area, and level 3 area) will consider parking duration, vehicle
arrival punctuality, and congestion time. Socioeconomic attributes, such as age, gender,
driver’s license ownership, autopilot experience, and occupation, reflect the diversity of
user needs and the heterogeneity of individual preferences. Similar conclusions were also
drawn in previous research [26].

A comparison of the discrete choice model and the random forest model shows that
their results are roughly similar. Due to differences in the underlying principles, the relative
importance of influencing factors varies between the two approaches. Random forest
models, unaffected by multicollinearity, are better suited for predicting parking behavior
and assessing the relative importance of different factors in complex scenarios. In contrast,
discrete choice models are more effective for interpreting causal relationships.

Although this study provides valuable insights into the parking choices of AV users, it
also has several limitations. First, the data collection and analysis are restricted to Nanjing,
China, and future research could extend this work by conducting comparative analyses
across different regions and countries. In addition, a more comprehensive sensitivity analy-
sis of price variations across regions would further enrich the findings. Our SP experiment
primarily considers four parking duration scenarios corresponding to commuting and
non-commuting trips; future studies may incorporate travel purposes into the analysis for
greater depth. Moreover, due to space constraints, this study does not provide a detailed
examination of the specific impacts and mechanisms of cruising and home-parking on
traffic congestion and emissions. Future research could address these issues through exper-
imental analysis or simulation-based modeling. Finally, given the flexibility of behavioral
choice models in capturing diverse scenarios, subsequent studies may build upon this
foundation to undertake broader and more in-depth investigations.
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