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Abstract

Severe snowstorms pose multiple threats to high-speed rail systems, including sudden
drops in track friction coefficients, icing of overhead contact lines, and reduced visibility.
These conditions can trigger dynamic risks such as train speed restrictions, cascading
delays, and operational disruptions. Addressing the limitations of traditional scheduling
methods in spatio-temporal modeling during blizzards, real-time multi-objective trade-offs,
and high-dimensional constraint solving efficiency, this paper proposes a collaborative op-
timization approach integrating temporal forecasting with deep reinforcement learning. A
dual-module LSTM-PPO model is constructed using LSTM (Long Short-Term Memory) and
PPO (Proximal Policy Optimization) algorithms, coupled with a composite reward function.
This design collaboratively optimizes punctuality and scheduling stability, enabling effi-
cient schedule adjustments. To validate the proposed method’s effectiveness, a simulation
environment based on the Lanzhou-Xinjiang High-Speed Railway line was constructed.
Experiments employing a three-stage blizzard evolution mechanism demonstrated that
this approach effectively achieves a dynamic equilibrium among safety, punctuality, and
scheduling stability during severe snowstorms. This provides crucial decision support for
intelligent scheduling of high-speed rail systems under extreme weather conditions.

Keywords: railway transportation; dynamic scheduling for high-speed railways; LSTM-
PPO algorithm; blizzard conditions; delay propagation; multi-objective optimization

1. Introduction
With the rapid development of China’s high-speed railway system, the operating

mileage has continuously expanded, the rail network structure has become increasingly
complex, and both the operating speed and train frequency have significantly increased.
However, the frequency of high-speed rail operation disruptions caused by natural disas-
ters has notably risen. In the Northeast, Northwest, and high-altitude regions of China,
railway lines are perennially vulnerable to blizzard attacks, snow accumulation and freez-
ing braking distances. Concurrently, poor electrical conductivity due to ice accumulation
on catenary systems may trigger power supply interruptions, while reduced visibility
necessitates speed restrictions. These factors directly compromise train dynamics and oper-
ational stability, posing serious threats to traffic safety and punctuality. To mitigate blizzard
impacts, railway authorities typically implement speed restrictions, service suspensions,
or timetable adjustments. However, these countermeasures often induce cascading train
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delays, potentially leading to regional rail network disruptions with significant economic
losses and socio-economic consequences.

Significant progress has been made in high-speed rail dynamic scheduling research
through multidisciplinary approaches. In the domain of delay propagation modeling,
Meester et al. [1] established a train delay propagation model and analytically derived
the probabilistic distribution of cascading delays from initial delay distributions. Wang
et al. [2] identified critical stations for delay propagation and proposed temporal interval
thresholds to construct delay propagation chains for determining propagation occurrences.
For large-scale disruptions like section blockages that severely impact passenger mobility,
Zhu et al. [3] developed a train operation adjustment model minimizing generalized travel
time, stoppage waiting time, and transfer frequencies, enabling more passengers to com-
plete planned journeys under disruption scenarios. Hong et al. [4] incorporated passenger
reallocation mechanisms in rescheduling processes to mitigate interval blockage impacts.
Zhan et al. [5] proposed a mixed-integer programming model for real-time scheduling
under complete high-speed rail blockage scenarios, employing a two-stage optimization
strategy to minimize total weighted delays and train cancellations while satisfying interval
and station capacity constraints. Empirical validation on the Beijing-Tianjin Intercity High-
Speed Railway demonstrated 32.7% improvement in passenger service recovery efficiency
compared to heuristic methods. Törnquist et al. [6] addressed scheduling challenges in
high-density heterogeneous railway systems through multi-track network optimization,
validating its effectiveness in minimizing multi-stakeholder impacts using Swedish rail-
way data while systematically analyzing theoretical advantages and practical limitations.
Yang et al. [7] formulated a mixed-integer linear programming model for timetable and
stop-schedule co-optimization, minimizing total train dwell and delay times, solved via
CPLEX. Yue et al. [8] developed an integer programming model maximizing train profits
with penalties for stop-schedule frequencies and durations, solved by column genera-
tion algorithms. Dai et al. [9] conducted a systematic review of high-speed rail dynamic
scheduling and train control integration, proposing a co-optimization framework through
three-layer information-driven architecture that enhances safety, punctuality, operational
efficiency, and system resilience, while identifying critical future challenges in informa-
tion fusion mechanisms, real-time co-optimization algorithms, and cross-layer decision
coordination. Nitisiri et al. [10] introduced a parallel multi-objective genetic algorithm
with hybrid sampling strategies and learning-based mutation for railway scheduling. Peng
et al. [11] provided integrated solutions for optimal rescheduling and speed control strate-
gies under disruption uncertainties, employing rolling horizon algorithms. Shi et al. [12]
developed a delay prediction method combining XGBoost with Bayesian optimization,
achieving superior performance on Chinese high-speed rail lines through feature modeling
and hyperparameter optimization, validated by Friedman and Wilcoxon tests for long-term
anomaly delay prediction. Zhang et al. [13] explored multi-stage decision-making via
stochastic optimization models. Song et al. [14] proposed an adaptive co-evolutionary
differential evolution algorithm (QGDECC) integrating quantum evolution and genetic
algorithms with quantum variable decomposition, incremental mutation, and parameter
self-adaptation strategies. The algorithm demonstrated 18.3% faster convergence and 24.6%
higher precision in real operational data tests, effectively mitigating network-wide delay
impacts while minimizing schedule deviation from original timetables.

Significant advancements in high-speed rail dynamic scheduling have been achieved
through multidisciplinary research addressing emergency operation adjustment and re-
silience enhancement. Bešinović [15] highlighted that train operation plan adjustments
under emergent incidents have become a critical research focus in railway transportation
organization. Chen et al. [16] addressed interference management in high-frequency urban
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rail transit during peak hours by developing a nonlinear programming model integrat-
ing dynamic train scheduling with skip-stop strategies. Combining train vehicle plan
constraints with customized model predictive control (MPC) methods enabled real-time
solutions, with empirical validation on the Yizhuang Metro Line in Beijing demonstrating
its superiority in reducing train deviation, enhancing service quality, and accommodating
uncertain passenger demand. Multi-scenario robustness tests and predictive time adjust-
ment analyses further emphasized the information updating value of the MPC approach.
Dong et al. [17] tackled capacity restoration limitations in existing hierarchical emergency
response systems for high-speed rail, proposing an integrated operational control and on-
line rescheduling framework. Through analyzing information flow processing defects and
mechanism validation using wind-induced speed restrictions as a case study, the system
was shown to significantly enhance dynamic capacity restoration capabilities in high-speed
rail networks, providing theoretical foundations and practical pathways for intelligent
emergency management. Li et al. [18] investigated frequent emergency incidents in metro
systems during peak hours, developing a discrete-event hybrid simulation method based
on multi-agent modeling and parallel computing. By constructing train motion algorithms,
defining three agent types (passengers, stations, trains), six emergency event categories,
and parallel acceleration strategies, the method demonstrated efficiency and practicality in
evaluating emergency event impacts on train and passenger delays through case studies
on the Yizhuang Line in Beijing. This provided a high-precision simulation tool for metro
emergency response optimization. Li et al. [19] addressed post-earthquake high-speed
rail traffic demand dynamics by proposing a mixed-integer linear programming (MILP)
model integrating track deactivation/reactivation, station recovery, and dynamic traffic
demand. Leveraging the original timetable as a guiding solution significantly reduced
computational time, with empirical validation on the Harbin-Dalian High-Speed Railway
between Shenyang and Dalian demonstrating the model’s effectiveness in generating op-
timal recovery timetables within short timeframes, thereby enhancing seismic resilience.
Hassannayebi et al. [20] addressed replanning challenges under stochastic disruptions
in high-speed urban railways by developing an integrated optimization model combin-
ing short-haul operations with skip-stop services. A discrete-event simulation coupled
with variable neighborhood search algorithms was employed, with probability-based
scenario analysis addressing obstacle duration uncertainties. Validation on the Tehran
Metro Network confirmed the simulation-optimization method’s superiority in minimizing
average passenger waiting times, suppressing cascading effects, and improving system
responsiveness, offering robustness-recovery synergistic control strategies for urban rail.
Adithya et al. [21] revealed significant meteorological impacts on Swedish railway delays
through extreme weather event analyses, while William et al. [22] demonstrated strong
correlations between abrupt weather changes and delay propagation. Zhou et al. [23]
tackled scheduling complexities in high-speed rail emergency scenarios (e.g., strong winds,
foreign object collisions) by proposing a parallel railway traffic management (RTM) system
based on the ACP framework (Artificial Systems-Computational Experiments-Parallel
Execution). Through agent-based modeling of artificial RTM environments and multi-
objective optimization strategies (hybrid, FCFS, FSFS), the system demonstrated superior
train rescheduling capabilities via real-time physical-artificial system feedback loops in
temporary speed restriction and complete blockage scenarios, outperforming traditional
strategies in emergency response efficiency and dispatcher decision support. Zhou et al. [24]
integrated GIS high-resolution precipitation data with non-spatial high-speed rail opera-
tion data to construct a grid model. Empirical analysis of the 2015–2017 rainy seasons in
eastern China revealed that extreme rainfall significantly exacerbated daily surface rainfall
delays on Hangzhou-Shenzhen and Nanjing-Hangzhou lines, with Beijing-Shanghai lines
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more sensitive to rainfall intensity and Shanghai-Nanjing/Denver-Wenzhou lines most
vulnerable to extreme precipitation. This led to regional adaptive strategies for enhancing
climate resilience in high-speed rail systems. Wang et al. [25] proposed a dual-layer model
predictive control (MPC) framework for high-speed rail online delay management and train
control. The upper layer optimized global train delay minimization, while the lower layer
coordinated operational time constraints with energy efficiency objectives. Validation using
Beijing-Shanghai High-Speed Railway data demonstrated significant improvements in
real-time performance, delay reduction efficiency, and robustness against multi-disturbance
scenarios compared to FCFS/FSFS benchmarks. Song et al. [26] developed an autonomous
route management system based on colored Petri nets, verifying its safety and performance
to enhance station delay handling efficiency. Song et al. [27] proposed an autonomous train
control system that improves train operation coordination and delay handling capabilities
through data fusion and predictive control.

Despite these advancements, conventional methods remain constrained by static rules
or single-scenario assumptions, exhibiting notable shortcomings in dynamic modeling,
multi-objective real-time trade-offs, and high-dimensional constraint solving efficiency. In
recent years, machine learning techniques have demonstrated transformative potential
in addressing these challenges: Chen et al. [28] developed a deep learning model that
effectively captures complex spatiotemporal correlations, significantly improving delay
prediction accuracy. Luo et al. [29] introduced a Bayesian-optimized multi-output model
for dynamic parameter adjustment, enhancing sequential train delay assessment and real-
time forecasting capabilities. Shady et al. [30] empirically validated the adaptability and
practicality of machine learning in complex railway scenarios through real-world deploy-
ment. Sun et al. [31] addressed the challenges of electromagnetic suspension systems in
maglev trains under complex operational conditions such as track irregularities, external
disturbances, time-varying mass, and input delays. They proposed an adaptive neural
network controller integrating input delay compensation and parameter optimization. This
approach employs a dual-layer neural network to approximate uncertain dynamics, a slid-
ing mode surface delay compensation design, and Actor-Critic reinforcement learning for
real-time parameter optimization. Lyapunov theory was used to prove finite-time stability,
with simulations and experiments demonstrating superior performance in suppressing
air-gap vibrations caused by delays and uncertain dynamics, significantly outperforming
traditional methods and enhancing suspension control efficiency. Yue et al. [32] tackled the
real-time train timetable reorganization (TTR) challenge in high-speed rail by introducing a
multi-stage decision-making framework based on reinforcement learning. The framework
optimizes training efficiency through a compact, high-quality action set and uncertainty-
aware action sampling strategies while designing a rule-free scheduling policy self-learning
mechanism. Experimental validation confirmed its universality and competitiveness across
diverse scenarios, establishing a novel paradigm for intelligent scheduling under dynamic
disruptions. Wang et al. [33] addressed the issue of traction power consumption accounting
for 50% of total metro operational energy, proposing an energy-saving deep reinforce-
ment learning algorithm (ES-MEDRL) that integrates Lagrange multipliers and maximum
policy entropy. By constructing a dual-objective optimization function with enhanced
velocity domain exploration and a quadratic time-energy trade-off strategy, the algorithm
achieved a 20% reduction in traction energy consumption compared to manual driving
on the Yizhuang Metro Line in Beijing. It simultaneously balanced operational comfort,
punctuality, and safety, offering a new paradigm for intelligent energy-efficient scheduling
at the metro system planning level. Qiao et al. [34] addressed challenges in millimeter-wave
communication for high-speed rail, including rapid time-varying channel modeling and
beam management. Their intelligent beam management scheme based on deep Q-networks
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(DQN) exploits hidden patterns in millimeter-wave train-to-ground communication sys-
tems, improving downlink signal-to-noise ratio (SNR) while ensuring communication
stability and low training overhead. Simulations confirmed its superior performance over
four baseline methods, highlighting advantages in SNR stability and implementation com-
plexity. Ling et al. [35] focused on lightweight, high-quality data transmission and dynamic
interaction requirements for sensor monitoring and remote communication in future intel-
ligent high-speed rail networks. They proposed a self-powered multi-sensor monitoring
and communication integration system, featuring a low-power backscatter communica-
tion framework, Gaussian mixture model analysis for coverage regions, and a total task
completion time optimization problem considering energy transfer, data collection, and
transmission rate constraints. An innovative option-based hierarchical deep reinforcement
learning method (OHDRL) was developed to address system complexity, with experiments
showing significant improvements in reward values and learning stability over existing
algorithms. These advancements establish a theoretical foundation for the integration of in-
telligent algorithms and dynamic modeling. However, developing scheduling optimization
methods that simultaneously achieve forward-looking design, robustness, and real-time
capability remains a critical challenge for addressing multidimensional uncertainties in
high-speed rail systems under adverse weather conditions.

In summary, existing research has made significant progress in delay propagation
modeling, multi-objective optimization, and collaborative scheduling. However, three
shortcomings persist in snowstorm scenarios: First, most methods rely on static rules or
single-scenario assumptions, failing to capture the dynamic propagation characteristics of
extreme weather. Second, achieving real-time trade-offs among safety constraints, on-time
performance, and scheduling stability remains challenging. Third, solution efficiency is
limited under high-dimensional constraints. Although deep learning and reinforcement
learning demonstrate potential in delay prediction and dynamic scheduling, constructing
a scheduling optimization framework that integrates foresight, robustness, and real-time
capability remains a core challenge. To address these issues, this paper proposes an LSTM-
PPO-based dynamic scheduling optimization algorithm for high-speed rail. This method
leverages LSTM networks to capture long-term dependencies in snowstorm propagation
and delay diffusion, while employing the PPO algorithm to ensure stable policy updates.
By simulating snowstorm conditions, it predicts speed-restricted sections and overhead
contact system failure risks, ultimately establishing a dynamic scheduling strategy for high-
speed rail that combines real-time responsiveness with adaptability to complex scenarios.
This approach effectively addresses the limitations of traditional methods in snowstorm
response, providing new theoretical support for high-speed rail dynamic scheduling.

2. Problem Description and Modeling
2.1. Problem Description

In real-world operational scenarios, train timetables are typically formulated by rele-
vant railway authorities. When encountering heavy snowstorms, high-speed rail (HSR)
systems are subjected to multiple dynamic disturbances, triggering cascading effects such
as speed restrictions, delays, and even operational strategy adjustments (as shown in
Figure 1). The inherent uncertainties in HSR operational environments pose significant
challenges when actual conditions deviate markedly from preset parameters or when
exceptional scenarios exceed predefined rules. Conventional methods often struggle to
deliver timely and flexible responses under such circumstances. Consequently, the LSTM-
PPO algorithm proposed in this study demonstrates superior performance over traditional
approaches in dynamic scheduling under snowstorm-induced disruptions, establishing a
robust foundation for real-time HSR scheduling during emergencies.
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Figure 1. Train operation interference diagram.

2.2. Model Development

To minimize the total delay duration at each station and reduce overall operational
disruption caused by blizzard-induced train delays while satisfying passenger timeliness
requirements, the proposed multi-objective optimization model is formulated as follows:

MinF1 = ∑
i∈G

Ω

∑
j=1

∣∣∣A0
i,j − T0

i,j

∣∣∣+ ∑
i∈G

Ω

∑
j=1

∣∣∣A1
i,j − T1

i,j

∣∣∣ (1)

MinF2 = ∑
i∈G

Ω

∑
j=1

∣∣∣A1
i,j − A0

i,j

∣∣∣− ∑
i∈G

Ω

∑
j=1

∣∣∣T1
i,j − T0

i,j

∣∣∣ (2)

MinF1 measures the deviation of actual arrival and departure times at each station
from the scheduled timetable, reflecting train punctuality; MinF2 quantifies the difference
between actual stopping or passing times and the planned schedule, evaluating the disrup-
tion level caused by dispatching adjustments, thereby avoiding frequent modifications that
may lead to operational chaos and reflecting the stability of train scheduling.

The parameter definitions and decision variable meanings in this paper are presented
in Tables 1 and 2.

Table 1. Parameters used and their definitions.

Symbol Parameters Parameter Meaning Symbol Parameters Parameter Meaning

G Set of Trains Requiring Dynamic
Scheduling T1

i,j
Scheduled Departure Time of

Train i from Station j

M Set of All Trains in the Scheduled
Operation Network Cj

Total Number of Tracks at
Station j

Ω Number of Stations Passed by the
Operating Route Ni,j

Track Occupancy of Train I at
Station j

i Train ID, i = 1, 2, · · · , G Oj
Represents the Track Occupancy

Ratio at Station j

j Station ID, j = 1, 2, · · · , Ω ∆S(ek)
i, (j,j+1)

Additional Travel Time of Train I
on Section (j, j + 1) under the

Impact of Disruption ek

L(j,j+1) Length of Section (j, j + 1) Zi, (j,j+1)

Actual Travel Speed of Train i on
Section (j, j + 1) after Dynamic

Adjustment

T0
i,j

Scheduled Arrival Time of Train i
at the Station Zmax

Maximum Actual Speed of
the Train

∆T(ek)
i, (j,j+1)

Additional maintenance time due
to contact with power lines, icing,

or equipment failure
∆Ŝi,j Predicted Delay Increment

Trepair Maintenance Period vmax
Maximum Permitted Operating

Speed for Section
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Table 2. Decision variables and their definitions.

Decision Variables Meaning

A0
i,j Actual Arrival Time of Train i at Station j after Dynamic Adjustment

A1
i,j

Actual Departure Time of Train i from Station j after
Dynamic Adjustment

The constraint conditions for the model are formulated as follows:
(1) Section operation and safety spacing, the arrival time of train i at station j + 1,

after departing from station j, should account for the original travel time Si,(j,j+1), potential

event-induced delays ∆S(ek)
i,j , as well as the dwell or passing time Di,j at station j. That is:

A0
i,(j+1,j+2) + A1

i,(j+1,j+2) ≥ A0
i,(j,j+1) + A1

i,(j,j+1) + Di,(j,j+1) +
L (j,j+1)

Zi,(j,j+1)
+ ∆S(ek)

i,(j,j+1), ∀i ∈ M, j = 1, . . . , Ω (3)

(2) Minimum Running Time Between Sections, ensuring that trains comply with
minimum dwell (or running) time requirements at stations (or specific sections), and meet
safety or technical specifications, i.e.,

Di,j ≥ Li,j, ∀i ∈ M, j = 1, . . . , Ω (4)

(3) Trains must not depart or arrive earlier than the scheduled time. If there are
mandatory regulations prohibiting early arrival (or early departure), this constraint
is required, otherwise passengers may miss their trains or cause station connection
conflicts, i.e.,

A0
i,j ≥ T0

i,j, A1
i,j ≥ T1

i,j, ∀i ∈ M, j = 1, . . . , Ω (5)

(4) Avoiding station capacity and occupancy conflicts: When two trains are at the
same platform or section, it must be ensured that occupancy conflicts do not occur. This
constraint can be formalized as the station accommodating a limited number of trains
simultaneously within the same time period, i.e.,

L(j,j+1)

Zi,(j,j+1)
≥

L(j,j+1)

Zmax
, A0

i,j ̸= A0
k,j, ∀i ∈ M, ∀i ̸= k, j = 1, . . . , Ω (6)

(5) Track Occupancy Constraint: When the track occupancy ratio at a station exceeds
90%, incoming train operations are prohibited until the occupancy rate drops below the
threshold, i.e.,

Oj =
Ni,j

Cj
≤ 0.9 (7)

3. Strategy Optimization Based on the LSTM-PPO Algorithm
3.1. MDP (Markov Decision Process) Modeling

MDP serves as the problem modeling framework for reinforcement learning, pro-
viding a formal abstraction for high-speed rail scheduling by defining the following core
components: state, action, and reward. This approach transforms the complex high-speed
rail scheduling problem into a structured ‘state-action-reward’ framework, ensuring the
mathematical rigor of the decision-making logic.

3.1.1. State Space Design

In high-speed rail dynamic dispatching optimization, the design of the state space
is the foundational basis for reinforcement learning models to perceive environmental
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dynamics and implement intelligent decision-making. To address the core requirements of
speed restrictions, station stop adjustments, and dynamic track occupancy dispatching, this
study redefines the state space by focusing on three key components: real-time operational
status, environmental perturbation parameters, and historical dependency features.

Real-time operational status includes actual arrival and departure times (A0
i,j, A1

i,j),
reflecting the degree of train operation deviation; station dwell time adjustment (∆Di,j),
recording dynamically adjusted dwell times; track occupancy rate (Oj) and track occupancy
status (Gi,j), describing station resource competition. Environmental perturbation parame-
ters include section snowstorm level (v(j,j+1)), overhead contact line icing status (I(j,j+1)),
and track friction coefficient (µ(j,j+1)), quantifying the impact of weather on operational
safety. Historical dependency features include the LSTM hidden state (ht), encoding his-
torical temporal features to capture long-term dependencies in delay propagation; section
disturbance time (∆S(ek)

i,j ), characterizing additional travel delays caused by unexpected

events; and predicted delay times (∆S(t+1:t+T)
i,j ) for each section within the next T time

steps, forecasted via LSTM and incorporated as part of the PPO state space to provide the
agent with forward-looking information. In summary, the state space is defined as the set
st =

{
A0

i,j, A1
i,j, ∆S(ek)

i,j , vJ , IJ , Oi,j, Gi,j, ht, ∆S(ek)
i,j , ∆S(t+1:t+T)

i,j

}
.

3.1.2. Action Space Design

To effectively address the multiple uncertainties caused by snowstorm-induced train
delay propagation and dynamic safety constraints, the action space must encompass key
scheduling operations while satisfying multidimensional constraints related to real-time
responsiveness, safety, and feasibility. Traditional methods often rely on static rules or
single-action modes, such as fixed speed restriction ratios, which struggle to dynamically
balance the trade-off between punctuality rates and safety risks. Additionally, in complex
railway network scenarios, these approaches are prone to causing action dimension explo-
sion or policy oscillation. The action space defined in this study comprises discrete and
hybrid decisions, aiming to achieve multi-objective collaborative optimization through
a finite and structured set of operations. The specific scheduling instructions executable
by the agent include speed restriction grade adjustment (αj), to align with changes in
snowstorm severity; dynamic adjustment of station dwell times (∆Di,j), to regulate resource
competition; and action (αt), which describes the agent’s choice between speed restriction
or station stop strategies.

Under snowstorm conditions, the speed restriction strategy for high-speed trains
must be dynamically aligned with snowstorm severity to balance safety and operational
efficiency. The specific mapping rule is defined as shown in Equation (8): the higher the
snowstorm severity level v(j,j+1), the lower the maximum allowable speed ratio a(j,j+1).
Here, v(j,j+1) denotes the snowstorm severity level of section (j, j + 1).

Dynamic adjustment of station dwell time is one of the key decision variables in high-
speed rail dynamic dispatching. It involves elastically modifying the actual dwell time
at stations based on real-time operational status and resource constraints. The dynamic
adjustment is formulated as follows:

∆Di,j = η ·

∆T(ek)
i,(j,j+1)

Trepair

+ β ·
(v(j,j+1)

vmax
·
∣∣∣A0

i,j − T0
i,j

∣∣∣) (8)

When overhead contact system icing occurs (I(j,j+1) = 1), Di,(j,j+1) ≥ Li,(j,j+1) + Trepair

must be strictly adhered to prioritize safety.
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The ∆S(t+1:t+T)
i,j (predicted delay) and σ

(t)
i,j (confidence level) output by the LSTM

prediction module are used as input conditions. The pre-action triggering rule can be
defined as follows: if the predicted delay ∆S(t+1:t+T)

i,j for a specific section (j, j + 1) satisfies

∆Ŝi,j ≥ ∆Sthreshold (where ∆Sthreshold is set to the 95th percentile of historical delays), the
pre-action mechanism is triggered. The speed restriction ratio for the section is then pre-

adjusted in advance steps to satisfy: αj = max
(

0.3, αcurrent
j − γ · ∆Ŝi,j

∆Smax

)
where γ is the

attenuation coefficient and ∆Smax is the maximum allowable delay increment.
A pre-action flag bj ∈ (0, 1) is defined to indicate whether the pre-action is triggered.

The action generation rule is formulated as Equation (9). If the pre-action conflicts with the
current state, the pre-action is forcibly canceled, and dynamic station dwell time correction
is triggered.

αt =

{
Speed restriction adjustment bj = 1 and∆Ŝi,j ≥ ∆Sthreshold

Original action rule else
(9)

3.1.3. Reward Function Design

In reinforcement learning algorithms, the design of the reward function serves as
a critical mechanism to drive the agent toward optimal decision-making under multi-
objective trade-offs. Traditional approaches often rely on single-objective optimization or
static weight allocation, which struggle to dynamically balance complex trade-offs between
punctuality rates and scheduling stability during snowstorm conditions, often leading to
suboptimal strategies. To address this, this study proposes a weighted multi-objective
reward function that dynamically integrates punctuality rewards and scheduling stability
to guide the agent toward collaborative optimization in partially observable environments.
The following sections will elaborate on the mathematical modeling of individual reward
components, the logic for weight allocation, and the collaborative optimization mechanism.

Rt = ω1Rtime + ω2Rstability + ω3Roccupancy + ω4Rpredict + ω5Rproactive (10)

The following subsections present the detailed design and descriptions of each component:
1⃝. Punctuality Reward: It is calculated as the base punctuality rate minus the relative

deviation ratio, incorporating a Sigmoid function for smoothing.

Rtime = ∑i,j

 1

1+

∣∣∣∣∣ A0
i,j − T0

i,j

Tmax

∣∣∣∣∣
+

1

1+

∣∣∣∣∣ A1
i,j − T1

i,j

Tmax

∣∣∣∣∣

 (11)

2⃝. Scheduling Stability Penalty: Based on the maximum allowable adjustment am-
plitude, the penalty is calculated as an inversely proportional function of the adjustment
amplitude, incorporating a quadratic term to amplify the penalty for large adjustments.
This suppresses over-optimization of short-term punctuality, ensuring that larger adjust-
ment amplitudes result in stronger penalties.

Rstability = ∑i,j

1 −

∣∣∣(A1
i,j − A0

i,j

)
−

(
T1

i,j − T0
i,j

)∣∣∣
∆Dmax

2

(12)

3⃝. Track Occupancy Rate Penalty: To prevent resource contention caused by excessive
track occupancy, a linear penalty is applied when the track occupancy rate exceeds 80%.
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For each 1% exceeding this threshold, a penalty of 1 unit is imposed, thereby suppressing
resource contention risks.

Roccupancy = −∑j Π
(
Oj ≥ 0.8

)
·
(
Oj − 0.8

)
(13)

4⃝. Prediction Accuracy Reward: Constrains the LSTM prediction error to enhance
prediction reliability. The error penalty is calculated only for sections where delays actually
occur, avoiding interference from invalid predictions in the strategy.

Rpredict = −∑j

∣∣∣∆Ŝ(t)
i,j − ∆S(t)

i,j

∣∣∣ · Π
(

∆Ŝ(t)
i,j > 0

)
(14)

5⃝. Proactive Reward Item: The proactive reward item aims to encourage actions that
prevent the spread of delays in advance. If action αt results in the subsequent actual delay
satisfying ∆S(t+k)

i,j ≤ x∆Ŝ(t+k)
i,j , it is deemed effective in alleviating delays. The value of

the x ∈ [0, 1] agent is determined based on its learning process. The reward calculation
can be defined as follows: a reward of +1 is granted for each successful prevention of a
significant delay.

Rproactive = ∑ Π
(

∆Ŝ(t+k)
i,j ≥ ∆Sthreshold and ∆S(t+k)

i,j ≤ x∆Ŝ(t+k)
i,j

)
(15)

6⃝. Dynamic Weight Adjustment Mechanism: To address the changing priorities of
objectives in different scenarios, an adaptive weight allocation mechanism is designed. If
a certain objective performs poorly, its weight is automatically increased to prioritize the
optimization of that objective.

ωi
′ =

ωi · exp(−ηRi)

∑ ωi · exp(−ηRi)
(16)

Through the above design, the reward function can dynamically balance multi-
objective conflicts, providing theoretical guarantees for the stable training of the LSTM-PPO
algorithm in complex scenarios.

3.2. PPO Algorithm Design

PPO (Proximal Policy Optimization) is a reinforcement learning algorithm based on the
Actor-Critic framework [34]. Its core lies in achieving collaborative optimization through
separated Actor and Critic networks. The Actor network is responsible for generating
action policies (denoted as πθ(α|s)), directly controlling scheduling commands such as
speed limit adjustments and dwell time corrections. The Critic network evaluates the state
value (denoted as Vθ(s)), predicts the long-term cumulative reward, and guides the Actor
in optimizing the direction of action selection. In the context of high-speed rail dynamic
scheduling, the advantages of the Actor-Critic framework are evident: the Actor focuses
on action generation, while the Critic focus on state evaluation, avoiding conflicts arising
from a single network handling multiple objectives. Additionally, the Clip mechanism
constrains the magnitude of the Actor’s policy updates, and combined with the variance
penalty of the Critic’s value function, it suppresses policy oscillation.

The Actor network is updated through policy gradient optimization to refine the
action probability distribution. The speed limit ratio aj and dwell time correction ∆Di,j are
incorporated as conditional inputs to the policy distribution πθ , enabling the Actor network
to generate actions that directly respond to speed restriction demands and dwell time
adjustment constraints under heavy snow weather. When the LSTM predicts a significant
future delay j ∆Ŝi,j for a specific section with high confidence, the weight σ

(
∆Ŝi,j

)
is

increased, prompting the policy to prioritize adjustments to the dwell time ∆Di,j or speed
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limit ratio aj for that section. This weight allocation coordinates the conflicting objectives
of punctuality, stability, and safety:

LCLIP(θ) = Et

[
min

(
πθ(α|s)

πold(α|s)
Ât, clip(rt(θ), 1 − ε, 1 + ε)Ât

)]
(17)

rt(θ) =
πθ

(
αt
∣∣st, aj, ∆Di,j

)
πold(αt|st)

(18)

Ât = ∑j σ
(
∆Ŝi,j

)
·
(

ω1 · δ
(

A0
i,j − T0

i,j

)
+ ω2 · δ

((
A1

i,j − A0
i,j

)
−

(
T1

i,j − T0
i,j

))
+ ω3 · log

(
Oj

))
(19)

The Critic network is updated by optimizing the composite value function loss to
improve the estimation of state value. The second term suppresses the variance in the value
function, while the third term introduces a penalty for LSTM prediction errors, achieving
collaborative optimization of scheduling stability and prediction accuracy. The target return
is calculated using a discount factor γ, balancing immediate rewards and long-term gains.
The objective function is formulated as follows:

LVF(θ) = Et

[(
Vθ(st)− Rtarget

t

)2
]
+ λ1 · Var(Vθ(st)) + λ2 · ∑

∣∣∆Ŝi,j − ∆Si,j
∣∣ (20)

Rtarget
t = ∑T−t

k=0 γkrt+k + γT−tVθ(sT) (21)

The Actor adjusts its policy direction based on the advantage signal Ât provided by the
Critic, while the Critic optimizes its value estimation relying on the action distribution of the
Actor. The two components are updated asynchronously to reduce coupling oscillations.

3.3. LSTM-PPO Algorithm Architecture Design
3.3.1. LSTM Algorithm Architecture Design

In the LSTM-PPO algorithm, the core role of the LSTM network is to act as a state
encoder, specifically designed to handle the inherent temporal dependencies in train
scheduling problems. It is capable of extracting and compressing historical information
from a sequence of consecutive state observations, providing a higher-dimensional feature
representation that incorporates contextual information for the subsequent decision-making
networks (the Actor-Critic component of PPO) [35].

The input to the LSTM consists of two parts: the external input at the current time
step and the internal state from the previous time step. The state vector, observed at each
decision time step t, is a multi-dimensional feature vector that includes static attributes
such as train identifiers, station topology, and preset train schedules, as well as dynamic
variables such as the train’s current actual delay, real-time speed, distance to the preceding
train, and external environmental factors. Additionally, expert information is included
during the imitation learning phase, with expert decisions forming part of the input. The
previous hidden state ct−1 and cell state ht−1 represent the internal memory units of the
LSTM network. ht−1 is the output from the previous time step, while ct−1 serves as the
“long-term memory” that persists throughout the entire sequence. By combining these two
vectors with the current state st, the LSTM is able to integrate historical information with
the present state, thereby capturing the dynamic evolution of the system state.

Correspondingly, the output of the LSTM also consists of two parts. The context
feature vector ot is the primary output of the LSTM at the current time step t. It is a high-
dimensional feature embedding that integrates the current input st with its historical context
ht−1 and ct−1 through a nonlinear combination. This vector is not the final decision but
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serves as input for subsequent networks. Its advantage lies in the fact that the Actor network
utilizes ot to compute the policy distribution πθ(α|s), which represents the probabilities of
taking various actions under the current state; meanwhile, the Critic network employs ot to
estimate the value Vθ(s) of the current state, representing the expected return achievable
by following the current policy from the current state onward. The hidden state ht and
cell state ct at the current time step function as internal memory units, which are passed
to the next time step t + 1, thereby enabling the continuous flow of information across the
time sequence.

In the reinforcement learning paradigm, the dataset required by the LSTM is dynam-
ically generated through the interaction between the agent and the environment. The
National Railway Administration collects foundational static data, such as train initial
schedules, to initialize the simulation environment. However, the actual training data
consists of experience tuples, represented in the form (st, at, rt, st+1, dt), where st denotes
the current state, at is the action taken by the agent, rt is the reward provided by the envi-
ronment, st+1 is the next state feedback from the environment, and dd is a flag indicating
whether the state is terminal. These experience tuples are collected by running thousands
of episodes of the agent within the simulation environment, forming a large experience
pool or rolling trajectory.

This study adopts an advanced strategy of curriculum learning to organize the genera-
tion of training data. In the early stages of training, the environment is relatively simple;
as training progresses, the difficulty of the environment is gradually increased. This data
generation approach, which transitions from simple to complex, enables the model to first
learn basic scheduling strategies and then progressively generalize to more complex and
uncertain environments, significantly improving the stability of training and the robustness
of the final model.

3.3.2. Dual-Module Collaborative Mechanism

To address the complex spatiotemporal dynamic characteristics of high-speed rail
scheduling under heavy snow weather, this paper proposes a separated dual-module frame-
work, consisting of an LSTM prediction module and a PPO decision module, to achieve
collaborative optimization between prediction and decision-making. In the LSTM module,
historical operation status sequences st−T:t, real-time heavy snow levels vj, and future
weather prediction data Wt+1:t+T are input, and the outputs include the additional travel
time ∆Ŝ(t+1:t+T)

i,j for each section within the next TT time steps and its confidence interval[
∆Ŝlow, ∆Ŝhigh

]
. The loss function adopts Huber loss to balance prediction accuracy and

robustness, avoiding interference from outliers, where δ = 1.0 is the smoothing threshold
and ∆S represents the actual delay time.

Lpred = ∑ δ

(∣∣∆Ŝ − ∆S
∣∣− δ

2

)
(22)

In the PPO module, the current state st, which includes real-time operational data,
environmental parameters, and the LSTM prediction results ∆S(t+1:t+T)

i,j , is input. The
predictive information and real-time state are encoded into a joint feature vector through a
shared hidden layer, where Wp and Wd represent the weight matrices for the prediction
module and state encoding, respectively. The ReLU activation function enhances the
nonlinear expressive capability.

zt = ReLU
(

Wphpred
t + Wdhsate

t

)
(23)
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To address the impact of predictive uncertainty on the policy, a confidence-driven
dynamic weight allocation strategy is designed. Based on the predictive error variance
σ
(t)
i,j = Var

(
∆Ŝ(t+1:t+T)

i,j

)
, the weight wpred = 1

1+σ
(t)
i,j

of the predictive information in the

policy network is dynamically adjusted. When the prediction confidence is high, the policy
network prioritizes reliance on the predictive results; conversely, when confidence is low,
the predictive weight is reduced to avoid misleading decisions.

The synchronous update of the LSTM prediction module and the PPO decision module
may lead to gradient conflicts, which can decrease model convergence efficiency. To
avoid gradient conflicts between the prediction module and the policy module, a phased
asynchronous update mechanism is adopted. The PPO decision module is updated every
50 steps through the policy loss LCLIP(θ) and the value function loss LVF(θ), ensuring
policy stability. The LSTM prediction module is updated every 10 steps based on Lpred,
focusing on modeling temporal dependencies. The specific architecture is illustrated in
Figure 2.
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Figure 2. LSTM-PPO algorithm structure diagram.

4. Simulation Experiments and Results Analysis
4.1. Experimental Environment Design

This study selects the Lanzhou-Xinjiang High-Speed Railway (Lanzhou-Xinjiang
Passenger Dedicated Line) section from Lanzhou West Station to Urumqi Station as the
experimental validation object. This line is characterized by a prominent high-cold climate,
with an average winter operating temperature below −15 ◦C, a maximum wind speed of
30 m/s, and an annual average of over 20 days of heavy snowfall. The operational stability
of the line faces multiple meteorological threats, including dynamic changes in snow depth,
high probability of contact wire icing, and abrupt reductions in visibility.

According to the disaster classification criteria in this study, when the snowfall inten-
sity on the core sections of the line exceeds the threshold of 0.6, the track friction coefficient
decreases by 60%, triggering a speed restriction mechanism of 200 km/h. When the bliz-
zard intensity surpasses the threshold of 0.8, the probability of contact wire icing surges to
50%, accompanied by visibility dropping below 50 m, necessitating an emergency speed
restriction of 150 km/h. These meteorological conditions lead to compound risks, such as
degradation of train dynamic performance, extended braking distances, and instability of
the power supply system, posing severe challenges to the real-time risk perception and
multi-objective coordination capabilities of the dynamic scheduling system. This provides
a high-value experimental scenario for validating the adaptability of the LSTM-PPO algo-
rithm in key aspects such as blizzard propagation modeling, contact wire icing warning,
and emergency speed restriction decision-making.

The specific engineering parameters and operational characteristics of this section
are detailed in Table 3. These parameters include the line length, number of interval
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stations, average distance between stations, and major geographical environmental features,
providing comprehensive benchmark data for model performance evaluation.

Table 3. Detailed parameters of the Lanzhou-Xinjiang High-Speed Railway from Lanzhou West
Station to Urumqi Station.

Section Running Time/min Dwell
Time/min

Section
Distance/km

Lanzhou West Station—Haidong Station 10:25–11:07 2 132
Haidong Station—Xining Station 11:09–11:29 6 56

Xining Station—
Minle Station 11:35–12:58 2 233

Minle Station—
Zhangye West Station 13:00–13:25 3 64

Zhangye West Station—Lizhai South Station 13:28–13:44 2 35
Lizhai South Station—GaoTai South Station 13:46–14:03 2 36

GaoTai South Station—Jiuquan South Station 14:05–14:47 2 126
Jiuquan South Station—Jiayuguan South Station 14:49–15:00 6 21

Jiayuguan South Station—Yumen Station 15:06–15:51 14 126
Yumen Station—Liuyuan South Station 16:05–17:11 2 163
Liuyuan South Station—Hamih Station 17:13–18:44 6 261

Hamih Station—Shanshan North Station 18:50–20:15 2 281
Shanshan North Station—Turpan North Station 20:17–20:45 2 91

Turpan North Station—Urumqi Station 20:47–21:57 27 167

4.2. Model Parameter Settings

Prior to the formal training of the LSTM-PPO model, a series of parameter sensitivity
analyses and hyperparameter optimization experiments were conducted to determine
the optimal model configuration. These parameter tuning experiments were based on
a systematic evaluation of model performance, employing a progressive and adaptive
parameter adjustment strategy. The model utilizes a dynamic parameter adjustment mech-
anism, where the clipping range parameter follows a decremental strategy, progressively
narrowing as training progresses to enhance policy stability and promote convergence. By
comparing cumulative rewards, policy loss, and value function loss under different param-
eter configurations, the optimal parameter settings presented in Table 4 were obtained.

Table 4. Parameters configuration of the LSTM-PPO model.

Value Range Value

GAMMA 0.999
LAMBDA 0.98

LR 1 × 10−5

BATCH_SIZE 64
NUM_WORKERS 8

MAX_EPOCHS 1000
ROLLOUT_STEPS 64

PPO_EPOCHS 15
CLIP_EPSILON 0.01

MAX_GRAD_NORM 0.1
POLICY_WEIGHT 1.2
VALUE_WEIGHT 0.05

ENTROPY_WEIGHT 0.0005
INPUT_SIZE 8

HIDDEN_SIZE 256
NUM_LAYERS 2
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4.3. Sensitivity Analysis

To validate the robustness of the multi-objective reward function in the LSTM-PPO
model and guide weight parameter optimization, this study conducted a systematic sen-
sitivity analysis on five key weight parameters. A grid search method tested 80 different
weight combinations, evaluating the impact and interactions of each weight parameter on
model performance. The results are shown in Table 5.

Table 5. Weight Sensitivity Analysis Results.

Weight Type Baseline
Value Test Range Optimal

Value
Sensitivity

Score
Performance

Impact
Correlation
Coefficient

Punctuality Reward 0.25 0.15–0.35 0.596 19.91 +15.2% 0.831
Scheduling Stability Penalty 0.15 0.10–0.25 0.138 14.91 +8.5% 0.645

Track Occupancy Rate Penalty 0.20 0.15–0.30 0.158 8.73 +6.3% 0.512
Prediction Accuracy Reward 0.25 0.20–0.35 0.058 5.55 −4.2% −0.328

Proactive Reward Item 0.15 0.05–0.25 0.050 4.06 −3.1% −0.287

Experimental results indicate that the prediction accuracy reward weight is the most
critical factor influencing system performance, with a sensitivity score as high as 19.91. It
exhibits a strong positive correlation (r = 0.831) with overall performance, meaning even
minor weight adjustments can significantly impact the model’s overall performance. The
weights for the forward-looking reward and on-time reward exhibit moderate sensitivity,
both positively correlated with performance, indicating these reward mechanisms play a
vital role in enhancing system performance. In contrast, the track occupancy penalty and
scheduling stability penalty weights demonstrate low sensitivity and negative correlations
with performance, suggesting excessive penalty mechanisms may suppress the system’s
learning effectiveness.

The optimal weight configuration identified through sensitivity analysis significantly
outperforms the baseline: the prediction accuracy reward weight increases substantially
from 0.25 to 0.596, the forward reward weight is moderately reduced to 0.138, the punc-
tuality reward weight is fine-tuned to 0.158, while both penalty weights are substantially
decreased. This configuration embodies an optimization strategy of “reward-driven with
penalty-assisted,” achieving a 19.3% improvement in overall performance score, an 18.3%
increase in convergence speed, and a 15.3% rise in final reward value.

Sensitivity analysis revealed distinct mechanisms for reward and penalty components
within the multi-objective reward function: reward components primarily drive system
performance improvement and should be assigned higher weights; penalty components
primarily serve as constraints and should maintain moderate weights to avoid excessive
suppression of the system’s exploration capabilities.

4.4. Simulation Setup

To simulate the uncertainties in real operational environments, a multi-level stochastic
perturbation mechanism is designed. This study adopts a three-stage progressive bliz-
zard intensity generation strategy, through dynamically adjusting parameters to simulate
the real evolution of weather conditions. The domain of the blizzard intensity parame-
ter is defined as [0.0, 0.8] and its assignment rule follows a piecewise linear regulation
principle. In the initial stage of the training cycle, the blizzard intensity parameter is
implemented with a linear increment strategy, starting from an initial value of 0.0 and
increasing proportionally with training progress until reaching the upper threshold of 0.8;
in the mid-training stage, the blizzard intensity parameter is maintained at the maximum
threshold of 0.8 to simulate a prolonged heavy snowfall environment; in the late-training
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stage, a random perturbation factor is introduced, causing the blizzard intensity parameter
to follow a uniform distribution within the interval [0.0, 0.8] thereby enhancing the model’s
environmental adaptability.

Referring to the friction coefficient range of 0.25–0.35 for dry rails and wheels specified
in the Railway Track Engineering Construction Quality Acceptance Standard, the midpoint
value is adopted as the baseline for snow-free and ice-free conditions, defining the base
friction coefficient as 0.3. As blizzard intensity increases and snow accumulation thickens,
track surface roughness decreases, reducing the friction coefficient. A decay function is
established by introducing a linear combination of blizzard intensity parameters and icing
probability parameters. The spatiotemporal evolution of track occupancy status is modeled
using a discrete-time Markov chain, with the state space defined as S = {Idle, Occupied}. The
probability distribution satisfies the following: in the Idle state, the probability of remaining
in the current state is 0.8, and the probability of transitioning to the Occupied state is
0.2; in the Occupied state, the probability of remaining in the current state is 0.7, and the
probability of transitioning back to the Idle state is 0.3. Detailed parameter configurations
are presented in Table 6.

Table 6. Simulation environment parameters for configuration.

Parameter Value Range Default Value

Blizzard Intensity [0.0, 0.8] 0.2
Icing Probability [0.02, 0.5] 0.02

Base Friction Coefficient [0.1, 0.3] 0.3
Track Occupancy Probability [0.0, 1.0] 0.2

Maximum Delay Time [0, 30] 15

To quantify the impact of different blizzard intensities on high-speed rail operations,
this study establishes a five-level blizzard intensity classification system and defines cor-
responding operational parameter adjustment criteria. As shown in Table 7, based on
actual operational experience and meteorological data, blizzard intensity is categorized
into five levels: no snow, light snow, moderate snow, heavy snow, and blizzard. Each level
corresponds to specific blizzard intensity ranges, friction coefficient impacts, and maximum
speed restrictions. This classification method not only considers the direct impact of bliz-
zard intensity on train operation safety but also takes into account operational efficiency
and practical feasibility, providing a quantitative basis for subsequent scheduling decisions.

Table 7. Weather levels and impact table.

Blizzard Intensity
Classification System Blizzard Intensity Ranges Friction Coefficient

Impacts
Maximum Speed

Restrictions

no snow 0.0 100% 350 km/h
light snow (0.0, 0.3] −20% 300 km/h

moderate snow (0.3, 0.6] −40% 250 km/h
heavy snow (0.6, 0.8] −60% 200 km/h

blizzard >0.8 −80% 150 km/h

To comprehensively evaluate the effectiveness of the proposed scheduling method,
this study selects two mainstream reinforcement learning algorithms—PPO and DQN—as
baseline comparisons. Both algorithms are representative in the field of reinforcement
learning and can reflect the difficulty of scheduling tasks and the adaptability of models
from different perspectives. In terms of experimental design, all algorithms are trained
and evaluated within the same high-speed rail scheduling simulation environment to
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ensure a fair comparison. By comparing the performance of the three algorithms during the
training process, their strengths and weaknesses in terms of final performance and stability
are analyzed.

4.5. Result Analysis

To validate the superiority of the LSTM-PPO algorithm in high-speed rail dynamic
scheduling under blizzard conditions, this study conducted comparative experiments,
evaluating the proposed method against DQN and PPO algorithms. Figure 3 illustrates
the training loss and average reward trends in the high-speed rail scheduling simulation
environment. Left panel (Training Loss): The DQN algorithm exhibits a rapid decline in
loss during the initial phase, stabilizing after approximately 400 training episodes with a
minimum loss of ~0.99. While this indicates fast convergence, further improvements are
limited, and minor fluctuations persist. The PPO algorithm maintains a relatively high
loss level throughout training, demonstrating slower convergence but consistent stability
with minimal fluctuations. In contrast, the LSTM-PPO algorithm initially shows higher
loss values, which steadily decrease over training, ultimately achieving a final loss of 0.03—
significantly outperforming both DQN and PPO. This highlights the enhanced capability
of the LSTM-PPO framework to capture dynamic environmental features and optimize
policy learning. Right panel (Average Reward): The DQN algorithm exhibits large initial
reward fluctuations, dropping as low as −34.01, followed by gradual improvement and
stabilization at ~9.11, reflecting moderate policy refinement. The PPO algorithm achieves a
relatively high initial reward of ~11.43, maintaining stability throughout training, demon-
strating robust baseline performance. The LSTM-PPO algorithm, however, demonstrates
a continuous upward trend in average reward, ultimately reaching 21.37—substantially
exceeding both DQN and PPO. This underscores the LSTM architecture’s ability to enhance
long-term reward accumulation and adaptability to complex temporal dependencies.
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Figure 3. Comparative experimental results diagram. (a) Loss Function Comparison; (b) Reward
Function Comparison.

This study demonstrates significant advantages in two core aspects: decision variable
design and multi-objective handling. Traditional scheduling methods are constrained by
discrete, single-dimensional decision variables and operate in a “memoryless” manner,
failing to leverage historical state information. In contrast, the proposed agent’s decision
is represented as a multidimensional action vector, incorporating critical parameters such
as speed restrictions and stop-time adjustments, enabling fine-grained control over train
operations. The innovation lies in the LSTM-PPO model’s integration of LSTM units to
establish temporal dependencies in decision-making. The LSTM network dynamically
encodes historical state sequences into a high-dimensional context vector, allowing deci-
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sions to be based not on isolated current states but on a comprehensive understanding
of the entire journey’s dynamic evolution. This substantially enhances decision-making
foresight and globality. As quantitatively validated in Figure 4, the LSTM-PPO’s Value
Loss curve achieves the lowest values and stabilizes around 20 in later training stages,
whereas PPO’s Value Loss stabilizes at ~40 (double the magnitude). This indicates that
LSTM-PPO’s history-informed decisions improve future cumulative reward estimation
accuracy by nearly 50%, enabling superior long-term scheduling strategies. Regarding
multi-objective handling, traditional methods rely on static weights predefined by expert
experience, which struggle to adapt to dynamic environments. This study employs rein-
forcement learning algorithms to implicitly and adaptively balance multiple objectives. The
integration of curriculum learning further enhances robustness in complex environments.
By maximizing a composite cumulative reward, the model autonomously learns to trade-off
sub-objectives across different states without manual intervention. Figure 4 experimentally
validates these advantages: LSTM-PPO achieves a loss reduction to <30% of DQN/PPO
levels within the first 10% of training, significantly shortening training time. Final losses
are 60–90% lower than DQN/PPO in later stages, reflecting superior performance. The
loss curves for LSTM-PPO exhibit smoother profiles with markedly smaller fluctuations
compared to DQN/PPO, demonstrating enhanced stability and generalization. The LSTM
architecture’s temporal modeling capability—capturing historical information to improve
policy and value estimation accuracy—proves particularly effective for tasks involving
temporal dependencies.
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Figure 4. Comparative diagram of loss curves. (a) Policy Loss Comparison; (b) Value Loss Comparison.

Through reinforcement learning algorithms, the objective function evolves from tradi-
tional single-metric optimization to maximizing a comprehensive cumulative reward. As
demonstrated in the final train schedule comparison (Figure 5), this integrated objective
function yields significant results. After optimization by the three algorithms, cumulative
train delays are substantially reduced. Departure time curves shift downward overall,
with slopes markedly diminished. Comparisons reveal that relative to the unoptimized
timetable, LSTM-PPO reduces delays to less than 5% of the original level, while PPO and
DQN achieve reductions of approximately 25% and 16%, respectively. This optimization
magnitude far exceeds that of the other two algorithms. This fully demonstrates that by
maximizing a comprehensive reward function, the model can learn a scheduling strategy
that is far superior to single-objective approaches, offering greater comprehensiveness
and efficiency.
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Figure 5. Comparative diagram of timetable results.

5. Conclusions
This study proposes an innovative solution for high-speed rail dynamic scheduling

under blizzard conditions by integrating LSTM-based temporal perception with PPO
reinforcement learning. A simulation experiment was designed using the Lanzhou-Xinjiang
High-Speed Railway as the testbed. The results demonstrate the following:

(1) The LSTM module encodes spatiotemporal correlations of blizzard propagation and
delay diffusion through hidden states, while the PPO module introduces a confidence-
driven dynamic weight allocation mechanism to achieve real-time balancing between
safety constraints and punctuality. This approach reduces strategy update variance
by 62.5%, achieves over 95% delay compression, and improves average reward by
87.2%, significantly outperforming traditional DQN and PPO methods in temporal
modeling, real-time responsiveness, and safety-efficiency trade-offs.

(2) A decoupled asynchronous update mechanism is developed, enabling phased train-
ing of the LSTM prediction module and PPO decision module to resolve gradient
conflicts. A composite reward function incorporating six sub-objectives is designed
with a dynamic weight adjustment mechanism. Through entropy regularization and
curriculum learning strategies, the model autonomously optimizes objective priorities,
reducing punctuality deviation by 96.8%.

(3) For actual railway operations, the deployment of the proposed method can be sum-
marized into three practical steps: data integration, requiring real-time access to
meteorological, train operation, and infrastructure monitoring data; system inte-
gration, embedding the scheduling optimization module into existing dispatching
platforms to allow for interaction with human dispatchers; and operational implemen-
tation, promoting the method gradually through pilot testing on high-risk cold-region
lines with compatibility checks against existing emergency protocols.

(4) Data availability and quality may hinder model accuracy in regions with incomplete
monitoring infrastructure. Computational resources and real-time response remain
a challenge for large-scale applications where high-dimensional optimization is re-
quired under strict time constraints. Furthermore, human–machine collaboration and
safety certification demand transparent and explainable algorithm behavior, alongside
redundancy mechanisms, to meet operational safety standards.

Currently, the focus is solely on a single route to simplify complex factors such as
cross-line train interference and delay propagation coupling across multiple lines. This
allows us to concentrate on core variables like friction coefficient decay during blizzard
conditions and the three-stage evolution of blizzards, verifying their compatibility with
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the LSTM-PPO algorithm. This ensures controllable experimental conditions and repro-
ducible results. When subsequently expanding to multi-line network scheduling optimiza-
tion, enhancing algorithm transparency and human–machine collaboration capabilities
will be essential to meet operational safety standards. Crucially, collecting real-world
operational and environmental data during actual extreme weather events will be indis-
pensable for validating model assumptions, reducing uncertainty, and ensuring reliable
practical application.

Author Contributions: Methodology, Y.L.; Writing—original draft, Z.C.; Writing—review & editing,
N.W. All authors have read and agreed to the published version of the manuscript.

Funding: Natural Science Foundation of Gansu Province (25JRRA1852023-01-01).

Data Availability Statement: All data in this article was obtained from the National
Railway Administration.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Meester, L.E.; Muns, S. Stochastic delay propagation in railway networks and phase-type distributions. Transp. Res. Part B

Methodol. 2007, 41, 218–230. [CrossRef]
2. Wang, P.; Zhang, Q. Train delay analysis and prediction based on big data fusion. Transp. Saf. Environ. 2019, 1, 79–88. [CrossRef]
3. Zhu, Y.; Goverde, R.M.P. Integrated timetable rescheduling and passenger reassignment during railway disruptions. Transp. Res.

Part B Methodol. 2020, 140, 282–314. [CrossRef]
4. Hong, X.; Meng, L.; D’Ariano, A.; Veelenturf, L.P.; Long, S.; Corman, F. Integrated optimization of capacitated train rescheduling

and passenger reassignment under disruptions. Transp. Res. Part C Emerg. Technol. 2021, 125, 103025. [CrossRef]
5. Zhan, S.; Kroon, L.G.; Veelenturf, L.P.; Wagenaar, J.C. Real-time high-speed train rescheduling in case of a complete blockage.

Transp. Res. Part B Methodol. 2015, 78, 182–201. [CrossRef]
6. Törnquist, J.; Persson, J.A. N-tracked railway traffic re-scheduling during disturbances. Transp. Res. Part B Methodol. 2007, 41,

342–362. [CrossRef]
7. Yang, L.; Qi, J.; Li, S.; Gao, Y. Collaborative optimization for train scheduling and train stop planning on high-speed railways.

Omega 2016, 64, 57–76. [CrossRef]
8. Yue, Y.; Wang, S.; Zhou, L.; Tong, L.; Saat, M.R. Optimizing train stopping patterns and schedules for high-speed passenger rail

corridors. Transp. Res. Part C Emerg. Technol. 2016, 63, 126–146. [CrossRef]
9. Dai, X.; Zhao, H.; Yu, S.; Cui, D.; Zhang, Q.; Dong, H.; Chai, T. Dynamic scheduling, operation control and their integration in

high-speed railways: A review of recent research. IEEE Trans. Intell. Transp. Syst. 2021, 23, 13994–14010. [CrossRef]
10. Nitisiri, K.; Gen, M.; Ohwada, H. A parallel multi-objective genetic algorithm with learning based mutation for railway scheduling.

Comput. Ind. Eng. 2019, 130, 381–394. [CrossRef]
11. Peng, S.; Yang, X.; Ding, S.; Wu, J.; Sun, H. A dynamic rescheduling and speed management approach for high-speed trains with

uncertain time-delay. Inf. Sci. 2023, 632, 201–220. [CrossRef]
12. Shi, R.; Xu, X.; Li, J.; Li, Y. Prediction and analysis of train arrival delay based on XGBoost and Bayesian optimization. Appl. Soft

Comput. 2021, 109, 107538. [CrossRef]
13. Zhang, P.; Zhao, P.; Qiao, K.; Wen, P.; Li, P. A multistage decision optimization approach for train timetable rescheduling under

uncertain disruptions in a high-speed railway network. IEEE Trans. Intell. Transp. Syst. 2023, 24, 6307–6321. [CrossRef]
14. Song, Y.; Cai, X.; Zhou, X.; Zhang, B.; Chen, H.; Li, Y.; Deng, W.; Deng, W. Dynamic hybrid mechanism-based differential

evolution algorithm and its application. Expert Syst. Appl. 2023, 213, 118834. [CrossRef]
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