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Abstract: This paper aims to tackle the problem of low accuracy in predicting financial distress
in Chinese industrial enterprises, attributable to data imbalance and insufficient information. It
utilizes annual data on systemic risk indicators and financial metrics of Chinese industrial enterprises
listed on the China’s A-share market between 2008 and 2022 to construct the adaptive weighted
XGBoost-Bagging model for corporate financial distress prediction. Empirical findings demonstrate
that systemic risk indicators possess predictive potential independent of traditional financial informa-
tion, rendering them valuable non-financial early warning indicators for China’s industrial sector;
moreover, they help to enhance the predictive accuracy of various comparative models. The adaptive
weighted XGBoost-Bagging model incorporating systemic risk indicators effectively addresses chal-
lenges arising from data imbalance and information scarcity, significantly improving the accuracy of
financial distress prediction in Chinese industrial enterprises under the 2015 Chinese stock market
crash, the Sino-US trade friction, and the COVID-19 epidemic; as such, it can be used as an efficient
risk early warning tool for China’s industrial sector.

Keywords: systemic risk; financial distress early warning; adaptive weighted XGBoost-Bagging model

1. Introduction

The implementation of a financial security strategy was made a high priority in China’s
14th Five-Year Plan, which includes the aim to “improve financial risk prevention, early
warning, handling, and accountability systems”. Frequent black swan incidents have
accentuated the shocks of systemic risk on global production activities and enterprise
financial stability. Thus, using systemic risk indicators to improve predictions of financial
distress is of academic and practical value. Against this backdrop, it is of great practical
significance to optimize the prediction model of financial distress in Chinese enterprises by
combining systemic risk indicators with cutting-edge machine learning algorithms, so as
to effectively warn enterprises of financial risks. This will not only help investors adjust
investment strategies and assist enterprises in accurately identifying potential risks but also
help regulatory agencies improve the risk monitoring and early warning mechanism in key
areas, identify weak links vulnerable to systemic risk, and provide a certain reference for
China to effectively improve the financial risk disposal mechanism.

China’s A-share market, as one of the largest emerging capital markets in the world,
exhibits unique characteristics. Government intervention is significant, with policy changes
exerting a significant influence on the market. Retail investors constitute a high propor-
tion, leading to more emotional and volatile behaviors. Additionally, China’s A-share
market faces challenges such as weak regulation, information asymmetry, and high market
volatility. With China boasting the world’s only complete set of industrial categories, the
development of listed industrial sector enterprises in China’s A-share market reflects the
country’s industrialization process and the adjustment of its industrial structure. Other
emerging economies can learn from China’s experience by focusing on the development
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trajectory of industrial sector enterprises, the level of support from capital markets, and
government policy guidance to promote the healthy development of domestic industrial
enterprises and capital markets. This, in turn, objectively promotes the development and in-
tegration of global emerging markets and fosters the healthy growth of the global economy.
This underscores the unique value and significance of the development of listed industrial
sector enterprises in China’s A-share market, serving as a paradigm for other emerging
economy markets.

As of 2022, the listed industrial sector enterprises in China account for 70.29% of the
A-share market, significantly driving GDP growth and employment stability. However, the
industrial sector has faced mounting systemic risk factors due to a confluence of events,
including deleveraging policies, slowing economic growth, the 2015 Chinese stock market
crash, the Sino-US trade frictions, and the COVID-19 pandemic [1–3]. These challenges
have also exacerbated financial risks [4–6]. Given the interconnectedness within the market,
a widespread financial crisis in key industries could propagate risk contagion through
various channels, such as technological linkages, commercial credit channels, informa-
tion interconnections, and emotional spillovers, affecting other industries and potentially
spreading to the entire economic and financial system [7–9]. Hence, combining systemic
risk indicators with cutting-edge machine learning algorithms to optimize financial distress
early warning models in China’s industrial sector proves beneficial. This aids financial
institutions and investors in early risk detection and loss mitigation. Furthermore, it assists
regulatory bodies in establishing a robust multi-channel default resolution mechanism for
preventing and resolving financial risks, thereby improving the credit environment in the
capital market.

Financial distress prediction for businesses fundamentally falls within the realm of
binary classification problems, primarily based on predictive models to classify enterprises
into normal and at-risk categories. As statistical methods have evolved, predictive models
for financial distress warning have continuously been updated. Beaver (1966) was the
first to propose a univariate statistical model, examining the predictive capabilities of
29 financial ratios for forecasting corporate financial distress within 1 to 5 years before it
occurs [10]. In 1968, Altman (1968) introduced a multivariate Z-score model, selecting five
independent variables to form the Z-score index. A Z-score below 1.81 and 2.67 indicates
an enterprise’s proximity to bankruptcy and the potential for bankruptcy, respectively [11].
Subsequently, Ohlson (1980) introduced conditional probability regression models to esti-
mate the probability of corporate bankruptcy, addressing the limitation of Z-scores lacking
economic significance [12]. With the iterative advancement of modeling techniques, recent
researchers have attempted to incorporate methods such as fuzzy set theory, Bayesian
networks, survival analysis, decision trees, support vector machines, and artificial neural
networks, as well as combinations of the above-mentioned approaches into corporate finan-
cial distress prediction models [13]. These methods have further relaxed the requirements
on data distribution, enhancing the accuracy and robustness of predictions.

It is worth noting that the corporate financial distress warning dataset usually exhibits
a significant class imbalance, with a much larger number of normal enterprises compared to
those at risk. Modeling directly with imbalanced samples would result in a bias towards the
majority class, leading to a loss of model warning capability. In the context of imbalanced
financial distress warning datasets, current research primarily focuses on improvements
at both the data and algorithm levels. Data-level processing involves altering the class
distribution in the original dataset to reduce or eliminate the imbalance, followed by con-
structing new models based on balanced datasets. Specific resampling methods include
oversampling [14], undersampling [15], and hybrid sampling [16]. Oversampling involves
increasing the number of minority class samples, while undersampling reduces the number
of majority class samples. Hybrid sampling combines both strategies. Resampling tech-
niques have gained widespread application due to their simplicity and strong operability
but still have notable drawbacks. Oversampling may introduce a significant amount of
sample noise or lead to model overfitting due to the generation of duplicate samples. In
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contrast, undersampling may lead to the loss of important samples. Unlike data-level pro-
cessing, algorithm-level processing aims to enhance traditional classifiers to better adapt to
the specific classification requirements of imbalanced datasets. This approach can generally
be categorized into cost-sensitive learning and ensemble learning. Cost-sensitive learning
introduces the concept of misclassification cost, assigning higher misclassification costs
to minority class samples to enhance their importance, thus addressing the problem of
learning bias that traditional models may face when dealing with imbalanced datasets [17].
Ensemble learning refers to the combination of decisions from multiple base classifiers
to achieve superior performance compared to a single model. Representative techniques
in this category include random forests, adaptive boosting, and gradient boosting trees
algorithms [18–20].

XGBoost, as a gradient boosting tree (GBDT)-based ensemble learning algorithm,
has been increasingly applied in the field of financial distress prediction in recent years.
Zieba et al. (2016) [21] proposed a novel method utilizing an XGBoost model to predict
bankruptcy events in Polish companies. Xia et al. (2017) [22] introduced a sequence
ensemble credit scoring model based on the XGBoost model, employing a Bayesian hyper-
parameter optimization method, the Tree-structured Parzen Estimator (TPE), to fine-tune
the model’s hyperparameters. Huang et al.’s (2019) [23] search indicated that among su-
pervised, unsupervised, and mixed supervised-unsupervised algorithms, the XGBoost
algorithm provided the most accurate financial distress predictions. Qian et al. (2022) [24]
proposed a heuristic algorithm—permutation importance (PIMP)—and found that the
PIMP-XGBoost model outperformed other benchmark methods in most evaluation metrics,
serving as an effective tool for corporate decision-makers. To address the performance
interpretability challenge, Liu et al. (2022, 2023) [25,26] introduced a cost-sensitive XG-
Boost model for financial distress prediction. Building upon the XGBoost framework,
they incorporated a weighted loss function into the cross-entropy loss function, achieving
cost-sensitive financial distress prediction.

In addition to the widespread adoption of computer algorithms and models trained
on imbalanced data, innovations in early warning research have also been focused on
incorporating non-financial early warning indicators into predictive information sets. Early
warning research, in its initial stages, primarily emphasized financial metrics of enter-
prises [27]. In recent years, various non-financial metrics related to corporate operations,
repayment, and other aspects have been introduced into financial distress early warning
models in both academic and practical literature [28–30]. Recent studies indicate that
systemic risk, as a non-financial indicator, may have a significant impact on real economic
activities, leading to a deterioration of financial indicators such as liquidity and solvency
for enterprises. Consequently, this increases the probability of enterprises facing financial
distress [31]. The underlying reasons for this phenomenon are as follows: firstly, when
financial markets experience risk shocks, banks often limit the scale of lending [32], which
may adversely affect the liquidity and debt-servicing capacity of certain enterprises, thus
increasing their risk of facing financial distress. Secondly, the shock from systemic risk can
also influence consumer behavior [33], thereby negatively impacting the financial condi-
tion of enterprises from the demand side. Chinese enterprises often use equity collateral
to secure operating capital, but a decline in stock prices triggered by systemic risk may
necessitate additional margin calls [34], leading to liquidity risk and further triggering
financial distress. Therefore, the introduction of systemic risk indicators may contribute
to optimizing the measurement and prediction of corporate financial risk. Jia et al. (2020),
by comprehensively considering enterprise financial metrics, market performance, and
systemic risk, applied a Logit model to predict future US corporate bankruptcy events [35].
Their research results indicate that systemic risk indicators significantly enhance the predic-
tive performance of corporate bankruptcy models. Yang et al. (2022) found that systemic
risk exhibits significant predictive capabilities regarding financial distress in midstream
and downstream Chinese enterprises [36]. They demonstrated excellent performance in
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predicting financial distress caused by long-term losses by combining systemic risk factors
with a random forest model framework.

In view of this, this paper attempts to make beneficial supplements based on existing
research, combining the reality of the Chinese economy to extend the accounting-systemic
risk model proposed by Yang et al. (2022) [36]. Addressing the issue of low recognition rates
of financial crises in industrial sector enterprises due to imbalance in early warning data,
this paper constructs an early warning model based on the adaptive weighted XGBoost-
Bagging algorithm, thoroughly examining the predictive ability of systemic risk indicators
for financial distress in Chinese industrial enterprises. Firstly, based on the traditional
Logit regression model, this paper analyzes the linear relationship between systemic risk
and the probability of financial distress in Chinese industrial enterprises. Subsequently,
random forest and gradient boosting algorithms are employed to capture the nonlinear
features of the relationship between systemic risk and the probability of financial distress in
Chinese industrial enterprises, thereby exploring the potential of systemic risk indicators as
non-financial early warning indicators for the industrial sector. Furthermore, drawing on
the testing approach of Petropoulos et al. (2020) [37], using the adaptive weighted XGBoost-
Bagging model constructed in this paper, out-of-sample testing and out-of-time testing are
conducted to compare and optimize the predictive models for financial distress in Chinese
industrial enterprises. Through out-of-sample testing and out-of-time testing, compared to
the models such as random forest used by Yang et al. (2022) [36], the adaptive weighted
XGBoost-Bagging model combined with systemic risk predicts financial distress in Chinese
industrial enterprises with higher efficiency. Moreover, when considering the impact of
the extreme event of the 2015 Chinese stock market crash on systemic risk in Chinese
industrial enterprises, the predictive accuracy of the adaptive weighted XGBoost-Bagging
model incorporating systemic risk significantly improves by comparing the predictive
accuracy before and after the extreme event. This indicates that the model can better
capture the significant impact of systemic risk on financial distress. Additionally, this paper
proposes relevant suggestions for improving the regulation of listed companies in China
and effectively warning of corporate financial distress.

2. Model Configuration and Methodology Description
2.1. Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is an ensemble learning algorithm based on
gradient boosting trees (GBDT), which was proposed by Chen and He (2015) [38]. XGBoost
has the characteristics of low computational complexity, high accuracy, and fast execution
speed. XGBoost represents a significant improvement over GBDT by incorporating regular-
ization terms in the loss function and by constraining the number of nodes in each tree as
well as the scores assigned to leaf nodes. This effectively corresponds to pruning the trees
and preventing overfitting.

The objective function of XGBoost is

obj(t) =
n

∑
i=1

l(yi, ŷ(t−1)
i + ft(xi)) + Ω( ft). (1)

In Equation (1), xi represents the i-th sample input, ŷ(t−1)
i represents the predictions of

the preceding t − 1 decision trees, and ft(xi) represents the prediction of the current t-th
decision tree. Ω( ft) = γT + 1

2 λ∥ω∥2 serves as a regularization term, utilized to control
model complexity and mitigate overfitting. T corresponds to the number of leaf nodes in
the t-th tree, and ω represents the output vector of these leaf nodes.

For optimizing the objective function, GBDT employs gradient descent, whereas
XGBoost utilizes a second-order Taylor expansion at ft(xi):

obj(t) ≃
n

∑
i=1

[
l(yi, ŷ(t−1)) + gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft). (2)
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In Equation (2), gi = ∂ŷ(t−1) l(yi, ŷ(t−1)), hi = ∂2
ŷ(t−1) l(yi, ŷ(t−1)).

When the preceding t − 1 decision trees have already been determined, the residuals
l(yi, ŷ(t−1)

i ) generated by these t − 1 decision trees are known and can be considered
constant. After eliminating the constant term from Equation (2), it can be represented
as follows:

obj(t) =
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft). (3)

For a given decision tree structure q, Ij={i|q(xi) = j} is defined as the set of samples
i all mapped to the j-th leaf node, with the output of this leaf node denoted as ωj. So,
Equation (3) can be represented as follows:

obj(t) =
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ γT +

1
2

λ
T

∑
j=1

ω2
j

=
T

∑
j=1

[(
∑
i∈Ij

gi

)
ωj +

1
2

(
∑
i∈Ij

hi + λ
)

ω2
j

]
+ γT

(4)

The minimum value of the objective function obj(t) can be determined using the
minimization of a simple univariate quadratic equation, where ω∗

i represents the optimal
leaf weight at each leaf node, such that ω∗

i = −∑i∈Ij
gi/(∑i∈Ij

hi + λ). The minimum value
of the objective function is as follows:

obj(t)min = −1
2

T

∑
j=1

(∑i∈Ij
gi)

2

∑i∈Ij
hi + λ

+ γT. (5)

In Equation (5), gi and hi vary depending on the specific loss function used. XGBoost
supports the customization of loss functions, provided that the chosen loss function is
differentiable and its first and second derivatives can be computed.

2.2. Adaptive Weighted XGBoost-Bagging Model

The fundamental principle of Bagging involves the following [39]: It repeatedly
selects random samples with replacement from the original dataset to create subsets of
samples. Subsequently, individual sub-classifiers are constructed based on these sample
subsets. The predictions of these multiple sub-classifiers are then combined using methods
such as voting or simple weighted fusion to obtain the final prediction result. Bagging
methods exhibit strong generalization capabilities. However, using random sampling with
replacement to obtain sample subsets may result in some samples from the original dataset
being selected multiple times or not at all. This is especially problematic when dealing with
imbalanced financial distress warning data, as it may rarely or never select samples from
the minority class, leading to low recognition rates for minority class samples. To address
this issue, the study proposes an improved sampling approach for Bagging, which is based
on stratified non-replacement undersampling using K-Means clustering. While utilizing
all the minority class samples (i.e., risk enterprise samples) from the training dataset,
undersampling is employed for the majority class samples (i.e., regural enterprise samples)
to achieve a balanced number of samples in both classes. The steps of this approach are
as follows:

(a) Employing the K-Means clustering algorithm to partition the majority class training

samples into K clusters and calculating the number of samples M(k)
m (k = 1, 2, · · · , K)

in each cluster.
(b) Conducting stratified sampling without replacement for each cluster, with a sample

size of (M(k)
m /Mm) ∗ Ml within each cluster, where Mm represents the total number of
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training samples in the majority class and Ml represents the total number of training
samples in the minority class.

(c) Combining the sampled samples from each cluster yields a subset of the majority class
training samples. These are then merged with the minority class training samples to
create a balanced training dataset.

On the basis of this sampling approach for Bagging, as illustrated in Figure 1, the
study constructs the adaptive weighted XGBoost-Bagging model. Initially, the stratified
non-replacement undersampling method based on K-Means clustering is employed T
times on the majority class training samples, yielding T subsets of majority class training
samples and consequently resulting in T balanced training datasets. Following that, train T
XGBoost classifiers using the balanced training datasets. Within each XGBoost classifier, the
count of minority class training samples among the N nearest training samples to a given
test sample is denoted as N(t)

l (t = 1, 2, · · · , T), the probability of predicting the given test

sample as a majority class sample is denoted as p(t)m , and the probability of predicting the
given test sample as a minority class sample is denoted as p(t)l . In the study, the adaptive

weight for p(t)l is set to W(t)
l = (N(t)

l /N) + 1. Finally, by employing the weighted soft
voting method to ensemble the results of all XGBoost classifiers, the final classification
result is obtained as follows:

ŷ = I
{( T

∑
t=1

(
p(t)l ∗ W(t)

l − p(t)m

))
≥ 0

}
. (6)

Figure 1. Construction process of the adaptive weighted XGBoost-Bagging model.

In the aforementioned process, the number of clusters K for K-Means clustering,
the number of XGBoost classifiers T, and the number of nearest training samples N to
a given test sample are all undetermined hyperparameters. These hyperparameters can
be optimized using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). NSGA-
II is a multi-objective optimization algorithm designed to achieve Pareto optimality for
multi-objective problems while striving to satisfy all constraints to the greatest extent possi-
ble [40]. Specifically, with the objective of maximizing the performance evaluation metrics
of the model, the NSGA-II algorithm is employed to discover the optimal hyperparameter
combination (K, T, N).
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2.3. Model Evaluation Metrics

Existing classification methods typically use overall accuracy as a metric to assess
model performance. However, in imbalanced datasets, where the number of samples in
the minority class is significantly lower than that in the majority class, even achieving
high overall accuracy does not accurately reflect the recognition rate of the minority class
samples. Therefore, to better evaluate the classification performance of models in imbal-
anced scenarios, metrics such as AUC, Recall, Fβ, and G-means are utilized based on the
confusion matrix shown in Table 1.

Table 1. Confusion matrix.

Predicted Value = 1 Predicted Value = 0

True Value = 1 TP FN
True Value = 0 FP TN

AUC refers to the area under the ROC curve. If the AUC value of a classification model
exceeds 0.80, it can be considered as having relatively good classification performance [41].

Fβ is determined jointly by Recall and Precision, but a trade-off relationship exists
between these two metrics. When modeling for imbalanced data, the study primarily
focuses on the recognition rate of the minority class samples, giving more weight to Recall.
Therefore, the β value is set to 3. The expression for Fβ is as follows:

Fβ =
(1 + β2) ∗ Precision ∗ Recall

β2 ∗ Precision + Recall
. (7)

In Equation (7), Recall= TP
/
(TP + FN), Precision= TP

/
(TP + FP).

G-means balances the magnitude of Sensitivity and Specificity, serving as a compre-
hensive metric that combines both. The expression for G-Means is as follows:

G − means =
√

Sensitivity ∗ Speci f icity. (8)

In Equation (8), Sensitivity = TP
/
(TP + FN), Speci f icity = TN

/
(TN + FP).

3. Empirical Results and Analysis
3.1. Data Source and Sample Description

This study focuses on Chinese industrial enterprises listed on the A-share market in
China between 2008 and 2022 and regards special treatment (ST or ∗ST) designation as
a signal of corporate financial distress. According to regulations in the Chinese A-share
market, ST stocks refer to those of enterprises that have incurred losses for two consecutive
years and are subjected to special treatment, while ∗ST stocks refer to enterprises with
losses for three consecutive years, warranting a delisting warning. Such enterprises often
exhibit abnormal financial conditions or have already entered a distress, facing difficulties
in capital turnover and an inability to meet debt obligations. Therefore, in this study,
enterprises labeled as ST or ∗ST are considered to be those facing financial distress. In
2007, the Ministry of Finance of China implemented new accounting standards for business
enterprises, leading to more standardized and comprehensive financial data disclosure by
listed companies. Considering that it takes some time for these regulations to be effectively
enforced, the research commences from the year 2008. Furthermore, in accordance with
GB/T 4754-2017 Industrial Classification for National Economic Activities and China
Industry Statistical Yearbook 2022, China’s industrial sector encompasses mining; manufac-
turing; and electricity, heat, gas, and water production and supply, identified by industry
codes ranging from B06 to D46. Hence, the selection of A-share listed companies is based on
these industry codes. The resulting sample comprises 509 ST enterprises and 5090 non-ST
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enterprises. Notably, this sample set represents an imbalanced dataset, with ST enterprises
being the minority class and non-ST enterprises as the majority class.

Drawing from the methodology outlined in Tinoco et al. (2018) [42], the study aims
to forecast whether a given enterprise will undergo special treatment (ST or ∗ST) in year t
based on annual data for systemic risk indicators and financial metrics from the enterprise’s
t − 2 year. To achieve this, we have selected samples of enterprises spanning 2010 to 2022,
and matched their systemic risks and financial data from 2008 to 2020, resulting in the final
dataset. It is important to note that all variables in the sample undergo winsorization at the
1st and 99th percentiles to address potential outliers.

In terms of systemic risk indicators, a total of 6 initial indicators have been selected,
each denoted as follows: Value at Risk (VaR) as X1, Conditional Value at Risk (CoVaR) as
X2, Change in Conditional Value at Risk (∆CoVaR) as X3, Expected Shortfall (ES) as X4,
Marginal Expected Shortfall (MES) as X5, and Beta coefficient as X6. It is important to
note that VaR, CoVaR, ∆CoVaR, ES, and MES are all annual computed values at the 5th
percentile. Taking inspiration from the practices outlined in Qian et al. (2022) [24] and
Liu et al. (2022) [25] in the context of financial metrics and considering data availability,
we have selected a total of 31 initial metrics from the domains of solvency, operational
efficiency, profitability, growth capacity, and risk level, as detailed in Table 2.

Table 2. Initial financial metrics.

Primary Indicators Secondary Indicators

Solvency Current Ratio (X7)
Quick Ratio (X8)
Cash Ratio (X9)
Operating Working Capital to De bt Ratio (X10)
Cash Flow Interest Coverage Ratio (X11)
Debt Asset Ratio (X12)
Long-Term Debt to Total Assets Ratio (X13)
Equity Multiplier (X14)
Long-Term Debt to Working Capital Ratio (X15)

Operational Efficiency Accounts Receivable Turnover (X16)
Inventory Turnover (X17)
Accounts Payable Turnover (X18)
Current Assets Turnover (X19)
Non-Current Assets Turnover (X20)
Total Assets Turnover (X21)

Profitability Return on Assets (X22)
Net Profit Margin on Current Assets (X23)
Net Profit Margin on Fixed Assets (X24)
Return on Equity (X25)
Return on Invested Capital (X26)
Gross Profit Margin (X27)
Operating Profit Margin (X28)

Growth Capability Fixed Assets Growth Rate (X29)
Revenue Growth Rate (X30)
Sustainable Growth Rate (X31)
Earnings per Share Growth Rate (X32)
Return on Equity Growth Rate (X33)
Net Profit Growth Rate (X34)
Total Assets Growth Rate (X35)

Risk Level Financial Leverage (X36)
Operating Leverage (X37)

Note: The data above are sourced from the CSMAR database and the Wind database.
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3.2. Dual Significance Tests for Initial Indicators

This study categorizes financially distressed ST enterprises as “1” and healthy non-
ST enterprises as “0” to obtain two sets of samples. Subsequently, in order to assess the
effectiveness of the initial indicators in distinguishing between ST and non-ST enterprises,
dual significance tests are conducted on the two sample groups, namely, the two-sample
Kolmogorov–Smirnov (K-S) test and Mann–Whitney U (MW-U) test. The two-sample K-S
test aims to determine whether there is a significant difference in the distributions between
the two groups, while the MW-U test examines whether there is a significant difference
in the means of the two groups. The results of the dual significance tests for the initial
indicators are presented in Tables 3 and 4.

Table 3. The K-S test results.

Indicator Sig. Indicator Sig. Indicator Sig. Indicator Sig.

X1 0.0000 X11 0.0000 X21 0.0000 X31 0.0000
X2 0.0000 X12 0.0000 X22 0.0000 X32 0.0000
X3 0.0000 X13 0.0000 X23 0.0000 X33 0.0000
X4 0.0000 X14 0.0000 X24 0.0000 X34 0.0000
X5 0.0000 X15 0.0000 X25 0.0000 X35 0.0000
X6 0.0000 X16 0.0000 X26 0.0000 X36 0.0000
X7 0.0000 X17 0.0000 X27 0.0000 X37 0.0000
X8 0.0000 X18 0.0000 X28 0.0000
X9 0.0000 X19 0.0000 X29 0.0000
X10 0.0000 X20 0.0000 X30 0.0000

Note: The significance level is set at 5%.

Table 4. The MW-U test results.

Indicator Sig. Indicator Sig. Indicator Sig. Indicator Sig.

X1 0.0000 X11 0.0051 X21 0.0000 X31 0.0000
X2 0.0000 X12 0.0000 X22 0.0000 X32 0.0000
X3 0.0000 X13 0.0268 X23 0.0000 X33 0.0000
X4 0.0000 X14 0.0000 X24 0.0000 X34 0.0482
X5 0.0000 X15 0.0000 X25 0.0000 X35 0.0000
X6 0.0000 X16 0.0000 X26 0.0000 X36 0.0000
X7 0.0000 X17 0.0289 X27 0.0000 X37 0.0000
X8 0.0000 X18 0.0046 X28 0.0000
X9 0.0000 X19 0.0000 X29 0.0000
X10 0.0000 X20 0.0000 X30 0.0000

Note: The significance level is set at 5%.

To ensure the rigor of the indicator selection, an indicator is only eliminated when it
shows non-significance in both the K-S test and the MW-U test. According to the results of
the dual significance tests, all indicators exhibit p-values less than 5%; thus, all indicators
are retained.

3.3. Principal Components Extraction and Its Importance Analysis

Given to the advantages of composite indicators in terms of predictive power and
robustness, the study draws from the methodology outlined in Nucera (2016) [43] by em-
ploying principal component analysis (PCA) to extract pertinent information from systemic
risk indicators and financial metrics, respectively. Utilizing an 80% cumulative variance
contribution rate as the extraction criterion, we conduct PCA for dimensionality reduction
on the entire dataset. For systemic risk indicators, the Kaiser–Meyer–Olkin (KMO) statistic
yields a value of 0.6822, and the Bartlett sphericity test indicates a significance level of 0.
Consequently, two principal components, denoted as SystemicRisk1 and SystemicRisk2,
are selected, collectively contributing to a cumulative variance of 90.84%. For financial
metrics, the KMO statistic yields a value of 0.7830, and the Bartlett sphericity test indicates
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a significance level of 0. A total of ten principal components are chosen: Accounting1,
Accounting2, through Accounting10, collectively contributing to a cumulative variance
of 80.30%.

Figure 2 shows the annual averages of SystemicRisk1 and SystemicRisk2 for all in-
dustrial enterprises. In the past decade, the annual averages of SystemicRisk1 and Sys-
temicRisk2 in 2015, 2018, and 2020 are all positive, indicating that the systemic risks in the
industrial sector are relatively high in these years. This result confirms the conclusion of
Yang (2020) [44].

Figure 2. Annual averages of SystemicRisk1 and SystemicRisk2.

Subsequently, the Logit model is employed to assess the predictive capacity of systemic
risk on corporate financial distress. Both columns (1) and (2) in Table 5 illustrate that, in
the absence of control variables, the coefficients for SystemicRisk1 and SystemicRisk2 are
significantly positive at the 1% level. This suggests that systemic risk indicators demonstrate
predictive potential independently of financial information, functioning as effective non-
financial early warning indicators. Columns (3) and (4) of Table 5 demonstrate that, even
after incorporating control variables, the coefficients for SystemicRisk1 and SystemicRisk2
remain significantly positive at the 1% level. Consequently, it can be deduced that systemic
risk indicators exhibit substantial predictive capability for corporate financial distress
in China’s industrial sector, signifying that the influence of systemic risk enhances the
likelihood of a firm encountering financial distress.

The results of the Logit regression analysis can only identify a linear association
between systemic risk indicators and the probability of a corporate financial distress. In
order to explore the non-linear relationships between systemic risk indicators, financial
metrics, and the occurrence of corporate financial distress, the study employs Random
Forest and Gradient Boosting models to calculate the relative importance of the principal
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components of systemic risks and financial data. This assessment aims to evaluate their
explanatory capacity in predicting corporate financial distress.

Table 6 reveals that in both the Random Forest and Gradient Boosting models, Sys-
temicRisk1, the primary component of systemic risk indicators, demonstrates relative
importance values of 9.49% (ranking third) and 9.10% (ranking third), respectively. Like-
wise, SystemicRisk2, the secondary component of systemic risk indicators, demonstrates
relative importance values of 6.41% (ranking fifth) and 6.42% (ranking fifth), respectively.
This suggests that systemic risk indicators possess predictive capabilities independently of
financial information, and they can serve as effective non-financial early warning indicators
for China’s industrial sector.

Table 5. Logit regression analysis of systemic risk on corporate financial distress.

(1) (2) (3) (4)

SystemicRisk1 1.0389 *** 0.4686 *** 1.1109 *** 0.6638 ***
(0.094) (0.116) (0.110) (0.142)

SystemicRisk2 2.0867 *** 2.6829 *** 2.4802 *** 3.1322 ***
(0.182) (0.215) (0.221) (0.260)

Accounting1 −1.8806 *** −1.9032 ***
(0.105) (0.110)

Accounting2 0.7979 *** 0.6858 ***
(0.110) (0.115)

Accounting3 −0.3917 *** −0.4766 ***
(0.138) (0.144)

Accounting4 −0.7542 *** −0.7148 ***
(0.181) (0.189)

Accounting5 −0.6884 *** −0.6471 ***
(0.174) (0.183)

Accounting6 0.4484 ** 0.4027 **
(0.189) (0.198)

Accounting7 1.9306 *** 2.0697 ***
(0.223) (0.232)

Accounting8 0.0386 −0.0812
(0.238) (0.252)

Accounting9 4.3982 *** 4.4981 ***
(0.297) (0.308)

Accounting10 0.5449 ** 0.6507 ***
(0.241) (0.253)

Year Effect N Y N Y
Note: ***, ** represent significance at the 1%, 5%, and 10% levels, respectively, with the coefficient standard errors
shown in parentheses.

Table 6. Relative importance analysis of predictive variables for corporate financial distress.

Principal Component
Based on the Random Forest Model Based on the Gradient Boosting Model

Relative Relative Importance Relative Relative Importance
Importance Ranking Importance Ranking

SystemicRisk1 9.49% 3 9.10% 3
SystemicRisk2 6.41% 5 6.42% 5
Accounting1 26.24% 1 39.30% 1
Accounting2 12.85% 2 16.67% 2
Accounting3 6.30% 6 5.92% 6
Accounting4 4.51% 12 1.81% 12
Accounting5 5.90% 7 4.11% 7
Accounting6 5.23% 9 2.24% 9
Accounting7 4.81% 10 2.07% 10
Accounting8 4.75% 11 2.02% 11
Accounting9 7.92% 4 7.69% 4
Accounting10 5.61% 8 2.63% 8
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3.4. Performance Analysis of Models Incorporating Systemic Risk Indicators

To assess the predictive performance before and after the introduction of systemic
risk indicators, a random 20% of the samples are selected as the testing dataset, while
the remaining 80% are utilized as the training dataset to construct the adaptive weighted
XGBoost-Bagging model, hereafter referred to as XGBoost-Bagging. Within the frame-
work of XGBoost-Bagging, the number of clusters K in K-Means, the quantity of XG-
Boost classifiers T, and the number of nearest training samples to a given test sample N
are all considered as undetermined hyperparameters. Through the employment of the
NSGA-II algorithm, the optimal hyperparameter combination is determined as follows:
K = 7, T = 5, N = 2.

To thoroughly validate the predictive performance, a comparative analysis is con-
ducted among five models: Random Forest, a model employing the Bagging technique;
XGBoost, a model employing the Boosting technique; XGBoost-SMOTE, which integrates
the SMOTE method for oversampling; XGBoost-KMeans, which integrates K-Means clus-
tering for undersampling; and XGBoost-Bagging. In order to mitigate the potential bias
introduced by random partitioning of the training and testing datasets, a five-fold cross-
validation approach is employed.

As indicated in Table 7, upon the inclusion of systemic risk indicators, each model
demonstrates notable improvements in evaluation metrics. Specifically, AUC and G-Means
exhibit an increment of approximately 2% to 4%, while Recall and Fβ score experience
enhancements of approximately 3% to 6%. These findings underscore the significant
enhancement in the predictive accuracy of the early warning models when systemic risk
indicators are included.

Table 7. Model prediction results with the inclusion of systemic risk indicators.

Random XGBoost XGBoost- XGBoost- XGBoost-
Forest SMOTE KMeans Bagging

AUC 0.7659 0.7725 0.8234 0.8520 0.8715
(0.0274) (0.0259) (0.0203) (0.0158) (0.0084)

Recall 0.5198 0.5555 0.7003 0.8423 0.8816
(0.0534) (0.0522) (0.0385) (0.0349) (0.0113)

Fβ 0.5412 0.5747 0.6836 0.7496 0.7817
(0.0535) (0.0507) (0.0363) (0.0298) (0.0201)

G-Means 0.7172 0.7406 0.8138 0.8517 0.8714
(0.0374) (0.0347) (0.0231) (0.0158) (0.0084)

∆AUC 0.0268 0.0290 0.0239 0.0288 0.0346
∆Recall 0.0325 0.0555 0.0452 0.0400 0.0456
∆Fβ 0.0327 0.0555 0.0428 0.0446 0.0526
∆G-Means 0.0232 0.0384 0.0281 0.0292 0.0346

Note: (1) ∆AUC, ∆Recall, ∆Fβ, and ∆G-means represent the increments in AUC, Recall, Fβ, and G-Means,
respectively, when comparing models with and without the inclusion of systemic risk indicators. (2) Values in
parentheses indicate the standard deviation of the evaluation metrics.

Furthermore, as illustrated in Figure 3, from any evaluation criterion, with the inclu-
sion of systemic risk indicators, the hierarchy of the model’s predictive performance excel-
lence is consistently as follows: XGBoost-Bagging > XGBoost-KMeans > XGBoost-SMOTE
> XGBoost > Random Forest. In the context of Recall, when compared to the Random
Forest and XGBoost models without incorporating sampling methods, XGBoost-Bagging
demonstrates an increase in predictive accuracy of 36.18% and 32.61% for ST enterprises,
respectively. This highlights the necessity of addressing class imbalance when dealing
with imbalanced sample classification problems. When compared to the XGBoost-SMOTE
model, which integrates oversampling methods, XGBoost-Bagging exhibits a 18.13% en-
hancement in predictive accuracy for ST enterprises. This improvement can be attributed
to the potential introduction of noisy information when synthesizing a large number of
ST enterprise samples through oversampling, which can adversely affect the classification
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performance of XGBoost-SMOTE. Additionally, when compared to the XGBoost-KMeans
model, which combines undersampling methods, XGBoost-Bagging yields a 3.93% increase
in predictive accuracy for ST enterprises. This indicates that enhancing model diversity
while undersampling can indeed improve the predictive performance for minority class
samples to some extent.

Figure 3. Model predictive performance with the inclusion of systemic risk indicators.

The events of the 2015 Chinese stock market crash, the 2018 Sino-US trade friction,
and the 2020 COVID-19 pandemic led to a substantial increase in systemic risks in China’s
industrial sector. Subsequent to these critical time points, financial distress in industrial
enterprises became more prevalent. Consequently, drawing inspiration from the testing
approach proposed by Petropoulos (2020) [37], we conduct out-of-sample tests based
on these time points to analyze the predictive efficacy of XGBoost-Bagging for financial
distress events in industrial enterprises two years later (i.e., in 2017, 2020, and 2022), with
the financial distress events in 2016 serving as a reference. Specifically, for 2016, we use
samples preceding that year as the training set and samples from 2016 as the testing set to
construct the XGBoost-Bagging model. Similar procedures were applied for 2017, 2020, and
2022. To ensure robust results, we repeat the process of constructing and predicting with
XGBoost-Bagging 100 times and then compute the mean of accurate predictions and the
mean of Recall for ST enterprises within these respective years. The results are presented in
Table 8.

Table 8. Performance analysis of out-of-time tests for the adaptive weighted XGBoost-Bagging model.

XGBoost-Bagging XGBoost-Bagging
∆with Systemic Risk without Systemic Risk

The actual number of ST enterprises in 2016 21 21 0
Mean of accurate predictions for ST enterprises in 2016 18.8 18.5 0.3
Mean of Recall in 2016 0.8976 0.8814 0.0162
The actual number of ST enterprises in 2017 25 25 0
Mean of accurate predictions for ST enterprises in 2017 24.9 23.1 1.8
Mean of Recall in 2017 0.9972 0.9256 0.0716
The actual number of ST enterprises in 2020 75 75 0
Mean of accurate predictions for ST enterprises in 2020 56.2 52.9 3.3
Mean of Recall in 2020 0.7497 0.7057 0.0440
The actual number of ST enterprises in 2022 56 56 0
Mean of accurate predictions for ST enterprises in 2022 52.1 49.7 2.4
Mean of Recall in 2022 0.9306 0.8879 0.0427
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According to Table 8, in the year 2017, there were a total of 25 ST industrial enterprises.
The XGBoost-Bagging, when incorporating systemic risk indicators, can accurately predict
an average of 24.9 ST industrial enterprises, resulting in Recall of 99.72%. Compared to
the XGBoost-Bagging without the inclusion of systemic risk indicators, there is an average
reduction of 1.8 misclassified ST industrial enterprises, leading to a 7.16% increase in
Recall. Similarly, with the introduction of systemic risk, the recall rates for XGBoost-
Bagging in 2020 and 2022 increased by 4.4% and 4.27%, respectively. This outcome clearly
established that the inclusion of systemic risk indicators in the framework of the adaptive
weighted XGBoost-Bagging model significantly enhances its efficacy in identifying high-risk
industrial enterprises.

Furthermore, when comparing the recall rate improvements in 2016 after introducing
systemic risk to those in 2017, 2020, and 2022, there is a relatively smaller increase of
1.62%. This indicates that as systemic risk intensifies, the efficiency of XGBoost-Bagging,
incorporating systemic risk, when predicting financial distress in industrial enterprises two
years later, becomes more pronounced.

4. Conclusions and Implications

This paper improved the efficiency of corporate financial distress prediction in China’s
industrial sector by using systemic risk indicators and the adaptive weighted XGBoost-
Bagging model. The research findings are as follows:

i. The results from Logit regression models, both with and without time-fixed effects,
reveal that systemic risk indicators exhibit significant predictive power for corporate
financial distress in China. In the relative importance analysis based on the Random
Forest and Gradient Boosting models, the relative importance of SystemicRisk1 is
found to be 9.49% and 9.10%, respectively, while SystemicRisk2’s relative importance
is 6.41% and 6.42%, respectively. This underscores the independent predictive capabil-
ity of systemic risk indicators, separate from financial information, rendering them
valuable non-financial warning indicators for China’s industrial sector.

ii. Upon introducing systemic risk indicators, the predictive accuracies of the adap-
tive weighted XGBoost-Bagging model and four comparative models all display
improvements, with the adaptive weighted XGBoost-Bagging model consistently
outperforming its peers across all evaluation metrics. These results demonstrate that
the adaptive weighted XGBoost-Bagging model incorporating systemic risk indicators
can address issues related to low recognition rates of high-risk Chinese enterprises
due to data imbalance and insufficient information.

iii. This study delves into an analysis of the warning performance of the adaptive
weighted XGBoost-Bagging model in the years 2017, 2020, and 2022. In compari-
son to the model without systemic risk indicators, the model incorporating systemic
risk indicators demonstrates a notable increase in Recall of 7.16%, 4.40%, and 4.27%
in 2017, 2020, and 2022, respectively. These findings reiterate the effectiveness of the
adaptive weighted XGBoost-Bagging model incorporating systemic risk indicators
in predicting corporate financial distress in China’s industrial sector under extreme
events such as the 2015 Chinese stock market crash, the Sino-US trade friction, and
the COVID-19 epidemic.

The above research conclusions yields some implications as follows:

i. Considering the significant predictive power of systemic risk indicators for Chinese
corporate financial distress, it is recommended that Chinese industrial enterprises
bolster their risk management strategies by incorporating these non-financial warning
indicators into their existing frameworks. This integration can provide a more com-
prehensive assessment of potential distress scenarios, enabling proactive measures to
mitigate the impact of systemic risk. Chinese enterprises should prioritize the continu-
ous monitoring and evaluation of systemic risk indicators to enhance their resilience in
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the face of economic uncertainties such as those experienced during the 2015 Chinese
stock market crash, the Sino-US trade friction, and the COVID-19 epidemic.

ii. The superior predictive accuracy of the adaptive weighted XGBoost-Bagging model,
particularly when incorporating systemic risk indicators, suggests its potential as
an effective tool for addressing issues related to data imbalance and insufficient
information. It is recommended that financial institutions and corporate entities
consider adopting the adaptive weighted XGBoost-Bagging model as part of their risk
assessment toolkit. This model not only improves the recognition rates of high-risk
enterprises but also provides a robust framework for incorporating systemic risk
indicators into decision-making processes.

iii. The observed increase in Recall in the adaptive weighted XGBoost-Bagging model with
systemic risk indicators highlights their value in predicting Chinese corporate financial
distress, especially during periods marked by the frequent occurrence of extreme
events. China’s regulatory authorities and industry practitioners are encouraged to
integrate systemic risk indicators into their risk assessment protocols. This could
involve updating regulatory frameworks to include these indicators and promoting
awareness among stakeholders about the importance of considering systemic risk
in Chinese corporate financial analysis. Such integrations could contribute to more
resilient risk management practices in China’s industrial sector.

Author Contributions: All the authors contributed to the entire process of writing this paper.
Conceptualization, W.W.; methodology, W.W. and Z.L.; validation, Z.L.; formal analysis, W.W. and
Z.L.; data curation, Z.L.; writing—original draft preparation, Z.L.; writing—review and editing,
W.W. and Z.L.; and supervision, W.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by HSSMEPFC grant No. 21YJA910005 and NSFC under grant
No. 11671115.

Institutional Review Board Statement: The variables, action processes, and strategy function settings
of the simulation model in this paper are available upon request. Interested readers are encouraged
to request this information directly from the authors. Ethics approval was obtained for the study.

Informed Consent Statement: Ethical review and approval was not required for the study on human
participants, in accordance with the local legislation and institutional requirements. Written informed
consent from the participants was not required to participate in this study, in accordance with the
national legislation and the institutional requirements.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors, without undue reservation.

Acknowledgments: The authors are grateful to the editors and anonymous reviewers for their
comments and discussions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Lei, A.; Zhao, H.; Tian, Y. The Intersectoral Systemic Risk Shock of Emergency Crisis Events in China’s Financial Market:
Nonparametric Methods and Panel Event Study Analyses. Systems 2023, 11, 147. [CrossRef]

2. Xu, Q.; Yan, H.; Zhao, T. Contagion effect of systemic risk among industry sectors in China’s stock market. N. Am. J. Econ. Financ.
2022, 59, 101576. [CrossRef]

3. Li, Y.; Chen, S.; Goodell, J.W.; Yue, D.; Liu, X. Sectoral spillovers and systemic risks: Evidence from China. Financ. Res. Lett. 2023,
55, 104018. [CrossRef]

4. Liu, X.; Zhang, Y.; Tian, M.; Chao, Y. Financial distress and jump tail risk: Evidence from China’s listed companies. Int. Rev. Econ.
Financ. 2023, 85, 316–336. [CrossRef]

http://doi.org/10.3390/systems11030147
http://dx.doi.org/10.1016/j.najef.2021.101576
http://dx.doi.org/10.1016/j.frl.2023.104018
http://dx.doi.org/10.1016/j.iref.2023.01.007


Systems 2024, 12, 65 16 of 17

5. Ding, S.; Cui, T.; Bellotti, A.G.; Abedin, M.Z.; Lucey, B. The role of feature importance in predicting corporate financial distress in
pre and post COVID periods: Evidence from China. Int. Rev. Financ. Anal. 2023, 90, 102851. [CrossRef]

6. Shi, D. Stabilizing industrial growth: International experience, practical challenges and policy orientation. China Ind. Econ. 2022,
2, 5–26.

7. Wetzel, P.; Hofmann, E. Supply chain finance, financial constraints and corporate performance: An explorative network analysis
and future research agenda. Int. J. Prod. Econ. 2019, 216, 364–383. [CrossRef]

8. Ye, R.; Xie, Y.; An N.; Lin, Y. Influence analysis of digital financial risk in China’s economically developed regions under COVID-19:
based on the skew-normal panel data model. Front. Public Health 2022, 10, 822097. [CrossRef]

9. Zhang, P.; Yin, S.; Sha, Y. Global systemic risk dynamic network connectedness during the COVID-19: Evidence from nonlinear
Granger causality. J. Int. Financ. Markets Inst. Money 2023, 85, 101783. [CrossRef]

10. Beaver, W.H. Financial ratios as predictors of failure. J. Acc. Res. 1966, 4, 71–111. [CrossRef]
11. Altman, E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J. Financ. 1968, 23, 589–609.

[CrossRef]
12. Ohlson, J.A. Financial ratios and the probabilistic prediction of bankruptcy. J. Acc. Res. 1980, 109–131. [CrossRef]
13. Hung, C.; Chen, J.H. A selective ensemble based on expected probabilities for bankruptcy prediction. Expert Syst. Appl. 2009,

36, 5297–5303. [CrossRef]
14. Xiang, H.X.; Yang, Y. Survey on imbalanced data mining methods. Comput. Eng. Appl. 2019, 55, 1–16.
15. Xia, L.Y.; He, X.Q. Data imbalance in credit score models based on resampling methods. Manag. Rev. 2020, 32, 75–84.
16. Ganguly, S.; Sadaoui, S. Classification of imbalanced auction fraud data. In Proceedings of the Advances in Artificial Intelligence:

30th Canadian Conference on Artificial Intelligence, Canadian AI 2017, Edmonton, AB, Canada, 16–19 May 2017; Springer: Cham,
Switzerland, 2017; Volume 30, pp. 84–89.

17. Kim, K.H.; Sohn, S.Y. Hybrid neural network with cost-sensitive support vector machine for class-imbalanced multimodal data.
Neural Netw. 2020, 130, 176–184. [CrossRef]

18. Ruan, S.M.; Du, X.D.; Li, W.; Chen, X. Data elements, Chinese information and intelligent financial risk identification. Econ. Probl.
2022, 1, 107–113.

19. Gu, Y.P.; Cheng, L.S. Classification of unbalanced data based on MTS-AdaBoost. Appl. Res. Comput. 2018, 35, 346–348.
20. Du Jardin, P. A two-stage classification technique for bankruptcy prediction. Eur. J. Oper. Res. 2016, 254, 236–252. [CrossRef]
21. Zieba, M.; Tomczak, S.K.; Tomczak, J.M. Ensemble boosted trees with synthetic features generation in application to bankruptcy

prediction. Expert Syst. Appl. 2016, 58, 93–101. [CrossRef]
22. Xia, Y.; Liu, C.; Li, Y.; Liu, N. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring.

Expert Syst. Appl. 2017, 78, 225–241. [CrossRef]
23. Huang, Y.P.; Yen, M.F. A new perspective of performance comparison among machine learning algorithms for financial distress

prediction. Appl. Soft Comput. 2019, 83, 105663. [CrossRef]
24. Qian, H.; Wang, B.; Yuan, M.; Gao, S.; Song, Y. Financial distress prediction using a corrected feature selection measure and

gradient boosted decision tree. Expert Syst. Appl. 2022, 190, 116202. [CrossRef]
25. Liu, W.; Fan, H.; Xia, M.; Pang, C. Predicting and interpreting financial distress using a weighted boosted tree-based tree. Eng.

Appl. Artif. Intell. 2022, 116, 105466. [CrossRef]
26. Liu, J.; Li, C.; Ouyang, P.; Liu, J.; Wu, C. Interpreting the prediction results of the tree-based gradient boosting models for financial

distress prediction with an explainable machine learning approach. J. Forecast. 2023, 42, 1112–1137. [CrossRef]
27. Campbell, J.Y.; Hilscher, J.; Szilagyi, J. In search of distress risk. J. Financ. 2008, 63, 2899–2939. [CrossRef]
28. Guo, B.; Dai, X.M.; Zeng, Y.; Fang, H.Q. Research on distress warning models for Chinese enterprises: Constructing with financial

and non-financial factors. J. Financ. Res. 2006, 2, 78–87.
29. Kou, G.; Xu, Y.; Peng, Y.; Shen, F.; Chen, Y.; Chang, K.; Kou, S. Bankruptcy prediction for SMEs using transactional data and

two-stage multiobjective feature selection. Decis. Support Syst. 2021, 140, 113429. [CrossRef]
30. Banulescu-Radu, D.; Hurlin, C.; Leymarie, J.; Scaillet, O. Backtesting marginal expected shortfall and related systemic risk

measures. Manag. Sci. 2021, 67, 5730–5754. [CrossRef]
31. Acharya, V.V.; Pedersen, L.H.; Philippon, T.; Richardson, M. Measuring systemic risk. Rev. Financ. Stud. 2017, 30, 2–47. [CrossRef]
32. Ivashina, V.; Scharfstein, D. Bank lending during the financial crisis of 2008. J. Financ. Econ. 2010, 97, 319–338. [CrossRef]
33. Allen, L.; Bali, T.G.; Tang, Y. Does systemic risk in the financial sector predict future economic downturns? Rev. Financ. Stud. 2012,

25, 3000–3036. [CrossRef]
34. Pang, C.; Wang, Y. Stock pledge, risk of losing control and corporate innovation. J. Corp. Financ. 2020, 60, 101534. [CrossRef]
35. Jia, Z.; Shi, Y.; Yan, C.; Duygun, M. Bankruptcy prediction with financial systemic risk. Eur. J. Financ. 2020, 26, 666–690. [CrossRef]

http://dx.doi.org/10.1016/j.irfa.2023.102851
http://dx.doi.org/10.1016/j.ijpe.2019.07.001
http://dx.doi.org/10.3389/fpubh.2022.822097
http://dx.doi.org/10.1016/j.intfin.2023.101783
http://dx.doi.org/10.2307/2490171
http://dx.doi.org/10.1111/j.1540-6261.1968.tb00843.x
http://dx.doi.org/10.2307/2490395
http://dx.doi.org/10.1016/j.eswa.2008.06.068
http://dx.doi.org/10.1016/j.neunet.2020.06.026
http://dx.doi.org/10.1016/j.ejor.2016.03.008
http://dx.doi.org/10.1016/j.eswa.2016.04.001
http://dx.doi.org/10.1016/j.eswa.2017.02.017
http://dx.doi.org/10.1016/j.asoc.2019.105663
http://dx.doi.org/10.1016/j.eswa.2021.116202
http://dx.doi.org/10.1016/j.engappai.2022.105466
http://dx.doi.org/10.1002/for.2931
http://dx.doi.org/10.1111/j.1540-6261.2008.01416.x
http://dx.doi.org/10.1016/j.dss.2020.113429
http://dx.doi.org/10.1287/mnsc.2020.3751
http://dx.doi.org/10.1093/rfs/hhw088
http://dx.doi.org/10.1016/j.jfineco.2009.12.001
http://dx.doi.org/10.1093/rfs/hhs094
http://dx.doi.org/10.1016/j.jcorpfin.2019.101534
http://dx.doi.org/10.1080/1351847X.2019.1656095


Systems 2024, 12, 65 17 of 17

36. Yang, Z.H.; Zhang, P.M.; Lin, S.H. Systemic risk and corporate financial distress forecasting from the new perspective of machine
learning. J. Financ. Res. 2020, 506, 152–170.

37. Petropoulos, A.; Siakoulis, V.; Stavroulakis, E.; Vlachogiannakis, N.E. Predicting bank insolvencies using machine learning
techniques. Int. J. Forecast. 2020, 36, 1092–1113. [CrossRef]

38. Chen, T.; He, T. Higgs boson discovery with boosted trees. In Proceedings of the NIPS 2014 Workshop on High-Energy Physics
and Machine Learning, Montreal, QC, Canada, 8–13 December 2015; pp. 69–80.

39. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
40. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective

optimization: NSGA-II. In Proceedings of the Parallel Problem Solving from Nature PPSN VI: 6th International Conference, Paris,
France, 18–20 September 2000; Springer: Berlin/Heidelberg, Germany, 2000; Volume 6, pp. 849–858.

41. Jones, S. Corporate bankruptcy prediction: a high dimensional analysis. Rev. Acc. Stud. 2017, 22, 1366–1422. [CrossRef]
42. Tinoco, M.H.; Holmes, P.; Wilson, N. Polytomous response financial distress models: The role of accounting, market and

macroeconomic variables. Int. Rev. Financ. Anal. 2018, 59, 276–289. [CrossRef]
43. Nucera, F.; Schwaab, B.; Koopman, S.J.; Lucas, A. The information in systemic risk rankings. J. Empir. Financ. 2016, 38, 461–475.

[CrossRef]
44. Yang, Z.H. The Risk Contagion Relationship Between the Financial Markets and the Macro Economy: A Mixed-Frequency Based

Empirical Research. Soc. Sci. China 2020, 12, 160–180.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ijforecast.2019.11.005
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1007/s11142-017-9407-1
http://dx.doi.org/10.1016/j.irfa.2018.03.017
http://dx.doi.org/10.1016/j.jempfin.2016.01.002

	Introduction
	Model Configuration and Methodology Description
	Extreme Gradient Boosting
	Adaptive Weighted XGBoost-Bagging Model
	Model Evaluation Metrics

	Empirical Results and Analysis
	Data Source and Sample Description
	Dual Significance Tests for Initial Indicators
	Principal Components Extraction and Its Importance Analysis
	Performance Analysis of Models Incorporating Systemic Risk Indicators

	Conclusions and Implications
	References

