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Abstract: This paper summarizes and reviews Chemical Organization Theory (COT), a formalism for
the analysis of complex, self-organizing systems across multiple disciplines. Its elements are resources
and reactions. A reaction maps a set of resources onto another set, thus representing an elementary
process that transforms resources into new resources. Reaction networks self-organize into invariant
subnetworks, called ‘organizations’, which are attractors of their dynamics. These are characterized by
closure (no new resources are added) and self-maintenance (no existing resources are lost). Thus, they
provide a simple model of autopoiesis: the organization persistently recreates its own components.
The resilience of organizations in the face of perturbations depends on properties such as the size
of their basin of attraction and the redundancy of their reaction pathways. Application domains
of COT include the origin of life, systems biology, cognition, ecology, Gaia theory, sustainability,
consciousness, and social systems.
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1. Introduction

Complex adaptive systems [1,2] are systems consisting of many interacting compo-
nents that exhibit some degree of self-organization: coherent patterns of organization
spontaneously emerge out of the network of interactions [3]. Most of the phenomena we
are confronted with in real life are such complex adaptive systems: people, organisms, soci-
eties, ecosystems, markets, cultures, etc. Great progress has been made in understanding
the dynamics of such systems by means of multi-agent computer simulations [2]. However,
on a more abstract, theoretical level, our understanding of self-organization and adaptation
remains rather superficial and fragmented.

Part of the reason is that the conceptual and mathematical building blocks of our
theories are poorly fitted to describe emergence and interaction. Traditional scientific
models start by reducing a system to its static components and the properties in which
these components can vary. The values of these variables define the state of the system.
The evolution of the system is then represented as a time-parameterized trajectory in the
thus predetermined state space, governed by a static equation. This approach makes it
intrinsically difficult to understand the fundamental changes that result in the emergence
of new components, properties, systems, or dynamics.

An alternative approach is to start from a process metaphysics [4,5] or action ontology [6,7].
Such a philosophy assumes that reality is not constituted out of static objects but out
of processes or actions, and that objects and systems are merely stabilized (networks of)
processes. While this perspective fits in with our most recent insights into complex adaptive
systems, the problem is to represent processes in a way that allows precise modeling of
such emergent systems [3].
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This paper wishes to introduce a formalization of processes, namely the reaction net-
works used in what has been called Chemical Organization Theory (COT) [8–10]. In reaction
networks and COT, the relation between states and dynamics is turned upside down. The
processes are primary, in the form of ‘reactions’, which are the most fundamental elements
of a reaction system. States only appear in a second stage, as the changing concentrations
of the ‘molecules’ that the reactions are processing into other molecules. The molecules
therefore are not static objects, but merely raw materials that are constantly being produced,
consumed, and recreated by the reactions. In that sense, reaction networks form perhaps
the first formalization of a process ontology that is both general and practical [11,12].

The general character means that COT can describe systems and processes in the most
diverse disciplines—from elementary particle reactions via systems biology and cognitive
science to the political organization of society. Its particular strength is that it provides
an elegant mathematical method to define and construct organizations, i.e., self-sustaining
networks of reactions within a larger network of potential interactions. As such, it is
eminently suited to describe self-organization, autopoiesis, sustainability, resilience, and
the emergence of complex systems out of simpler components.

Next to its broad foundation in process philosophy, COT derives its power from its
concreteness and simplicity: basically, you can represent any process in the real world as a
combination of reactions between suitably chosen ‘molecules’ and then start analyzing the
resulting reaction system for self-maintenance, closure, and other observable properties.
Moreover, COT models are intrinsically modular: it is trivial to add or to remove molecules
or reactions from an existing model and (somewhat less trivial) see what effect that has on
the emerging organizations. This makes it possible to model systems of great complexity,
where you start with a simple model in order to get an intuitive grasp of what is going
on, and then gradually add more detail and sophistication in order to achieve a more
realistic representation.

Finally, COT focuses on what are the most important questions about a complex
adaptive system: to what extent is it sustainable and resilient, i.e., able to maintain itself
both autonomously and in the face of external perturbations? To what degree does it grow,
remain the same, or perhaps diminish and decay? If it is perturbed to such a degree that
it cannot maintain its present organization, which new type of organization is it likely to
evolve into? How do its components and processes co-evolve, mutually adapt, and become
coordinated into a symbiotic system? In summary, how does it self-organize into a robust,
coherent whole?

The latter is perhaps the most important question in the whole of science and philos-
ophy, and their applications to society. Practically all the phenomena we are confronted
with—including matter, organisms, ecosystems, societies, and minds—are the result of self-
organization producing complex wholes out of simpler components. Any general theory
that would help us to understand, model, and control that process is likely to revolutionize
our worldview, while opening up an endless variety of concrete applications.

The present paper wishes to make the case that COT, together with its future exten-
sions, provides an exceptionally promising foundation for such a general theory. It will do
that first by pointing out how the COT formalisms avoids the pitfalls of earlier approaches,
then by offering a survey of existing and potential applications of COT to a broad variety of
issues. It will do this in a simple, non-technical way, emphasizing the basic formalism and
the core new insights, while avoiding some of the (relatively) more complex mathematical
techniques required for a full implementation of COT.

2. Reaction Networks

As its name implies, the COT formalism [8] is inspired by chemistry, and the way it
describes how chemical reactions transform molecules into new molecules. Therefore, it
has inherited much of its terminology from chemistry, while being similar in its concep-
tualization to the emerging domain of systems chemistry [13,14]. In order to widen its
appeal and to convince other scientists of its potential for transdisciplinary unification, it
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may be wiser to replace some specifically chemical terms by more broadly applicable ones
(and perhaps even rename the whole approach to the more neutral ‘Process Organization
Theory’). The present paper will therefore replace some COT terms with new terms, while
clearly pointing out the changes.

The basis of a COT model is a reaction network. It consists of two types of entities,
which we will call resources (‘molecules’, ‘molecular species’, or ‘species’ in the traditional
COT formulation) and reactions. A resource is an abstract representation of a specific kind
of substance, entity, or, most generally, measurable phenomenon. Examples of resources are
particular types of chemical substances, elementary particles, biological species, economic
goods, human agents, messages, ideas, or decisions. All the resources in the model are
assumed to be available in some shared container or workspace, which in COT is called the
‘reaction vessel’. This joint presence allows any resource to interact directly or indirectly
with any other resource. Reactions denote elementary processes that create or destroy
resources. They typically produce combinations of new resources out of combinations of
existing resources. Yet, the simplest reactions just create or destroy a single resource.

Formally, we will define a reaction network as the 2-tuple <M, R>, where M = {a, b, c,
. . .} is the set of resources, and R ⊆ P(M) × P(M) is the set of reactions, where P(M) denotes
the power set (i.e., the set of all subsets) of M. Each reaction r ∈ R maps a particular subset
X of M onto another subset Y of M:

r: X → Y: {x1, x2, . . .| xi ∈ M} → {y1, y2, . . .| yj ∈ M}

Note that the sets X and Y can be empty. We will call X the input set and Y the output
set of r and denote them, respectively, In(r) and Out(r). We will call the elements of In(r) the
reactants of r, and the elements of Out(r) its products. Borrowing the chemical notation for
reactions, a reaction is conventionally written as:

r: x1 + x2 + . . . → y1 + y2 + . . .

The ‘+’ symbol here represents a conjunction of the resources: x1 and x2 and . . . all
need to be simultaneously present in In(r) for the reaction to take place, while the reaction
simultaneously produces y1 and y2 and . . .. If In(r) is empty, the reaction will be written as:

→ y1 + y2 + . . .

Note that in traditional COT, it is assumed that In(r) and Out(r) are multisets. This
means that the same element xi can occur more than once (say ni times) in In(r). This is
necessary to describe reactions of the form:

2a + b → 3c + d

or more generally:

n1x1 + n2x2 + . . . → m1y1 + m2y2 + . . . with ni, mj ∈ N

For simplicity, we will here just work with ordinary sets, i.e., resources that only occur
once in a reaction. For a COT formulation in terms of multisets we refer the reader to [8,12].

2.1. Reaction Networks vs. Traditional Networks

The combined system <M, R> forms a network because the resources in M are linked
to each other by the reactions in R that transform the ones into the others. But this is
not a traditional network (i.e., a directed graph), in which a link connects a single element
(‘node’, ‘vertex’) x to a single element y. A reaction connects a set X of elements to a set Y of
elements. In mathematics, a network with this property is called a directed bipartite graph, or
a directed hypergraph [15]. This appears to be the essential generalization that gives reaction
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networks their power with respect to traditional network models. Let us try to explain how
that happens.

A traditional network consists of nodes N and links L, with L ⊆ N × N. Thus, <L, N>
is a reaction network, but where the reactions r ∈ L are limited to one input and one output:

r: x → y, with x, y ∈ N

A general reaction network provides much more richness and flexibility because
it allows combinations of inputs to produce combinations of outputs, opening up an
exponentially wider range of interacting processes. In a traditional network, the only way
processes can ‘interact’ is by sharing input or output nodes, e.g.,

r1: x → y

r2: x → z

r3: u → y

Here, an initial state x can lead to y and/or to z via, respectively, r1 and r2. This
immediately creates an ambiguity: are r1 and r2 both taking place, producing y and z
simultaneously? Or does the process make a choice between r1 and r2, ending up in either
y or z? Similarly, y can be produced via r1 and/or r3 from x and/or u. Do we need both x
and u, or is one of them sufficient to produce y? The problem is that in traditional networks,
there is no way to distinguish between conjunction (‘AND’) and disjunction (‘OR’) of nodes
and links. Next to juxtaposition of links/reactions, there simply is no operator to express a
different type of combination.

In reaction networks, we have an additional operator, denoted with ‘+’, that plays
the role of the conjunction. The juxtaposition of reactions plays the role of the disjunction.
Consider the following reactions:

r4: x + u → y

r5: w → y

This expresses unambiguously that in order to produce y we need either (x AND u), OR
w. Now, different processes can interact in many ways to produce complex organizations,
as we will see in further sections.

2.2. Reaction Networks and Propositional Logic

Interpretation of COT operators in terms of conjunction and disjunction points us
towards formal, Boolean logic, where propositions can be combined in terms of these
operators, together with the operators of implication and negation. Implication is naturally
expressed with the ‘→’ operator. This directly suggests the logical formalism of Horn
clauses [16]. These have the following form:

a & b & . . . → x

This is to be read as ‘if a and b and . . . are true, then x is true’, or ‘x can be derived
from the conjunction of a, b, . . .’. The translation in terms of reaction networks requires a
qualification, though, which is that if you derive the new proposition x from the conjunction
of propositions on the input side of the inference, then the propositions on that side remain
actual (they are not destroyed by the process). They therefore should properly be listed on
the output side as well. This gives us the straightforward COT translation of a Horn clause:

a + b + . . . → x + a + b + . . .

Note that in this interpretation, logical inference is a special type of reaction, namely
one in which no ‘resources’ ever get consumed: inferences can only add true propositions
to our knowledge, they cannot remove any. This is why logic is inherently static: nothing
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really changes by making logical inferences; at most, we become aware of additional
statements that were already true implicitly, but had not been proven yet. That is the
fundamental reason why attempts to express process, action, or time with logic have not
been very successful, in spite of a plethora of formalization attempts such as ‘dialectical
logics’, ‘process logics’, or ‘dynamic logics’ (see, e.g., [17–19]). Insofar that these logics
describe genuine changes in the state of the world, they have left the domain of logic proper
and entered the domain of dynamics, which is more properly described by a formalism
such as reaction networks.

2.3. Competition and Cooperation

Unlike logic, COT does not (as yet) incorporate a negation operator. However, reac-
tions can express an implicit negative relation between two resources a and b: increase in a
implies decrease in b. For this, we need to introduce the quantitative level of COT, where a
resource is determined not only qualitatively by its presence or absence, but quantitatively
by its amount or concentration in the reaction vessel. We can then define the relation ‘a
inhibits b’ as:

∃ r such that a, b ∈ In(r), b /∈ Out(r)

This means that a enables a reaction r that consumes, but does not produce, b—thus
reducing the concentration of b. The opposite relation, ‘a promotes b’ applies when a enables
a reaction that produces, but does not consume, b. The relations of inhibition and promotion
can be (but need not be) symmetric, in which case a and b inhibit or promote each other. In
the latter case, we might say that a and b are competitors, respectively, cooperators. Note,
however, that the same resource can simultaneously inhibit and promote another resource
via different reactions. In that case, we need to use the more detailed, quantitative model
of the reaction network, which allows us to calculate the net production of the different
resources by summing the contribution of all reactions, and thus to determine whether the
overall effect of a resource on another one is positive or negative.

Inhibition is a negative causal influence; promotion is a positive one. An uneven
number of negative influences connected in a cycle (from a via a number of intermediate
resources back to a) determines a negative feedback loop. Negative feedback suppresses
deviations from an equilibrium level, thus producing a stabilization or an oscillation of the
concentrations of the resources in the cycle around that level. A cycle with only positive
influences, or an even number of negative influences, determines a positive feedback loop.
Positive feedback produces an exponential growth of the resources in the cycle, which
stabilizes only when they reach the ‘carrying capacity’ of the system, which is determined
by the amount of external resources entering the cycle.

Systems dynamics [20] is a simple and useful formalism for representing and analyzing
networks of such causal influences, and the positive and negative feedback loops they form.
Moreover, system dynamics analyses processes in terms of stocks (equivalent to resource
concentrations) and flows that add to or subtract from stocks (equivalent to reactions).
Compared to COT, however, it lacks the ability to combine different resources in a single
reaction: a system dynamics network only allows one-to-one connections between stocks.

The interactions between reactions take place through their shared resources: the
same resource can appear in input and output sets of different reactions. Because these
resources are either consumed or produced by the reactions, a reaction can facilitate another
one (e.g., when the one produces a resource needed by the other) or hinder it (when the
one consumes a resource needed by the other). This creates a network of ‘ecological’ rela-
tionships between reactions. These include mutualism (mutual amplification, cooperation,
or synergy), competition (mutual inhibition, conflict, or friction), predation or exploitation
(growth of the one at the expense of the other), and commensalism (growth of the one
facilitated by the other, but without loss or gain for the other) [21]. As we will show further,
the general logic of self-organization [7] explains why this complex non-linear dynamics
tends to move towards a self-sustaining regime, as resources and reactions that do not fit in
with the emerging system are eventually eliminated, while those that efficiently exploit the



Systems 2024, 12, 111 6 of 21

more abundant resources grow and take over. This is the origin of the ‘organizations’ that
we will now define.

3. Organizations

The most important new concept introduced by COT is an organization. This denotes a
reaction system that is fundamentally self-sustaining: the resources it consumes are also the
resources it produces, and vice versa. This means that although the system is intrinsically
dynamic or process-based, constantly creating or destroying its own components, the
complete set of components (resources) remains invariant, because what disappears in one
reaction is recreated by another one, while no qualitatively new components are added.

This property is part of the definition of autopoiesis (‘self-production’), a concept
that Maturana and Varela introduced to characterize living organisms [11,22–24]. The
second defining property of autopoietic systems is that they produce their own topological
boundary, such as the membrane that separates living cells from their environment. This
property does not apply to organizations, and therefore organizations are more primitive
than living systems. As such, they were introduced as a simple model for the origin of
life out of interlocking cycles of chemical reactions [25]—and a generalization of the more
common but more restrictive model of an autocatalytic set [26,27].

Consider a subnetwork <M’, R> of a larger reaction network <M, R>, i.e., M’ ⊆ M.
The formal definition of an organization is derived from three characteristics that such a
reaction network <M’, R> can have:

• Closure: This means that nothing new is generated; the only resources produced
by the reactions are those that were already in the starting set M’: ∀ r ∈ R such that
In(r) ⊆ M’, the requirement holds that Out(r) ⊆ M’.

• Semi-self-maintenance: This is the complementary condition that nothing existing
is removed; each resource consumed by some reaction is produced again by some
other reaction working on the same starting set: ∀ x ∈ M’ for which ∃ r ∈ R such that
x ∈ In(r) ⊆ M’, ∃ r’ ∈ R such that In(r’) ⊆ M’, and x ∈ Out(r’).

• Self-maintenance: This is a stronger form of the semi-self-maintenance condition,
which states that each consumed resource x ∈ M’ is not only produced by some
other reaction in <M’, R>, but that the amount produced is at least as large as the
amount consumed.

The determination of self-maintenance is more complex than the other two conditions
because it requires the introduction of a quantitative dynamics in the reaction network,
which specifies the rate at which resources are consumed and produced by the different
reactions. The standard dynamics for chemical reactions is based on a mass action kinet-
ics [28,29], which assumes that the rate of a reaction is proportional to the concentration of
the reactants. However, COT also allows using different types of dynamics, depending on
the domain being modeled. Knowing these rates is necessary to establish the long-term
maintenance of the resource set M’ [8,10] because the reactions producing x may be slower
than the ones consuming it, so that the concentration of x eventually goes to zero. The rate
of each of the reactions defines the flux vector. Note that even without knowing the exact
rates in a given state of the network, we may normally assume that the rate of a reaction
increases when the concentration of its input resources increases (because there are more
reactants to ‘feed’ the reaction) and decreases when that concentration decreases (this is
anyway the case if we assume mass action kinetics).

In order to calculate the balance of consumption/production, we need to determine
the stoichiometric matrix [8]. For each resource-reaction pair, this matrix specifies the net
number of the resource produced by that reaction. This number is 1 if the resource is
produced but not consumed, −1 if it is consumed but not produced, and 0 otherwise (in
the multiset version of COT, the absolute values of these numbers can be larger than 1).
The product of flux vector and stoichiometric matrix then determines the total net rate of
production (production minus consumption) for each of the resources across all reactions.
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The requirement for self-maintenance is that this rate is non-negative for all resources,
i.e., all resources either increase or are conserved. The reaction network fulfils this condition
if there exists a flux vector (i.e., list of reaction rates) for which this requirement holds.
Note that if the constraints determined by the (qualitative) reaction network allow such
self-maintaining flux vectors to exist, then it seems likely that the (quantitative) system will
converge to the corresponding regime of self-maintenance. The reason is that resources
that are consumed more than they are produced (no self-maintenance) will decrease in
concentration up to the point that the reactions consuming them slow down enough so that
production (which is normally not affected by the concentration of the products, only by
the concentration of the resources consumed) compensates for consumption. For simplicity,
we will not further discuss this quantitative aspect in the present qualitative description.
Therefore, we will ignore the flux vector and the calculations that need to be performed on
it in order to determine whether self-maintenance is possible for the given set of reactions,
and just note that this requirement is easy to check computationally. Examples of how flux
vectors are calculated can be found in [30], while [31] provides a detailed presentation.

We are now able to define the crucial concept of organization: a subset of resources
and reactions <M’, R> within a larger reaction network is an organization when it is closed
and self-maintaining. This basically means that while the reactions in R are processing
the resources in M’, they leave the set M’ invariant: no new resources are added (closure)
and no existing resources are removed (self-maintenance). Note that this does not exclude
an overall input (resources entering the organization) or output (resources exiting the
organization). These can be represented as reactions working on the empty set (which is
by definition a subset of M’), such as → a (a is injected into the organization) or b → (b
diffuses out of the organization). The only requirement is that a and b maintain a non-zero
concentration in the organization.

Being an organization may seem a rather uninteresting property: nothing really
changes. Most theories, models, and formalisms are based on invariant elements, so what
is novel here? The essential contrast with classical modeling frameworks is that we started
by assuming that everything changes: all resources are in a constant flux, being consumed
by some reactions, produced by others, but by default processed into something else. The
concept of organization establishes that stability can arise even within such ceaseless flux
of transformations.

An organization is an emergent system that sustains itself by reprocessing its com-
ponents, and thus constantly rebuilding its own structure. This is the essential property
of living systems that Maturana and Varela have tried to capture with their concept of
autopoiesis. What COT adds is that the same kind of emergent organization can arise in
a wide variety of other domains outside of biology, on the sole condition that we have
a sufficiently rich network of reactions and resources [12]. Moreover, COT reformulates
the rather difficult and confusing notion of autopoiesis as a simple mathematical property
characterizing even simpler sets of resources and reactions [11].

3.1. Some Examples

The simplest organization would consist of the single resource a and the single reaction
a → a. This would be the description of a resource that just maintains itself without
interacting with anything else. The organization becomes slightly more interesting when
we add the reaction → a (empty input set, single element output set). Here, a is not just
maintained, it is also created out of nothing. We can make it more interesting by adding
a →. This means that a is not only produced or added, it is also removed from the ‘reaction
vessel’. This would describe a situation where some resource flows in and out of the
reaction vessel.

For the simplest non-trivial organization, we need two resources {a, b} that interact.
They define an organization when the reactions form a cycle: a → b, b → a. This can be
extended with an unlimited number of intermediate stages:
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a → b, b → c, c → d, . . ., z → a

This is still too simple to be very useful, but we can make it more complex by consid-
ering reactions with more than one input or output, e.g.,

a + b → c

c → d + e + f

e → a

d + f → b

Here, an a and a b together are transformed into a c, which is then converted to d, e,
and f, which again produce a and b, so that the cycle can start again. Let us make it more
concrete by considering recognizable resources and reactions, in this case describing the
organization of the Earth’s ecosystem at an abstract level (this high-level view of Earth as
an autopoietic system is similar to the Gaia hypothesis [32]).

→ sunlight

plants + sunlight + carbon_dioxide + minerals → plants + oxygen + heat

plants + animals + oxygen → animals + carbon_dioxide + detritus + heat

detritus + bacteria → bacteria + carbon_dioxide + minerals + heat

heat →

This describes the recycling of oxygen, carbon dioxide, and minerals by plants, animals,
and bacteria, fueled by the energy of the sun (which enters the system from the outside,
which is why the reaction producing it has no input within the system), while radiating
heat into space. This is subtler than a simple cycle, because reactions require several inputs
while producing several outputs that are all needed to sustain the organization. But the
system is properly self-sustaining, as it produces all its essential components: nothing that
is needed to sustain the organization gets lost; nothing new is added.

Note that some resources (such as bacteria in the last reaction) appear in both the input
and output of a given reaction. That means that they are neither removed nor added by that
reaction. Yet, they are necessary for the reaction to happen. In chemistry, such resources are
called catalysts: they enable a reaction, but are not themselves affected by it. In our more
general interpretation, we may call them agents [7]: they act on the other resources in the
reactions, processing them into something else. For example, the bacteria are the agents
that turn detritus into the carbon dioxide and minerals that are needed by the plants. The
plants are the agents that transform these resources, with the help of sunlight, into oxygen
(and more plants). The animals act on the plants and oxygen, converting them to detritus
and carbon dioxide, which then again function as ‘food’ for, respectively, the bacteria and
the plants.

3.2. Extending the Model

This model of global recycling is of course much too simple. To start with, it does not
specify the relative proportions of the different resources produced and consumed. For
example, plants do not produce just oxygen, they grow, thus producing more plants. In
the multiset version of COT, the additional amount could be specified, e.g., by writing
‘2 plants + oxygen’ on the output side of the reaction. While this may clarify the relative
proportions, the actual rate of production would need the full, quantitative version of COT,
which includes the rates of the different reactions as expressed with the flux vector. We will
ignore these complications in the present introductory survey, and continue focusing on
the power of COT for qualitative modeling.
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Qualitatively, the simple model could be extended by noting some additional processes, such
as plants → detritus (plants die, thus producing matter to feed bacteria) and animals → detritus
(animals similarly die). We may also want to specify that it is not only bacteria that break down
organic matter, but fungi as well, thus adding fungi + detritus → fungi + carbon dioxide + minerals.
But fungi are sometimes eaten by animals: fungi + animals → animals + carbon dioxide + detritus.

A different kind of extension may occur by making the general resource categories
more specific. For example, we could note that not all animals eat plants or fungi, but that
some are carnivores. This leads us to split up the category ‘animals’ into the categories
‘carnivores’, ‘omnivores’, and ‘herbivores’, each characterized by its own specific reactions.
In this way, we can go on adding reactions and the concomitant resources until we feel the
model is detailed enough to include everything that seems relevant for a realist description.

But the crucial question remains: is the resulting network an organization? By adding
a particular reaction, we may create a ‘source’ or a ‘sink’ for a particular resource, either
injecting it into a system in which it was previously absent (thus interrupting closure),
or removing it from the system faster than it can be produced (thus interrupting self-
maintenance). Let us then try to better understand how organizations emerge.

4. Self-Organization

An arbitrary subset of a reaction network will in general not be an organization: its
reactions working on its resources will produce additional resources (non-closure). These
additional resources may react with some already present resources, producing even further
new resources. Thus, every addition may activate reactions that produce further additions.
However, this process of growth of the resource base must come to an end when there are
no further resources that can be produced by reactions working on the already present
reactions. At that stage, all produced resources are already in the present set, and closure
is reached. Thus, closure can be seen as an attractor of the dynamics defined by resource
addition: it is the end point of the evolution, where further evolution stops.

Let us now apply the same reasoning for self-maintenance, starting from the previously
reached closed set. Some of the resources present in that set will be consumed by the
reactions, but not produced, or at least not produced in sufficient amounts to replace the
amounts consumed. These resources will therefore disappear from the closed set. Note
that this does not affect the closure, because loss of resources cannot add new resources.
Without these resources, some of the reactions producing other resources will no longer
be able to run. Therefore, the resources they otherwise produce will no longer be replaced
if they are consumed by some other reaction. If no other reactions continue producing
these resources, they too will disappear from the resource set, possibly triggering the
disappearance of even further resources that depend on them for their production. Thus,
resources disappear one-by-one from the set. However, this process too must come to
an end, when the remaining resources do not depend for their production on resources
that have been removed, but only on resources that are still being produced in sufficient
amounts. Thus, self-maintenance too can be seen as an attractor of the dynamics defined
by resource removal.

The process of resource addition ending in closure followed by resource removal
ending in self-maintenance produces an invariant set of resources and reactions. This
unchanging reaction network is by definition an organization.

This scenario for the spontaneous emergence of an organization illustrates the general
principle of self-organization [33]: any dynamic system will eventually end up in an attractor
(originally called ‘equilibrium’ by Ashby [33]), i.e., an invariant regime of activity defined
as a subset of the system’s state space that the system can enter but not leave. In the present
qualitative formulation of COT, such an attractor is defined as a subset of resources that is
self-sustaining and therefore invariant.

To model the quantity of resources present at a particular moment, we must specify
a dynamical law governing the rate with which resources are produced and consumed
(this typically takes the form of a system of ordinary differential equations). In COT, it has
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been proven that every fixed point (the simplest, 0-dimensional type of attractor) of such
dynamics corresponds to an organization [34]. However, the opposite is not true: certain
organizations cannot be realized as fixed points. Instead, we may encounter more complex
attractors, exhibiting oscillatory regimes, limit cycles, and even chaotic behavior [35].
In [34], it was shown that these dynamically stable regimes correspond in most cases to
organizations. This means that while the set of resources participating in an organization is
invariant, the quantity of each resource can still vary according to some complex dynamics.

In the attractor regime produced by self-organization, the different components of the
system (resources in this case) have mutually adapted [33], in the sense that the one no
longer threatens to extinguish the other. They have co-evolved to a ‘symbiotic’ state, where
they either more or less peacefully live next to each other, or actively help one another to
be produced, thus sustaining their overall interaction [7]. This is the default state for an
evolved ecosystem—such as a forest or a coral reef—in which the different species of plants
and animals have adapted to the network of ecological dependencies they all constitute
together [21].

While some of these species are competitors, or predators (exploiters) of other species,
they will normally not consume more of their prey than what is produced from other
resources in the ecosystem. Predation may actually regulate the population numbers of
the prey. This can prevent the problem where the prey increases so much in population
that they exhaust other species on which they depend, thus indirectly threatening their
own survival. A classic example of this regulatory function is found in the wolves that
were reintroduced as top predators to the Yellowstone natural reserve [36]: their presence
reduced the number of deer, thus allowing vegetation that the deer were consuming to
recover. This in turn helped other species dependent on that vegetation to increase in
number, boosting the overall diversity and sustainability of the ecosystem.

As we noted about organizations in general, the population of a species (i.e., quantity
of the corresponding resource) in such an ecosystem is likely to fluctuate over time—e.g., fol-
lowing the classic predator–prey dynamics that leads to periodic increases and decreases, or
following a more chaotic dynamic. But on the qualitative level, each of the species should
be able to be reproduced at a rate sufficient for it not to disappear altogether, because this
would entail a potentially radical reorganization of the ecosystem.

The relations between the different resources and reactions in an organization form
a similar web of exploitation, competition, and cooperation—or, more generally, ecologi-
cal dependencies—that has stabilized into a self-sustaining network. Depending on the
number and type of reactions, this network can be very complex. However, its defining
features of closure and self-maintenance are easy to formulate mathematically and verify
computationally by analyzing the reaction network and checking whether each resource
can be produced at least as much as it is consumed, while no new resources are created.

5. Sustainability and Resilience

Organizations generally require a sufficient input to self-maintain. In environments
with such an input, an organization is by definition a self-sustaining, and therefore sustain-
able, system. That means that it can maintain perpetually, without ever running out of the
resources that it needs to function—because all resources are recycled through the inherent
reactions and/or because there is a dependable input from outside the system (represented
by reactions of the form: → a).

Many organizations do not just maintain, they grow, because they produce more of cer-
tain resources than they consume. Such resources are said in COT to be ‘overproduced’ [37].
Organizations with overproduction fulfill the ideal of sustainable development: growth that
can be sustained without exhausting its environment.

While this may seem paradoxical, we should note that the COT formalism does not a
priori assume any conservation law for resources [25], as one would expect for material
or energetic resources. That is because the formalism is intended to be more flexible than
traditional chemical or physical models. This allows it for example to model informational



Systems 2024, 12, 111 11 of 21

resources, such as knowledge, decisions, or messages, which do not obey a conservation
law, or hybrid material-informational resources, such as economic products. This also helps
us to simplify our models by ignoring ever-present inputs (such as air or sunlight) or
outputs (such as dissipated heat or waste). Still, it is possible to impose conservation on a
particular set of reactions if that would help to make the model more realistic.

Ecosystems are normally sustainable with an approximately constant level of resources,
externally supplemented by energy from the sun. Economic systems, on the other hand,
although they grow, are often unsustainable: they consume more of certain resources
than they produce. Therefore, they may collapse when the resource reserve is eventually
exhausted. For example, our present economy is largely relying for its energy on fossil fuels
that are in limited supply. Creating a sustainable economy means shifting to energy sources
that are renewable through a dependable external input (e.g., solar energy) or through
reprocessing within the network (e.g., energy produced from waste).

In this example, the cause of unsustainability is easy to identify as it resides in a single
type of resource (fossil fuel), and therefore the solution is obvious: replacing this resource
by other, renewable resources. More generally, sustainability is an emergent property
dependent on the reactions between all the resources used, because a shortfall in one
resource may be compensated by the increased production of another resource performing
a similar function. It is here that we need the more sophisticated quantitative formalism
of COT with its flux vector and stoichiometric matrix in order to establish under which
conditions the reaction network is self-maintaining.

In previous work, we have developed a more complex example of a sustainable farm
to illustrate such analysis [30]. The model includes resources such as water, cows, grain,
grass, milk, chickens, eggs, and dung, with only water as an external input (from rain),
and milk, eggs, and grain as external output leaving the farm. It includes reactions such as
water + grass + cows → cows + dung + milk. It shows under which conditions this network of
reactions is self-maintaining and thus sustainable. It also shows which subsets of this set of
resources can form self-maintaining organizations. For example, it demonstrates that the
farm could still be sustainable without chickens and eggs.

Complementary to the notion of sustainability is the one of resilience. Sustainability
denotes the ability of the system to maintain on its own without outside interference. Re-
silience [30,38–40] broadens this notion to the ability to maintain the essential organization
even in the face of serious outside disturbances. A resilient system is one that will survive
and recover from shocks induced by the environment. In contrast, a vulnerable or fragile
system is one that is likely to disintegrate when it encounters an intense disturbance, such
as an earthquake or a traumatic event.

In the sustainable farm example [30], we have also made an analysis of how different
types of disturbances can affect the sustainability of the farm. Some of the disturbances
affect the amount of available resources—e.g., some of the cows may die. Others affect the
rate of certain reactions, such as a reduction in the amount of rain falling. Yet, others intro-
duce new resources with the corresponding reactions they trigger, such as an introduction
of mice in the farm that eat some of the grains.

In the qualitative version of COT, a disturbance can be represented as the removal of
a resource that the organization relies upon (e.g., cows), or as the introduction of a new
resource (e.g., mice) that reacts with some of the existing resources (e.g., grain), thus interfer-
ing with the network of reactions that defines the organization. Both types of disturbances
may reduce the availability of certain resources that are part of the organization, either by
removing them at the input stage or by inhibiting them via internal reactions. To survive
such a disturbance, a resilient organization will need to either suppress the disturbing
resources before they interfere with the organization’s critical ‘metabolism’, or to replace
the lost resources before their absence makes further self-maintenance impossible [11].
In other words, the organization will need to counteract or compensate the disturbance
and/or its effects on the network of reactions so as to minimize the deviation from the
viable configuration. This defines the cybernetic process of regulation or control [11].
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The simplest method of control is buffering: maintaining a large enough reserve of
resources so that temporary reductions in availability have little effect. This can be achieved
by organizations that increase their resource base through overproduction of the most
crucial resources.

The next method is negative feedback: organizing the network of reactions in such a way
that deviations from the desired concentration of resources are automatically counteracted
after each cycle of consumption and production. For example, a reduced supply of a
particular resource may automatically trigger an increased net production of that resource.
This kind of dynamic is common in metabolic pathways and in ecosystem interactions.
For example, if foxes eat more rabbits, fewer rabbits will be left, and therefore some of the
foxes will starve. A reduction in the number of predators will then let the rabbit population
recover. Such a dynamic follows naturally from our earlier observation that reaction rates
normally increase together with the concentration of their reactants. This creates an implicit
negative feedback because the reactions consuming a resource necessarily slow down
when that resource become scarcer (e.g., predation slows down when the prey population
decreases), thus allowing the reactions producing that resource (e.g., reproduction of the
prey population) to catch up.

The third basic control method is feedforward: neutralizing the disturbance before it
has had the chance to perturb the functioning of the system. This can be achieved by
reactions that consume the disturbing resource before it could have interfered with other,
vital resources. The tricky part here is that these neutralizing reactions will only be enabled
when a disturbance is present for them to react with. This means that for most of the time,
these reactions will remain ‘dormant’: the organization has the potential to react, but will
only do so when the right condition is present [11]. One way to implement such capability
is by maintaining a collection of resources that can react with a particular disturbance, either
getting consumed in the process, or, preferably, functioning as a catalyst that remains in the
system after the reaction. The larger the variety of such potential ‘neutralizers’ contained
in the organization, the larger the variety of disturbances it can survive. This implements
Ashby’s law of requisite variety [11,41].

An example of such a collection of neutralizers are the genes of an organism that are
activated via a particular molecular pathway whenever the cell encounters a particular dis-
turbance. Once activated, these genes produce enzymes catalyzing reactions that neutralize
the disturbance. But as long as a specific disturbance does not occur, the genes remain
non-active snippets of DNA. Other examples of ‘dormant neutralizers’ are antibodies,
which are produced by the immune system in large quantities only in case of infection, and
the armed forces of a country, which are mobilized only if the country is attacked.

6. The Evolution of Resilience

We have argued that arbitrary networks of reactions will self-organize to produce
sustainable organizations, for the simple reason that organizations are attractors of their
dynamics. It is less obvious that these organizations would also be resilient. However,
evolutionary reasoning shows that robust or resilient outcomes are more likely in the long
run than fragile ones.

First, any dynamical process starts from some point in the state space of the system,
while eventually settling down in some attractor region within that space. Attractors are
surrounded by basins of attraction, i.e., subsets of the state space from which all states
lead into the attractor [42]. The larger the basin, the larger the probability that the starting
point would be in that basin. Therefore, the system is a priori more likely to end up in
an attractor with a large basin than in one with a small basin. The larger the basin, the
smaller the probability that a disturbance pushing the system out of its attractor would also
push it out of the basin, and therefore the more resilient the organization corresponding
to the attractor. The size of the basin corresponds to what in [40] has been called the
latitude aspect of resilience. Large basins normally represent stable systems characterized
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by negative feedback, because a deviation from the attractor that remains within the basin
is automatically counteracted by the descent back from basin into attractor.

The higher a priori probability of starting from a large basin does not exclude the
possibility of ending up in an unstable attractor, characterized by a small (or empty)
basin. However, these unstable attractors will normally not survive long, as nearly any
perturbation will push the system out of that attractor’s basin into the basin of a different
attractor. After a number of such attractor-to-attractor shifts the probability increases
that the eventual attractor will have a large basin, and therefore be stable. This very
general, abstract reasoning makes it plausible that systems that are regularly perturbed
will eventually settle down in a stable, resilient organization. This is an application of the
order from noise principle [43], according to which increased variation (‘noise’) accelerates
the self-organization of a stable configuration (‘order’).

We have tested out this scenario in a computer simulation [30], where networks of
randomly generated reactions were first allowed to settle into one of their self-sustaining
organizations, and then subjected to various random perturbations. What we found was a
little more subtle than the simplest form of the scenario. Under continuing perturbations,
the system did not settle into a single large attractor, but rather tended to repeatedly shift
between a cluster or family of related attractors [44]. These attractors corresponded to
largely overlapping organizations (meaning that they shared most of their resources).

The shifting from one attractor to a similar, neighboring one can be seen as a higher-
order process of evolution, in which the system adapts to changing conditions by changing
its organization (i.e., its set of resources), but in such a way as to maintain a continuity
of identity by keeping most of its resources the same. Note that a ‘sideward shift’ to
an overlapping organization normally happens as a combination of two ‘vertical’ shifts,
one ‘upward’ that adds resources and one ‘downward’ that removes resources [45]. The
ability of the system to undergo such minimal shifts of organization in response to great
disturbances exemplifies a higher level of resilience that may be called evolvability [46],
because it allows the organization to evolve into a new organization while keeping most its
components and structures intact.

What needs to be investigated further is how such organizations are precisely or-
ganized: what kinds of arrangements of reactions make up a resilient whole? A theo-
retical decomposition of organizations [37] shows that complex organizations tend to be
modular, i.e., they consist of subnetworks whose self-maintenance is independent of the
self-maintenance of other subnetworks. Overproduced molecules and catalysts function as
‘boundaries’ that connect the subnetworks, however, without making them dependent on
each other. Such decomposition makes it possible to delimit the effects of a perturbation.
For example, a perturbation happening in a small subnetwork will leave the bulk of the
organization intact.

Another source of inspiration for understanding resilience is the metabolic networks
used by real organisms. These appear to be surprisingly robust in the face of random muta-
tions removing or adding gene-regulated reactions [47]. A likely reason is the redundancy—or
more precisely degeneracy [48]—of pathways for producing critical resources: there is a
variety of independent mechanisms that perform partly different, partly the same functions.
Thus, the loss of a pathway through mutation is simply compensated by more activity in
other pathways that perform the same function [11]. Such degeneracy is one of the factors
that explain the remarkable resilience and evolvability of living systems [46]: they can
afford to undergo a lot of variation without losing their essential ability to self-maintain.
This allows them to explore an immense space of largely overlapping organizations, and
thus to discover ever more resilient and adaptive ones.

7. Agents and Topological Structures

A priori, the world of reaction networks does not have any spatial structures or
boundaries: all resources and reactions are supposed to be mixed within the same ‘reaction
vessel’ where everything can react with everything else. Most real-world models assume
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some kind of subdivision of the elements of the model into objects, systems, or spatial
regions. Typical simulations of complex adaptive systems (CAS) start with agents located
in the cells or vertices of some discrete topological structure, such as a lattice or network.
Coordinated groups of agents may form systems that function as ‘superagents’ at a higher
hierarchical level. Without going into the necessary mathematical details of the construction,
we will here argue that such spatial and hierarchical differentiation can be introduced into
COT models without essential changes in the formalism.

First, as we already noted, the concept of agent is easily reinterpreted in COT as a cata-
lyst [7]—i.e., a resource a that is necessary to enable a reaction, but that is not itself affected
by the reaction it triggers: a + b + c → a + d. This can be read as ‘agent a processes b + c
into d’. Since an agent can catalyze several independent reactions (e.g., a + f → a + g + h), it
will be characterized by a list of ‘condition-action rules’ of the form a: b + c → d, f → g + h,
etc. The input of the reaction without the catalyst here functions as the condition to which
the agent will react, while the output of the reaction without the catalyst functions as the
action that the agent performs whenever it encounters that condition. Thus, an agent a
‘acts’ by transforming some initial condition (b + c) it encounters into some subsequent
condition (d). This characterization of agents as bundles of condition–action rules is the
basis for common multi-agent simulations of CAS. The larger the set of reactions an agent
catalyzes, the richer its ‘skill set’ or ‘toolbox’ of condition–action rules, and therefore the
greater its power in manipulating its environment [7,11].

To define superagents, we may note that complex organizations often contain subor-
ganizations: subsets of their resource set that are able to autonomously self-sustain while
exchanging some of these resources with other processes or suborganizations within the
larger organization. These exchanged resources can be categorized as either input, In(S), or
output, Out(S), of the suborganization S. This allows us to summarize the activity of S by
the following ‘higher-order’ reaction:

S + In(S) → S + Out(S)

Suppose that In(S) = {a, b} and Out(S) = {c, d, e}, then we can write this as a more
conventional condition-action rule:

S: a + b → c + d + e

The fact that S is itself constituted of a network of resources and reactions does
not really make any difference when seem from the outside. S behaves like a ‘black box’
which processes a given input (a + b) into a specific output (c + d + e). If S is sufficiently
resilient, it can maintain itself even when the input changes, producing a correspondingly
changed output of ‘waste products’. This means that S behaves like a higher-order agent,
capable of executing a range of condition–action rules, while itself remaining invariant.
The larger organization of which S is a subset may itself be embedded in a network of
reactions, thus defining an agent of an even higher order. While we still need to investigate
this construction mathematically, this appears to open the door to the modeling of the
dynamical hierarchies [49] and metasystem transitions [50] that characterize the multilevel
self-organization that we see in the evolution of life and society.

To introduce a topology, we need to create the equivalent of ‘cells’ separated by
membranes or boundaries. One way to achieve this in COT is to label resources with
indices that indicate the specific cell in which the resource is located [10], while adding
the constraint that resources can only react with resources that reside in the same cell
(i.e., that have the same label). Topological structure can then be introduced as a network
of ‘neighboring’ relations between cells, meaning that a resource can diffuse from a cell to a
neighboring one via a reaction that merely changes the label but otherwise maintains the
resource type: xcell1 → xcell2. By diffusing from neighbor to neighbor, resources or agents
can in principle propagate throughout the whole topology.
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A shortcoming of this construction is that the labeling must be introduced by the
modeler. A perhaps more elegant approach is to view non-overlapping suborganizations
as spatially separated, i.e., as residing in different cells, and their exchange of resources
as processes of diffusion between neighbors. To make this realistic, we would need a
large number of essentially equivalent suborganizations (or some less strictly defined
distinguishable modules within a reaction network), playing a role similar to the cells
of a multicellular organism. The resources of each cell, while a priori distinct, would
play essentially the same role, and in that respect behave similarly to the resources in the
previous construction that are merely distinguished by their labels. While apparently more
complex, the advantage of such a construction is that the ‘cells’ would self-organize out of
the network of reactions, instead of being imposed by the modeler.

To make this approach more concrete, we need further research into the possible
structures and topologies of reaction networks and organizations. We here merely suggest
that it is possible to introduce more complex entities, such as agents, hierarchies, cells, and
topologies, into the COT formalism, while maintaining the conceptual and mathematical
simplicity of resources and reactions.

8. Concrete Applications

After explaining some of the most important capabilities of COT on an abstract level,
we wish to provide a brief survey of existing and future application domains.

Most obviously, COT has been used to simulate networks of chemical reactions, with
a focus on the emergence of stable systems. The first examples were models of virus
dynamics [51] and the chemistry of a planetary atmosphere [52]. The initial inspiration
for the development of COT was to model how such chemical networks could develop
the degree of autonomy that we associate with simple living systems [53]. Previously, this
problem of the origin of life had been approached by looking for autocatalytic cycles of
chemical reactions [26,54]. These are a more specialized type of organizations, which are
both more difficult to build by evolution and less flexible and resilient than more general
chemical organizations [27].

A related application domain is the study of metabolic networks in existing organisms,
such as the bacterium E. coli [55]. This domain has recently attracted a lot of attention under
the label of systems biology, but still lacks an integrated theoretic framework [56]—which
COT may be able to provide [57]. A classic problem within this domain is the modeling of
gene regulatory networks, in which genes activate or deactivate each other via the proteins
they produce. These networks can settle into a variety of attractors characterized by specific
patterns of expressed and dormant genes. Different attractors are assumed to correspond
to different cell types (such as liver cells, bone cells, or neurons), or cell fates (such as
apoptosis, quiescence, or proliferation) [46]. The reaching of such attractors is commonly
modeled by means of Random Boolean Networks, a highly abstract formalism whose main
advantage is that its dynamics is easy to simulate. But COT suggests a model that seems
both simpler and more realistic, in which the attractors are the organizations that emerge
from a network of reactions with the following form:

active gene 1 → active gene 1 + protein 1 (protein expression of an active gene)

active gene 2 + protein 1 → non-active gene 2 (expressed protein deactivates gene)

non-active gene 3 + protein 1 → active gene 3 (expressed protein activates gene)

Because the reactions defining COT are intrinsically abstract, computable processes,
they can be used as a foundation for a new method of computation, based on ‘artificial
chemistries’ [58]. Here, the input of a chemical program is a list of resource concentrations.
Because the dynamics of a reaction network settles in organizations, it is possible to build
reaction networks where reactions play the role of complex logical gates, and organizations
represent the final state of the computation. Such ‘chemical computation’ can, for instance,
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be used to check models [59] or to program distributed artefacts [60], helping them to
coordinate their actions.

Modeling complex systems with many variables of course cannot be done manually.
Yet, COT lends itself readily to the development of simple, modular computer programs
that can examine a wide range of possible situations, and that are easy to extend or update.
An important issue here is how the algorithmic complexity of COT models grows as the
number of resources and reactions increases. A basic result is that verifying whether a set
of resources is an organization is a Linear Programming problem, whose computational
complexity is polynomial, albeit of a degree higher than 2. This motivated a first algorithmic
study that builds the set of organizations of a given reaction network from a bottom-top
approach that adds resources until an organization is found, and an intricate method that
combines flux vectors of previously known organizations [61]. These algorithms were
later extended to their parallelized counterparts [62]. The computational complexity of
these methods is at first sight exponential because every subset of resources could in
principle be an organization. However, it is possible to decompose organizations into
subnetworks that are independently self-maintaining [37]. This technique could permit
the classification of types of reaction networks in terms of how complex it is to compute
their set of organizations. Note, also, that reaction networks are structurally equivalent to a
formalism studied in distributed processing, namely Petri Nets [63], about which there is
extensive algorithmic research.

Once we make abstraction of the molecules that originally inspired COT, the applica-
tion domain immediately extends to the social sciences, where the resources to be processed
by reactions can, e.g., be economic goods [64] or political decisions [9]. In the latter case,
the self-sustaining network of decisions producing further decisions provides a simple
formal model of the notoriously difficult theory of autopoietic social systems developed
by Niklas Luhmann [65,66]. Another application of Luhmann’s social theory is a frame-
work to study the evolution of cooperation [67]. This problem is usually studied from
an agent-based perspective. The reaction network models agents’ decisions as resources
that interact to produce new decisions together with the payoffs generated by the agents’
interaction. This model manages to reconstruct the known conditions for the evolution of
cooperation [68]—yet without including individual agents! More generally, COT can help
us to develop an integrative view of social organizations as autopoietic, self-organizing,
and complex adaptive systems [69].

We have alluded several times to the potential for applying COT to problems in
ecology [21], sustainable development [30], and the resilience of social and ecological
systems. A related issue is the understanding of business ecosystems [70–72], an approach
that sees companies producing and consuming different goods and services as forming
a symbiotic, co-evolving network, where the ones provide the resources for the others.
Existing formalisms in ecosystem modeling, such as food webs or systems dynamics, tend
to be limited to networks of one-to-one interactions, in which one variable (e.g., a predator
population) positively or negatively affects another variable (e.g., a prey population). In
COT, we can examine how several resources in combination produce a combination of other
resources. While this at first sight makes modeling more complicated, the mathematics of
COT shows that it actually becomes easier to model the emergence of stable organizations.

A general advantage of COT is that you can freely mix resources of very different types,
such as organisms, chemicals, economic goods, and even human decisions [12]. This makes
it eminently suitable for modeling the truly complex social–technological–economical–
ecological–physical systems that surround us, such as cities, businesses, regions, or our
planetary society. This is the objective of the new approach of global systems science [73,74].

To further illustrate the power and generality of COT, we wish to briefly suggest
some more speculative applications. The section on resilience noted that a highly evolved
organization is likely to exhibit a variety of regulatory mechanisms characteristic of a
cybernetic or autopoietic system. Such a system acts like a goal-directed agent [42] that
aims to sustain its essential organization while suppressing any disturbances that may push
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it away from this goal. That means that it exhibits not just the most basic features of life, but
of cognition [11,22], intelligence, and intentionality. Like all living systems, the implicit goal
or intention of an organization is to maintain and grow. To achieve this, it needs to produce
the right actions for the right conditions (e.g., produce the right resource to neutralize a
particular disturbance, or to exploit a particular input). This means that it implicitly follows
a system of ‘condition–action rules’ that play the role of the organization’s ‘knowledge’
on how to act in its environment. The capability of ‘computing’ the right combination
of action(s) to solve a given problem constitutes the organization’s ‘intelligence’. To do
this, it needs to ‘perceive’ what is going on in its environment. For example, a unicellular
organism will sense the presence of certain resources (such as food) or disturbances (such as
toxins) when the corresponding molecules diffuse into the cell, and respond by activating
the right combination of genes to produce the enzymes that will catalyze the reactions
for effectively dealing with this condition. In this way, an organization can be seen as a
rudimentary ‘intelligence’ or ‘mind’ [11].

Because this abstract conceptualization is independent of any specific substrate—such
as a brain—it is applicable to systems that exhibit intelligent behavior, but that are other-
wise very different from the human individuals that we tend to see as the sole possessors
of minds. Examples are the intelligence exhibited by insect societies, plants [75], bac-
terial colonies [76], human organizations, the self-regulating planetary ecosystem—i.e.,
‘Gaia’ [32,77]— and the Internet in its function as a ‘Global Brain’ [78]. In all these cases,
intelligence is distributed: it is not localized in some central decision-making component, but
it emerges from the coordinated interactions between many agents and resources working
in parallel. Providing simple models of such self-organizing, distributed organization is
precisely the strength of COT.

Even the human brain is a complex, distributed network, where all the important
features such as intelligence, intentionality, and consciousness are emergent rather than
localized in some specific neuron or assembly of neurons. Recently, great progress has been
made in understanding consciousness as a coherent pattern of activity taking control of the
‘global neuronal workspace’ in the brain [79,80]. For conscious processing of thoughts, we
need to maintain a pattern of activity long enough in our working memory so that it can be
examined and processed by different brain modules. This is intrinsically difficult, because
neural activation cannot stay in the same place: a neuron that is excited by an electrical
signal (‘action potential’) cannot retain that electrical charge, but must pass it on to one or
more neighboring neurons via its outgoing axon ending in synapses. If a sufficient number
of incoming synapses pass on a signal, the newly reached neurons will become activated
as well, passing on this activation via their outgoing synapses to further neurons. This
transmission of activation can be described as a reaction of the form: a + b + . . . → e + f + . . .,
where a, b, etc., are the initially activated neurons whose combined activation is necessary
to activate the subsequent neurons e, f, etc. We may say that the activation of a and b is
‘consumed’ by the reaction in order to ‘produce’ the activation of e and f.

What the neuronal workspace theory proposes is that conscious patterns of activation—in
contrast to subconscious or subliminal processes—are to some degree self-sustaining:
activation that leaves a neuron comes back to it at a later stage after having propagated
through some complex, closed network. This creates coherent assemblies of neurons that
are firing in a synchronized, cyclic manner, so as to keep the idea ‘alive’ long enough
for it to be monitored and processed in a controlled, focused manner—the hallmark of
consciousness. Mathematical models of this process have been built [79], but they are
rather complicated, making many ad hoc assumptions about specific neurophysiological
properties and structures, while being able to simulate only the most basic dynamics
of a neuronal assembly reaching ‘ignition’ (self-sustaining activation). By interpreting
coherent neuronal activation patterns as organizations, we may reach a simpler, broader,
and more qualitative understanding of the different conscious patterns that the brain can
produce. Moreover, we may be able to model how such patterns can evolve into different



Systems 2024, 12, 111 18 of 21

but overlapping patterns as new stimuli make them deviate from their initial organization,
thus producing a ‘train of thought’ or ‘stream of consciousness’ [81].

9. Conclusions

Chemical Organization Theory (COT) proposes a very powerful formalism for the
modeling of complex, self-organizing systems. Its power results from several advanta-
geous properties:

• The components of the formalism—resources and the reactions that map combinations
of resources onto new combinations—are extremely simple and intuitive. This makes
it easy even for people without mathematical background to start expressing their
understanding of a system in the form of a COT model.

• Reaction networks are intrinsically modular: it is easy to add (or remove) resources
and reactions, and thus to develop an increasingly realistic model of a complex system.

• These components are so general that they can be used to represent a wide variety
of real-world objects and variables, including particles, molecules, biological species,
economic goods, technological infrastructures, human or animal agents, ideas, and
decisions. This makes it possible to apply COT to modeling systems in the most diverse
scientific and social disciplines [12], and in particular to multidisciplinary issues, such
as interactions between ecological, economic, social, and technological systems.

• COT models are easy to analyze computationally: entering a set of reactions into
an appropriate computer program will allow you to quickly discover the different
possible outcomes together with the conditions under which they can arise.

• The COT formalism is intrinsically dynamic, starting from reactions rather than from
static objects or properties. This makes it particularly suitable for describing systems
characterized by an on-going creation, process, or flow of resources. Such systems,
which include organisms, ecosystems, societies, and brains, are intrinsically difficult
to fit in a traditional, Newtonian framework [7].

• COT shows how such dynamic networks of production and consumption tend to
spontaneously settle into invariant ‘organizations’, thus providing a simple model of
the hitherto difficult-to-understand phenomena of self-organization and autopoiesis
that produce self-sustaining systems [11].

• These organizations can be easily analyzed for further properties, and in particular for
the characteristics that make them more or less resilient [30] in the face of perturba-
tions: overproduction of resources, latitude of the basin of attraction, precariousness,
feedback, degeneracy of pathways, evolvability, etc.

• As such, COT is a promising approach to a range of notoriously difficult problems,
including the origin of life, the modeling of metabolic and genetic regulatory networks
in systems biology, the resilience of ecosystems, the formalization of sustainability, the
self-organization of socio-economic systems, and even the dynamics of consciousness.

One of the reasons why COT manages to achieve so much with so few assumptions
is that the formalism consists of two levels: the very simple qualitative level listing the
resources and reactions active in a particular network or organization, and the more
advanced quantitative level (which we have largely ignored in this introductory survey)
examining the rates of the reactions and the changing concentrations of the resources.
Precise modeling at the quantitative level is of course more difficult, both analytically and
numerically, but that does not prevent us from deriving clear, unambiguous results by
just examining the qualitative level. While the qualitative model can be seen as a mere
‘abstraction’ of the full quantitative dynamics [34], its algebraic properties are so strong
that many non-trivial properties can be established at this level without need to determine
quantitative dependencies or concentrations. These properties can be used to simplify the
model to such a degree that it not only becomes intuitively easier to grasp, but easier to
turn into a computable quantitative model without need for unrealistic simplifications.
Moreover, in many cases, we do not need to know the full quantitative dynamics, but
just need to establish which combinations of reactions and resources (such as species in
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an ecosystem, or active genes in a genetic regulatory network) form a self-sustaining and
resilient whole.

The COT formalism is hardly two decades old and has as yet only been investigated
by a relatively small number of researchers. Thus, there is of course still a lot of work that
needs to be done, both in further clarifying its mathematical and conceptual foundations
and in applying it to concrete problems. Yet, the results we have reviewed here illustrate
the power and flexibility of this formal framework. We hope that after reading this paper,
others may become as enthusiastic as we are in applying COT to various domains, and
thus potentially revolutionizing our conception of complex, self-organizing systems.
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