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Abstract: Manufacturing companies are increasingly challenged to deliver customizable products
with shorter time to market and higher quality while adhering to sustainability requirements. To meet
these challenges, the frequency and importance of production ramp-ups will increase in the future.
However, most ramp-ups still fail to meet targets due to unpredictable equipment failures, operator
errors, and system complexity. We propose a system dynamics model that captures the unique
dynamics of ramp-up phases by integrating stability and disturbance factors that influence the key
performance indicators overall equipment effectiveness, process capability, and production output.
A systematic literature review informed the identification of stability factors, which were validated
through expert interviews in the automotive industry. Our system dynamic simulation results indicate
that control factors realistically influence production system behaviour during different ramp-up
phases. Despite some limitations regarding the effects of maintenance personnel and engineering
changes on key performance indicators, our model effectively simulates realistic ramp-up behaviour.
The findings highlight the need for tailored models that consider specific ramp-up contexts and
emphasize the importance of data acquisition for enhanced performance prognosis in future research.

Keywords: manufacturing; production ramp-up; uncertainty; modelling; system dynamics

1. Introduction

Manufacturing companies still face the challenge to deliver products that are increas-
ingly customisable, with a shorter time to market and of higher quality [1,2]. Additionally,
sustainability requirements oblige companies to rethink their designs towards a circular
economy, more sustainable materials, and more resilient supply chains [3]. To meet these
challenges, the frequency and importance of production ramp-up will increase in the fu-
ture as products are developed and introduced in shorter periods [4,5]. A company that
introduces a product to the market at a larger volume and faster than its competitors can
accrue greater profits [6]. Conversely, a delayed product launch leads to a loss of profits [7].
Despite this apparent significance of the ramp-up phase, 60% of production ramp-ups
fail to meet their quality, time, or cost targets [1,8]. Authors in [9] identified unpredictable
equipment failures, increased downtime and subsequent maintenance operations, operator errors,
and events that require restoring to a previous state as factors contributing to ramp-up failures.

These failures are attributed to the dynamics and complexity of a production sys-
tem undergoing a ramp-up [10,11]. Consequently, the process of production ramp-up is
frequently described as an inherently unstable phenomenon [8,12] that is particularly im-
portant for discrete manufacturing, such as in the automotive industry, due to the numerous
process steps that must be coordinated [13].

Production systems in the ramp-up phase behave differently from those in stable series
production. Authors in [8] characterise ramp-up as a phase with lower knowledge, output,
production capacities, and planning reliability and simultaneously higher cycle times,
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demand, and disturbances. Coping with the unique issues of the ramp-up phase requires
custom-tailored tools and thus, a variety of methods and tools have been proposed over the
last two decades: general and risk-based frameworks [14,15], lean [16-18] and agile [19-23]
frameworks, cybernetic approaches [24], knowledge and information management [25-29],
machine learning [30-33], and simulation [34,35].

Some authors envision a holistic ramp-up assistant, that solves the aforementioned
ramp-up challenges through data-based methods in real time [36]. However, ref. [1]
concluded that the lack of data during the ramp-up phase is still not solved. In [37], we
further inferred that the lack of common data models for the ramp-up phase inhibits the
deployment of digital twins and sufficient data acquisition. Thus, we still judge the use of
models and simulations essential to ramp-up planning, control, and generation of synthetic
data as the backbone for data-based methods.

In [38], we evaluated suitable methods for modelling production ramp-up for preven-
tive or reactive actions. Researchers have employed various methods, such as mathematical
models, discrete event simulations, or Markov models. However, many models are limited
to isolated ramp-up issues, for example capacity or personnel planning, and thus do not
reflect ramp-up complexity [12]. The system dynamics modelling approach was designed
specifically with system complexity in mind [39] and thus we propose a system dynamics
model for production ramp-up to complement other modelling approaches.

This paper is structured as follows: Section 2 covers related research, Section 3 de-
scribes the proposed methodology for a system dynamics model, Section 4 presents the
results of the system dynamics simulation and validates results on an industry use case,
and Section 5 discusses the results and concludes with future research opportunities.

2. Related Research

We performed a systematic literature review to identify stability and simulation
models for production ramp-up. The review was executed according to the PRISMA
methodology [40] in the databases Scopus and Web of Science. We screened title, abstract,
and keywords with the following search string:

(“ramp-up” OR “start-up”) AND (stabil* OR disturb* OR disrupt*) AND (1)
(manufact* OR assembl* OR produc®)

Peer-reviewed articles in English after the year 2000 were eligible.

The stability of production ramp-ups remains vague regarding how it is determined.
Several researchers tried defining it with varying granularity. On a strategic level, ref. [41]
propose, that lower “product complexity and newness [...] and higher levels of maturity
are associated with better ramp-up performance”. Ref. [42] disproved their hypothesis that
product newness leads to better ramp-up performance.

Refs. [11,43] assess ramp-up stability from a complexity perspective. In [11], factors
from product, process, network, organisation, and people domains are rated from low to high
complexity to determine stability before ramp-up. The production system then ramps-up in
discrete steps to mitigate complexity and guarantee stability. Ref. [43] rate only six factors’
complexity: scope of change and product maturity, process complexity, affected stations, linking
and layout change, IT system and control technology change, and supplier experience.

On a more tactical level, researchers determine stability through fulfilling KPIs.
Ref. [44] derive ramp-up stability from process capability and develop a framework to select
production technologies that are most likely to be capable. Ref. [45] develop a multivariate
capability index, since traditional CPIs cannot display interdependent cause-and-effect
relationships.

On the most operational level, researchers provide a comprehensive overview of
stability and disturbance factors. Ref. [46] concentrate on production system design and
list technical competency, supplier relationship, product and process expertise, and organisation
improvement culture, efc., as stability factors. Ref. [47] list 45 key influencing factors within
network, location, process, and product and rate their complexity, similarly to [11,43]. They
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further list disturbances of domains human, machine, material, process, and environment and
associated preventive and reactive measures. Ref. [43] list ten disturbance factors, that
affect OEE.

Ref. [12] conducted a systematic review of quantitative decision support during pro-
duction ramp-up, among them simulations about stability aspects. For instance, capacity
planning [48,49], worker assignment [34], workflow management [6,50], or performance
measurement [51]. Ref. [12] stated the modelling of several ramp-up objectives as a major
research gap.

Only a few simulation approaches considered system dynamics to model production
ramp-up. Ref. [52] built a model on a strategic level, that puts variables such as product
innovation, demand uncertainty, market competition, and customer desire into perspective.
Ref. [53] model causal relations and stock flows of company knowledge management
during new product introductions. The model considers variables such as knowledge
sharing degree, transfer mechanism, cultural distance, and company innovation desire. Ref. [54]
developed a basic operational SD model to establish variable relations between research
and development and production departments. Yield, capability, engineering changes, cycle
time, and throughput are part of their KPI system, but the authors conclude that it is only
a basic model that ought to be expanded. Ref. [55] use SD to model the assembly cost
for reconfigurable automated or manual assembly systems. Overall, these developed SD
models consider only isolated ramp-up objectives or remain very simple. To the best of our
knowledge, ref. [56] was the first to develop a coherent SD model that combines operational
objectives with strategic ones, such as learning behaviour. Ref. [57] built his SD model on
top of [56]. Both authors did not disclose the underlying model equations.

Consequently, the model we propose is the most comprehensive SD model regarding
production ramp-up to date. It is the first SD model to be built upon a systematic literature
review and to be validated by expert interviews and industry data.

3. Materials and Methods
3.1. Descriptive Stability Model

The goal is to simulate the stability behaviour of ramp-up systems. There are many
different perspectives on what is considered stability during ramp-up, as we pointed out
in [58]. In this work, we consider four key performance indicators (KPI) to assess ramp-up
stability: overall equipment effectiveness (OEE), production process stability, time-to-volume, and
absolute production output. First, we identified the necessary components for the system
dynamics model that influence these KPIs, hereinafter referred to as modules. The modules
are categorized according to the 5-M: man, machine, material, method, and milieu. Stability
factors within their 5-M category are depicted in Figure 1. The factors are based on our
systematic literature review and validated in the results section.

Within the category of man, we evaluated relative work intensity [59], maintenance
personnel [60], production personnel [61], and worker skill [50,60,62] as the most important
factors for stability. Machine breakdowns are the major disruption cause during ramp-up [63]
and reducing breakdowns has a direct impact on ramp-up performance [12]. We focused
the material category on the product, thus comprising product defects [60] and product
maturity [64]. Both are intertwined: as the maturity decreases, product defects will
increase [65]. Furthermore, insufficient specifications of recent product development con-
tribute to an increase in defects [66]. Following design changes cause further performance
losses [60]. Moreover, we included process maturity as the sole factor of the category method.
Low process maturity leads to more instabilities [67] and leads to more defects [63,66]
and machine breakdowns [60]. Lastly, the milieu category comprises production demand,
engineering changes, and complexity drivers. Production demand is defined as the internal
orders for the production system [68] and thus influences several disturbance factors [60],
such as relative work intensity or machine breakdowns. Higher production demand further
requires a sufficient process maturity [69]. Engineering changes are a consequence of insuffi-
cient product or process maturity [70]. Late changes result in lower production output and
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delayed deliveries and thus ramp-up instability [64]. Complexity drivers map ten structural
complexity drivers such as product novelty or assembly system size, according to [65], that are
inherent to the specific ramp-up instance.

@ Man "8 Material @ Milieu

Work intensity

Complexity

Product
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Figure 1. Ishikawa diagram of (in-)stability factors during production ramp-up. Eleven influencing
factors were identified in a systematic literature review and categorized according to 5-M.

We selected four major control factors to influence the system, based on the current
instability state. Firstly, both the number of production and maintenance personnel (and
thus the ratio between them) can be adjusted. This is analogue to [57], who divided control
factors into value-adding and improvement measures to reflect the goal conflicts during
ramp-up. Furthermore, we defined engineering changes and training time as control factors.
Engineering changes might be required to react to unforeseen instabilities due to product
design flaws or suboptimal process parameters. While production output is lower for a
while, the ramp-up system can be more stable in the long term when changes are made.
Similarly, training blocks operators from production or maintenance but increases worker
skill that counteracts instability.

3.2. System Dynamics Simulation

As we concluded from our systematic literature review, addressing the multitude
of production ramp-up instability factors remains an unanswered research question. We
judge system dynamics as the most suitable method for simulating the multitude of factors.
Furthermore, system dynamics models attach particular importance to information flows,
allow the integration of fuzzy aspects of the system, and can handle nonlinear processes
well. Therefore, we favour system dynamics over discrete event simulation, which is well
suited for detailed analysis of processes that are characterized well and leave less room for
uncertainties.

Jay W. Forrester introduced system dynamics in 1961 to model complex social organi-
zational systems [39]. System dynamics models have two typical representations: causal
loop diagrams (CLDs) and stock-flow diagrams (SFDs). Figure 2 shows elements of both
representations.

Sourcey ] X » Stock X
G Z< o Z~

Inflow Outflow

Information —/

Figure 2. Representation of system dynamics basic elements. The blue arrow indicates that the
variables information and inflow have a causal relationship. Variables inflow and outflow determine
how much value of source flows into stock and out of stock into sink over time.
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CLDs consist of cause variables (indicated by the information variable) and effect
arrows (indicated by blue arrow). Effect arrows are directed in one direction, i.e., an arrow
can indicate only one effect between two variables. The effect of one variable can either be
positive or negative to another variable. In the case of Figure 2, the information variable
affects the inflow variable.

SFDs consists of stocks, represented as a rectangular box, and flows that are indicated
by valves in Figure 2. The structure of SFDs is analogue to fluid mechanical systems, with
flows symbolizing pipelines that facilitate the flow of fluids between stocks. The direction
of the flow is indicated by the flow arrow. Stocks are represented by containers storing
fluids and serve as variables that reflect the accumulation of a flow variable over time. The
value of flows indicates the change in the accumulation of stocks for future time periods.
Lastly, a system dynamics model includes sources and sinks. These are special types of
stock variables outside of the system boundary. For a deeper understanding of system
dynamics, we refer the reader to [39] or [71].

Following our descriptive stability model and the system dynamics methodology, we
developed eight new modules, contemplating the existing work of [56,57], resulting in
eleven total modules. The system dynamics model was developed with Vensim PLE 10.1.3
by Ventana Systems Inc., Harvard, MA, USA. Figure 3 provides an overview of all modules
and the connections between them.

e N e N
Disruption module, _ Machine breakdown Structural complexity
Ngo (2020) module module
J \ J
e J N e a
Production capacity Base module,
module g Stiller (2015) A
~ k\ - ~ + Process maturity
- N . N module
Learning module, D 2
Stiller (2015) OEE module
\ J
e * N 7~ N
Personnel module - Control factors module Tech.n ological <
maturity module
(. J (. J

Figure 3. Schema of all modules of the system dynamics model. The arrows indicate what modules
are connected through common variables. The base and learning modules were imported from [56]
and the disruption module was imported from [57].

The imported modules were imported logically and remained unchanged. How-
ever, the newly developed modules introduced new interactions and dependencies. New
modules were first developed separately based on literature and expert input. The new
modules were subjected to a rigour cycle, i.e., they were tested for internal consistency be-
fore integration and parameters were adjusted after integration to comply with the overall
SD model.

3.2.1. Base Module

In the following sections, we present every module in detail. All variable equations
are provided in Supplementary Material S1. The work of [56] developed a quality-oriented
ramp-up model, which we condensed into our base module that is shown in Figure 4.
It describes a basic material flow from a planned production stock to a finished goods stock
via a work-in-progress (WIP) stock. From the WIP stock, the failure rate and failure detection
rate determine how many parts flow into the defective parts stock. Planned production
is affected by demand and there is a possibility that finished goods must be modified.
For an in-depth explanation of the module, we refer to [56]. Variables that are shown in
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brackets < > originate from another module but affect a variable of the current module and
thus form the connections between different modules throughout the SD model.

<Potential Production Performance>

/ <Disturbance>
-

<Production form>

N

Planned Production Rate First Pass Yield
= N Finished Goods
. WIP Stock
Demand Production | j Stack
Rate Stock \
<EDR ERROR )
Experience —# DETECTION Failure Rate 4\
Level> RATE ERROR
Undetected RATE
ndetecte Defective .
Defects Parts Quality
Failure Control \ <ER Experience
Modified Parts detection Rate 4’ | . Level>
to be Produced Failure
Detection Test Interval Parts for
Rat Modification
Cancelled ate
Modifications
Stock Detected
Rework «—— | Defects Tolerated
modification Rate Error Tolerance\> Parts \
track rate ~— Rt —
ol Modification Mod?ﬁcat?on
Stock Specification

Rejected Modificatior
- %X:Q

Modification Rate

Figure 4. Base module of the system dynamics model. It determines how many parts are to be
produced at what rate, how many defects occur and how many are detected, and how many defective
parts are reworked or modified to eventually qualify as finished goods.

The production system reacts to a pull-based order system, which is modelled by
a demand rate variable [68] that we added to Stiller’s base model. The demand rate is
modelled according to a traditional ramp-up sigmoid curve and follows Equation (A1) in
Appendix A.

3.2.2. Learning Module

We further imported the learning module of [56], which is depicted in Figure 5.
It captures the increase in worker experience over the ramp-up period. The learning
experiences are categorized into three different mechanisms: learning from the assembly
system’s error rate (ER), learning from the error detection rate (EDR), and learning from the
sole production of parts (production rate (PR)).

Demand Rate:

Planned Production
Stock

WIP
Stock

—* Production Rate ———— <Failure Detection Rate:

<Modifiec

leani ification s
/ learning specification scope ER Experience
Level
 Cume =) eve ER Experience
Production Stock ) - ERROR Gain ER Adaptions
Learning Realization Rate -~
RATE / Rate
ER Target
ER Performance Gap <Quality losses>
EDR Worker Skill
Experience Level
PR EDvR Level
Adaptions PR Experience EDR Adaptions Experience ERROR
Rate > Gain
Level | Rate . DETECTION
PR Experience EDR RATE
Worker Skill Level

T'echnc
Maturity

Gain

\

PR Performance Gap

Target

- discretized production personnel>

~__ EDRPerfomance

Gap

Figure 5. Learning module of the system dynamics model. It determines how production workers
gain experience from producing parts and detecting errors.

The PR experience level is implemented based on the cumulative production throughout
the ramp-up. The PR experience gain flow variable is influenced by the learning realization
rate, the gap in the ideal production experience level of the worker (PR performance gap),
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and the adaption of learning variables (PR adaptions rate). The PR performance gap variable
is influenced by the number of production personnel present in the assembly system. The PR
experience gain flows into the PR experience level stock variable, which represents the cumu-
lative PR experience gain. The ER and EDR experience modules are implemented similarly
to the PR experience module. The process experience module ensures the integration of
experiential learning mechanisms within the ramp-up system.

3.2.3. Disruptions Module

The disruptions module by [57] further extends the model’s capabilities and is illus-
trated in Figure 6.

Learning from fixing
breakdowns

Reference number of breakdowns —————

<Random Failures> i \
Cu;mllahve Breakdown Learning <Level of
) . aults <Maintenance>
<Early Machine Machine Effect ¢ automation>
- Wear> /
Failures> : : di tized ducti
Troubleshooting <«  discretized iscretized production
Random \ Time Initial mamtenanlce personnel
ersonnel
Chance — Machine - Duration P
Failure Rate i PR Experience
No Breakd Machine Clli/r[nuhz.mve Short Level
o preatdonms Breakdowns . Worker Load Downtime
-1 Breakdown . - \
Repairs i actor> <Worker Skill
Auiliary <Engineering ¢ ~
<Time> —— > Variable o > Startup after Disturbance Changes> Level>

Figure 6. Disruptions module of the system dynamics model. It determines what variables lead to
machine breakdowns, how long it takes it to resolve a breakdown, and what causes short downtimes
in production.

This module is implemented to model disruptions of the ramp-up system. The
incorporation of breakdowns into the simulation model is achieved through a statistical
approach, involving a random chance variable triggering machine breakdown. The machine
failure rate is influenced by the troubleshooting time, and if the random chance has a higher
value than the troubleshooting time, a machine transitions from the no breakdown state to the
breakdown state. We further added a Weibull distribution to the machine failure rate to account
for early, random, and wear failures of machines. The repairs flow variable moves machines
to the no breakdown state, contributing to the overall system stability. Short downtime is
linked to the number of production and maintenance personnel. This variable accounts for
the brief periods of downtime that are quickly resolved, not leading to complete machine
breakdowns. Lastly, workers also accumulate knowledge about the system after fixing
breakdowns, resulting in a breakdown learning effect. For the base functionality of the
module, we refer to [57]. We added the capability to model short downtimes due to
user errors or engineering change implementation, which affect availability but are not
considered a breakdown.

3.2.4. Control Factors

To enable interaction with the system, we implemented a designated control factor
module. The behaviour of control factors is further discretized into three distinct ramp-up
periods, following the definitions of [51,72]. Consequently, the weightage (i.e., priority) of
factors adjusts over time. The overall definition of discretized control factors follows that
of Equation (A2) in Appendix A, while Equation (A3) in Appendix A provides the example
for the discretized production personnel.

During the product-quality phase, the focus is on providing the workers with sufficient
training and conducting any engineering changes required to improve the production yield
of the ramp-up system. Hence, the weightage assigned to average training time and
frequency of engineering changes variables is equal to one. In the production-output-
focused phase, the priority shifts to increasing the production output of the system and
increasing the number of production personnel. Hence, the weightage of production
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personnel is set to one and the weightage of expected production demand is set at 0.8.
In the final organizational improvement phase, the emphasis is shifted to the reduction
in engineering changes and training time, while maintaining the production yield and
output of the ramp-up system. In this phase, the weightage of average training time and
frequency of engineering changes are set to 0.1 while the weightage of other variables is set
to 1. Table 1 provides an overview of the weightages of the control factors in each phase.

Table 1. Weightage of control and input factors according to ramp-up phases.

Production Output

Control Factors Quality Phase Phase Organization Phase
Avg. Training Time 1 0.33 0.1
Engineering Changes 1 0.33 0.1
Production Personnel 0.75 1 1
Maintenance Personnel 0.5 0.5 1
Orders 04 0.8 1

3.2.5. OEE Module

We implemented an OEE module to assess system stability as we formulated OEE as
one of our main KPI. OEE is extensively defined in [73], and our module implementation is
illustrated in Figure 7.

<Maintenance> <Size of assembly> <Depth of value addition>

<Machine
Breakdowns>
<First Pass \ /
Yield> Run Time Losses . )
<Time> <Potential

<Short Downtime> —% Production . .
Performance> Cumulative potential
T performance

<Level of process complexity>

Cumulative Good Availability

Quality Stock > Quality * / Performance /

\ OEE / <Production Rate>

<Tolerated Parts> Cumulative
produced parts

Figure 7. OEE module of the system dynamics model. It implements the standard definition of the
KPI OEE, consisting of quality, availability, and performance.

3.2.6. Breakdown Module

The breakdown module simulates breakdown types along with the variables that
influence breakdowns and is modelled as shown in Figure 8. Consequently, the module has
a direct effect on the disruptions module. While the disruptions module simulates overall
effects on the production system, the breakdown module models what leads to disruptions
on a more granular level.

Machine breakdowns can be divided into early failures, wear failures, and random
failures, and thus be modelled by a Weibull distribution [63]. All three failure classes
directly influence the machine failure rate. Early machine failures are affected by technological
maturity, worker load factor, and Weibull breakdown rate which depends on passed time of the
ramp-up. Wear failures are represented by a stock variable machine wear that accumulates by
the wear rate and dissipates by maintenance and the number of maintenance personnel. The
wear rate is influenced by variables such as worker skill and the nominal wear rate accounting
for the number of produced goods.
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<Worker Load
. <Time> -
Technological Factor>

Maturity Stock \

Breakdown Rate
Weibull
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personnel
<Finished Goods
( Stock>
Machine Early Machine
Wear M t Failures
Nominal machine ~ ™ \ear Rate aintenance
wear rate
Random
Failures
<Machine Count> Machine

Failure Rate

<process standard Worker Skill Level / \ <Troubleshooting Time>

deviation>

<No Breakdowns> <Random Chance>

Figure 8. Breakdown module of the system dynamics model. It implements a breakdown behaviour
according to the Weibull distribution that comprises early failures, random failures, and wear failures.
Further, the module models variables that affect the wear rate and machine wear stock.

3.2.7. Technological Maturity Module

This module is implemented to simulate the growing maturity of the product and its
effect on the production system and is shown in Figure 9.

Reference Tech Maturity

T Machine <Demand Rate>
Technological Techn(_)logical Breakdowns
adoptations rate \ / Maturity Gap

Worker Load
Technological //§> Factor
Growth e chnological Maturit —
echnological Maturi
CF—X—> ngock N Disturbance

T
<Novelt )'\(vl Technology \ PR Experience Gain )
process> Establishment PR Experience Level
e \ Engineering changes adoption rate
<Novelty of Engineering
Product
roduct> Changes <Worker Skill

/ Level>
<discretized frequency of engineering

changes> . i
© <Average time for Cumulative

chan ges> engineeering changes

Figure 9. Technological maturity module of the system dynamics model. Engineering changes foster
technological maturity and thus stabilize production in the long term, but add strain to workers, who
must implement changes parallel to running production.

Technological maturity stock increases with engineering changes in the ramp-up system
that influence product and process specifications [64]. While engineering changes lead
to a short downtime, the production systems will obtain a higher stability due to higher
maturity [61]. Technological maturity is further influenced by product and process novelty
and by adoption rates of new technology or engineering changes. Technological maturity
affects variables such as process-related disturbances, experience gain of workers, or the
worker load factor.

3.2.8. System Capacity Module

The system capacity module simulates the potential production performance without
any disturbances and is influenced mainly by production capacity and personnel capacity,
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whereas the potential production performance is given by the minimum of the two former

variables. The module is illustrated in Figure 10.

<Repairs>
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Engineering changes
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Machine Production Personnel
Breakdowns . .
/' Capacity Capacity

Technological /

PR Experience
Level
Maturity Stock

. Worker
adoption rate>
Load Factor
<Maintenance> discretized
production
personnel

<Level of
automation>

Figure 10. System capacity module of the system dynamics model. It determines the theoretical
maximum performance of the system based on personnel and technology.

The production capacity variable is influenced by the available machine count, ma-
chine breakdowns, technological maturity of the process, and short downtime losses.
Personnel capacity is determined by the number of production personnel, the worker load
factor, and the process-related experience level.

3.2.9. Process Maturity Module

The process maturity module implements the process capability index as part of the
model’s KPI. It is defined by the specification limits, process performance, and process
standard deviation, as illustrated in Figure 11.

<discretized.
requency of
engimee I’II1g

process
cha ﬂg(‘S>

<Worker Load ~ performance

Factor> e 8
Disturbance ——/—-/7
<PR Experience

Level>

process Process
<Cumulative specification Capizlbﬂlty
engineeering mndex
changes>
process
) / standard
<Technological deviation
TR upper
Maturity Stock> e
7 - relty r i e e e
<Novelty of lower specification specification limit
process> limit

Figure 11. Process maturity module of the system dynamics model. It determines the theoretical
maximum performance of the system based on personnel and technology.

The process standard deviation is influenced by process novelty, technological maturity,
and cumulative engineering changes. Specification limits are affected by technical maturity and
process-related experience. Lastly, the disturbance variable simulates a process performance
deviation from the specifications.

3.2.10. Worker Skill Module

The worker skill module models the effect and development of workers” skill due to
training and learning effects during the ramp-up phase and is shown in Figure 12.
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Target Worker Worker skill —<—— <Technology
[E— 5) merienee (JAad
Skill difference Establishment> ;ﬂExpumnu Gain=
<O X P Worker Skill EDR Experience Level
Level
Learning rate
Lea.rmrlg <Quality losses>
adaptions rate ER Experience Level
discretized average PR Experience Level f

training hours /

<PR Experience Gain>

<ER Experience Gain>

Figure 12. Worker skill module of the system dynamics model. It models at what rate workers
increase their skill. The learning rate depends on the received training hours and current gap to a
desired skill level. Worker skill primarily influences process-related, error rate, and error detection
rate experience levels.

The learning rate determines how fast workers acquire skill and is influenced by the
average training hours undergone by the workers. Further, the learning rate is bigger when a
greater skill difference is detected in the beginning of a ramp-up and decays over time as
workers get more familiar with product and process [74]. The worker skill level influences
the experience level of workers regarding process, error rate, and error detection rate.

3.2.11. Structural Complexity Module

The structural complexity module addresses structural complexity inherent in production
ramp-up according to [65]. The ten variables take values from zero to one, depending on
the characteristics. Therefore, it acts as a module that takes input parameters and defines
different starting conditions for different ramp-up scenarios. The module is illustrated in

Figure 13.
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Figure 13. Structural complexity module of the system dynamics model. It can be regarded
as the starting values of the ramp-up environment, as all ten factors are known before the start
of production.

Gartzen’s complexity drivers affect five variables of the system dynamics model,
which are calculated as averages of their inputs. For detailed definitions, we refer to [65].

4. Results and Model Validity
4.1. Stability Model Validation

Firstly, we conducted semi-structured expert interviews in the automotive industry
to validate if our literature-based stability factors (see Figure 1) are sufficiently relevant
in practical use cases. The consolidated results are shown in the Ishikawa diagram in
Figure 14.
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Figure 14. Ishikawa diagram of factors that lead to instabilities during production ramp-up, according

Low process capability

to automotive industry ramp-up experts. The results mostly confirm our literature-based factors.

Industry experts judge low worker skill, little experience, disruptions, machine breakdowns,
low process capability as instability factors, which are included in our model as well. Some
factors are not congruent with our model but can be considered synonymous. For instance,
time pressure has similar characteristics to our factor worker load. Difficult joining and
sensitive components could be summarized into low product maturity of our model. While
low supplier quality is not explicitly mentioned in our stability model, supplier qualification
is part of the structural complexity module. Similarly, ineffective inline rework and ineffective
error correction are implemented as rework rate and error detection rate but are possibly not
detailed enough for all cases. Solely, the fact that workers might ignore specifications or
work instructions is not mapped in our model. Therefore, we judge our stability model as
sufficiently valid for real industry cases.

4.2. Simulation Model Validation

While the simulation model can be adjusted to preferences, we developed it with
default values based on automotive industry cases. Therefore, the standard duration of the
model comprises a ramp-up period of 150 days with a time step of 6 h. The three ramp-up
phases are thus equally divided into 50 days each. We conducted a sensitivity analysis
to validate model performance regarding changes in control factors. The control factor
changes for the analysis are provided in Table Al in Appendix A.

The results of the sensitivity analysis show the behaviour of the KPIs production rate,
OEE, and process capability index depending on the four control factors production personnel,
maintenance personnel, average training time, and frequency of engineering changes, as illustrated
in Figure 15.

Figure 15a—c show the influence of the control factor production personnel. It can
be observed in Figure 15a that production personnel influence is strongest on the KPI
production rate. The relative impact is greatest in the early ramp-up phase with a 32.8%
higher production rate with high settings, and 25.5% lower production rate with low
settings, compared to the base run. The impact degrades over time, as the production rate
is only 11.8% higher and 18.3% lower in the final ramp-up phase in the respective settings.
This is possibly due to increasing process and technological maturity as well as worker skill, so
that the sole impact of personnel becomes less defining in the late ramp-up phase.
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Figure 15. Results of the sensitivity analysis regarding the four control factors (rows) and their impact
on the three key performance indicators (columns). The first row shows production personnel impact
on production rate (a), OEE (b), and process capability index (c). The second row shows maintenance
personnel impact on production rate (d), OEE (e), and process capability index (f). The third row
shows the impact of average training time on production rate (g), OEE (h), and process capability
index (i). The last row shows the impact of engineering changes on production rate (j), OEE (k),
and process capability index (1). The analysis shows a large influence of production personnel and
training time of the production rate, and high impact of engineering changes on OEE and PCI. Overall,
maintenance personnel have only a marginal influence on the system.

Figure 15b illustrates the impact on the KPI OEE. More production personnel have
a positive impact on OEE, especially in the first and middle phase of the ramp-up. More
available workers reduce the worker load and therefore reduce error probability. However,
with maturity advancing, the impact becomes negligible in the late ramp-up phase.

Figure 15c shows the impact on the KPI process capability. More production personnel
do not have a measurable impact on process capability in the first ramp-up phase, but
between +/— 7-10% in phase two and three. This can be explained by the higher system
capacity and lower worker load, as explained in the respective modules in the methodology
section. Since the process standard deviation is influenced by factors such as technological
maturity as well, the impact of personnel is marginal.

Figure 15d—f show the influence of the control factor maintenance personnel. Overall, the
impact of maintenance personnel is marginal to the system in its current implementation.
Only OEE is significantly affected by the amount of maintenance personnel in the first ramp-
up phase, due to the repair of breakdowns. However, breakdowns occur less frequently
in phase two and three of a ramp-up due to growing technological maturity; hence, the
impact of maintenance personnel reduces.
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Figure 15g—i show the influence of the control factor average training time. The average
training time directly affects worker skill and thus variables that profit off worker skill.
This effect can be especially observed in the first two ramp-up phases with KPIs OEE and
production rate. Worker skill leads to a higher process-related experience and error detection
rate and thus higher process performance, which positively affects OEE and production rate.
It further positively affects process capability, but the effect is only significant in phase two of
the ramp-up. Potentially, technological factors have a stronger impact on process capability
in the first phase, compared to worker skill improvements.

Lastly, Figure 15j-1 show the influence of the control factor engineering changes. Engi-
neering changes have a positive impact on process capability throughout all phases of the
ramp-up, since they advance technological and process maturity. The control factor adds up
to a 17% gain in process capability in phase one but diminishes to 5% in phase two and
three. Since the production needs to stop to implement engineering changes, they have
an adverse effect on KPIs production rate and OEE. While production rate is only affected
+/— 5% in phase one and neglectable in phases two and three, OEE drops on average 17%
in phase one with a high number of engineering changes.

Interpreting the results of the simulation study, there are some limitations regarding
the effect of control factors on system behaviour. The effect of maintenance personnel
is weak on all KPIs. Furthermore, an extreme test (setting maintenance personnel to 0)
revealed that more breakdowns occur (which set reduce production rate to 0 for a while)
and the troubleshooting time increases. However, in the case of no maintenance personnel,
all machines will breakdown at one point and not recover so that production should come
to a complete halt eventually. That event is unlikely in the ramp-up timespan of 150 days
but is a shortcoming of the current model implementation.

Furthermore, some control factor effects vary between phases without clear explana-
tion of the causes. For instance, higher average training, and thus worker skill, strongly affect
production rate and OEE in the first two phases, but process capability only in the second
phase. It can be argued that this is due to stronger influences of technological maturity.
There are some issues with the relationship between engineering changes and OEE; the
KPI reduces under a high amount of engineering changes in the first phase which is due to
stoppages in the production line. However, a high number of changes should result in a
higher technological maturity compared to fewer changes and an increase in OEE in the
later phases of ramp-up. This is not the case in the current model implementation.

Lastly, we gathered data from an industry ramp-up case to validate the model. Due to
confidentiality concerns, we can only provide limited information on the case. The case
is a new product iteration that is introduced into an existing assembly line with several
other variants, where the previous iteration was assembled as well. Production numbers of
the new iteration were provided on a weekly basis for the time that was considered the
ramp-up and are shown in Figure 16.

a1
(=)
(=)

N W
o o O
o o O

Produced Parts
g

(=]

1 2 3 4 5 6 7 8 9 10
Week
Figure 16. Production data of an automotive industry ramp-up case. It shows the number of produced

goods over a period of ten weeks. The ramp-up starts slow but gathers momentum after around
five weeks. However, disruptions still occur in the final ramp-up phase.
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The considered ramp-up period amounts to ten weeks, i.e., 50 working days and thus
only a third of our proposed model timeframe. The ramp-up can still be divided into three
phases: quality-oriented production in the first three weeks, with 9 to 35 produced units per
week; increasing production volume in weeks four and five, with ca. 100 units per week;
and full-scale production in weeks six to ten, with up to 500 units per week. However,
produced units are significantly lower in weeks seven and eight due to disturbances.
Although the used case’s environment is different from our model starting point, we infer
that our model can model real ramp-up behaviour.

5. Discussion

We inferred that there are a lack of simulation tools to model a production ramp-up
that address overall ramp-up complexity and the interdependence of instability factors.
We identified system dynamics as a suitable tool to address that issue, due to the ability
to incorporate fuzzy relationships and provide insights on a strategic level. We gathered
instability factors and developed a descriptive ramp-up stability model that was validated
with industry experts. Based on the descriptive model, a system dynamics simulation model
was built, incorporating existing approaches and developing eight interconnected modules.
A sensitivity analysis attested that the model works according to existing literature and
expert knowledge in production engineering. Lastly, we gathered data from an industrial
ramp-up and confirmed the model’s validity, with some limitations. To the best of our
knowledge, this is the first openly available system dynamics model to model ramp-up
behaviour that is validated through expert interviews and industry data.

However, the chosen control factors are limited to four and thus a manager’s action
space is small, although the event space is large due to the model’s number of disturbance
factors. Future research could thus implement more action options into the model. How-
ever, in system dynamics models it is key to attain a good level of complexity: too low and
the results are trivial, too high and variables’ causes and effects are incomprehensible. We
consider the presented model as being on the verge of becoming too complex, as we have
highlighted in the result section. Therefore, if future research implements more control
factors, it should be reviewed if some variables can be omitted to reduce complexity.

We have provided production data from an industry ramp-up case. We conclude that
the system dynamics model is capable of modelling realistic ramp-up behaviour. However,
different ramp-up types exist that might require bespoke models, while our model is based
on a generic case. Additionally, most model variable values could not be obtained from the
industry partner. Future research should investigate not only “what is required” from a
theoretical perspective, but also “what is possible” from a practical perspective. Therefore,
a data model is needed that defines what data can be provided from a shop floor that is
relevant to ramp-up performance prognosis.

One future research opportunity to realize said data model is to develop a digital
shadow for ramp-ups. Current digital twins often represent a static production system, but
during ramp-up, the production system undergoes frequent changes. Moreover, the system
dynamics model can produce synthetic data that can be used to train machine learning
algorithms. When the model is connected to shop floor data via a digital twin, either the
system dynamics model or trained algorithm could be employed to make predictions about
the course of the production ramp-up and allow early corrective measures. Lastly, we deem
that there is no single source of truth regarding models. Future research could explore
different approaches, such as discrete event simulation, for a more detailed operational
perspective and combine findings with our system dynamics strategy perspective to add
more valuable insights.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/systems12120575/s1, Text S1: SD Model Equations.
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Appendix A

Production d d
Demand rate = roduction aeman (A1)
1+axe bt

With a and b as model parameters that determine the sigmoid curve shape. t represents
time of the ramp-up.

dicretized_input_variable = IF THEN ELSE (Time < FINAL TIME/3,
w1 * input_variable, IF THEN ELSE (Time < FINAL TIME*2/3, (A2)
w2 * input_variable, w3 * input_variable))

discretized production personnel = IF THEN ELSE(Time < FINAL TIME/3,
0.75*production personnel, IF THEN ELSE(Time < FINAL TIME*2/3, (A3)
production personnel, production personnel)).

Table Al. Overview of control factor changes for sensitivity analysis. The base run reflects model
execution on default settings, while low and high runs reflect lower and higher settings, respectively.
Each run is represented by three settings, one for each phase of the ramp-up.

Control Factors Low Run Base Run High Run
Avg. Training Time 2-0.67-0.2 3-1-0.3 4-1.33-0.4
Engineering Changes 4-2-1 6-2-1 8-3-1
Production Personnel 14-18-18 15-20-20 16-22-22
Maintenance Personnel 4-4-8 5-5-10 6-6-12
References
1.  Dombrowski, U.; Wullbrandt, J.; Krenkel, P. Industrie 4.0 in production ramp-up management. Procedia Manuf. 2018, 17,
1015-1022. [CrossRef]
2. Fogliatto, F.S.; da Silveira, G.J.; Borenstein, D. The mass customization decade: An updated review of the literature. Int. J. Prod.
Econ. 2012, 138, 14-25. [CrossRef]
3. Zikopoulos, C. On the effect of upgradable products design on circular economy. Int. J. Prod. Econ. 2022, 254, 108629. [CrossRef]
4. Kim, T,; Glock, C.H.; Emde, S. Production planning for a ramp-up process in a multi-stage production system with worker
learning and growth in demand. Int. J. Prod. Res. 2021, 59, 6002—-6021. [CrossRef]
5. Fjllstrom, S.; Sifsten, K.; Harlin, U.; Stahre, J. Information enabling production ramp-up. J. Manuf. Technol. Manag. 2009, 20,
178-196. [CrossRef]
6.  Terwiesch, C.; Xu, Y. The Copy-Exactly Ramp-Up Strategy: Trading-Off Learning with Process Change. IEEE Trans. Eng. Manag.
2004, 51, 70-84. [CrossRef]
7. Winkler, H.; Heins, M.; Nyhuis, P. A controlling system based on cause—-effect relationships for the ramp-up of production systems.
Prod. Eng. 2007, 1, 103-111. [CrossRef]
8.  Surbier, L.; Alpan, G.; Blanco, E. A comparative study on production ramp-up: State-of-the-art and new challenges. Prod. Plan.

Control 2014, 25, 1264-1286. [CrossRef]


https://doi.org/10.1016/j.promfg.2018.10.085
https://doi.org/10.1016/j.ijpe.2012.03.002
https://doi.org/10.1016/j.ijpe.2022.108629
https://doi.org/10.1080/00207543.2020.1798034
https://doi.org/10.1108/17410380910929619
https://doi.org/10.1109/TEM.2003.822465
https://doi.org/10.1007/s11740-007-0011-2
https://doi.org/10.1080/09537287.2013.817624

Systems 2024, 12, 575 17 of 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Scrimieri, D.; Oates, R.E.; Ratchev, S.M. Learning and reuse of engineering ramp-up strategies for modular assembly systems.
J. Intell. Manuf. 2015, 26, 1063-1076. [CrossRef]

Basse, I.; Schmitt, S.; Gartzen, T.; Schmitt, R. Solution Principles for Managing Instabilities in Ramp-up. Procedia CIRP 2014, 20,
93-97. [CrossRef]

Schuh, G.; Gartzen, T.; Wagner, J. Complexity-oriented ramp-up of assembly systems. CIRP . Manuf. Sci. Technol. 2015, 10, 1-15.
[CrossRef]

Glock, C.H.; Grosse, E.H. Decision support models for production ramp-up: A systematic literature review. Int. J. Prod. Res. 2015,
53, 6637-6651. [CrossRef]

ElMaraghy, H.; Monostori, L.; Schuh, G.; EIMaraghy, W. Evolution and future of manufacturing systems. CIRP Ann. 2021, 70,
635-658. [CrossRef]

Elstner, S.; Krause, D. Methodical approach for an e cient transition from development to production. In DS 71, Proceed-
ings of NordDesign 2012, the 9th NordDesign Conference, Aalborg, Denmark, 22-24 August 2012; Aarlborg University: Aalborg,
Denmark, 2012.

Biffl, S.; Kropatschek, S.; Kiesling, E.; Meixner, K.; Luder, A. Risk-Driven Derivation of Operation Checklists from Mul-ti-
Disciplinary Engineering Knowledge. In Proceedings of the 2022 IEEE 20th International Conference on Industrial Informatics
(INDIN), Perth, Australia, 25-28 July 2022; pp. 7-14.

Christensen, I.; Rymaszewska, A. Lean Application to Manufacturing Ramp-Up: A Conceptual Approach. Qual. Manag. ]. 2016,
23, 45-54. [CrossRef]

Dombrowski, U.; Hanke, T. Lean Ramp-up: Ein Organisationsmodell fiir das Anlaufmanagement. Z. Wirtsch. Fabr. 2017, 112,
387-391. [CrossRef]

Slattery, O.; Trubetskaya, A.; Moore, S.; McDermott, O. A Review of Lean Methodology Application and Its Integration in Medical
Device New Product Introduction Processes. Processes 2022, 10, 2005. [CrossRef]

Kremsmayr, M.; Dronhofer, A.; Mitterer, N.; Ramsauer, C. On the Application of Agility Principles in Ramp-up Management:
Approaching the Challenges in the High-end Powder Metallurgy Industry. Procedia CIRP 2016, 51, 85-92. [CrossRef]

Schuh, G.; Gartzen, T.; Basse, F.; Schrey, E. Enabling Radical Innovation through Highly Iterative Product Expedition in Ramp up
and Demonstration Factories. Procedia CIRP 2016, 41, 620-625. [CrossRef]

Rapp, S.; Heimicke, J.; Weber, J.; Albers, A. Development of strategic guidelines for agile Parts Ma- turity Management of engine
subsystems in the automotive industry during series ramp-up. In Proceedings of the DS 101: Proceedings of NordDesign
2020, Lyngby, Denmark, 12-14 August 2020; pp. 1-12. Awvailable online: https://www.designsociety.org/publication/
42552 / development+of+strategic+guidelines+for+agile+parts+ma--+turity+management+of+engine+subsystems+in+the+
automotive+industry+during+series+ramp-up (accessed on 7 October 2024).

Bergs, T.; Apelt, S.; Beckers, A.; Barth, S. Agile ramp-up production as an advantage of highly iterative product development.
Manuf. Lett. 2021, 27, 4-7. [CrossRef]

Heraud, ].; Medini, K.; Andersen, A.-L. Managing agile ramp-up projects in manufacturing—Status quo and recommendations.
CIRP J. Manuf. Sci. Technol. 2023, 45, 125-137. [CrossRef]

Brecher, C.; Miiller, S.; Breitbach, T.; Lohse, W. Viable System Model for Manufacturing Execution Systems. Procedia CIRP 2013, 7,
461-466. [CrossRef]

Bauer, W.; Ganschar, O.; Pokorni, B.; Schlund, S. Concept of a Failures Management Assistance System for the Reaction on
Unforeseeable Events during the Ramp-up. Procedia CIRP 2014, 25, 420—-425. [CrossRef]

Ordaz, N.; Romero, D.; Gorecky, D.; Siller, H.R. Serious Games and Virtual Simulator for Automotive Manufacturing Education &
Training. Procedia Comput. Sci. 2015, 75, 267-274. [CrossRef]

Bufiwolder, P; Burgahn, F.; Hiibner, M.; Werker, M. Classification of Company-specific Influence Factors as Part of a Knowledge
Management System for Ramp-up Projects. Procedia CIRP 2016, 51, 44-50. [CrossRef]

Willmann, R.; Kastner, W. A Deterministic Product Ramp-up Process: How to Integrate a Multi-Disciplinary Knowledge Base.
In Multi-Disciplinary Engineering for Cyber-Physical Production Systems: Data Models and Software Solutions for Handling Complex
Engineering Projects; Biffl, S., Luider, A., Gerhard, D., Eds.; Springer: Cham, Switzerland, 2017; pp. 399-431.

Wilazlak, P.; Hussmo, D.; Sifsten, K. Integration Across Knowledge Boundaries During New Product Introduction. In Advances
in Transdisciplinary Engineering Ser, v.16, Transdisciplinary Engineering for Resilience, Proceedings of the 28th ISTE International
Conference on Transdisciplinary Engineering, Virtual, 5-9 July 2021, 1st ed.; Newnes, L., Ed.; IOS Press Incorporated: Amsterdam,
The Netherlands, 2021.

Doltsinis, S.C.; Lohse, N. A Model-Free Reinforcement Learning Approach Using Monte Carlo Method for Production Ramp-Up
Policy Improvement—A Copy Exactly Test Case. IFAC Proc. Vol. 2012, 45, 1628-1634. [CrossRef]

Doltsinis, S.; Ferreira, P.; Lohse, N. An MDP Model-Based Reinforcement Learning Approach for Production Station Ramp-Up
Optimization: Q-Learning Analysis. IEEE Trans. Syst. Man Cybern. Syst. 2014, 44, 1125-1138. [CrossRef]

Bobka, P; Heyn, J.; Henningson, J.-O.; Romer, M.; Engbers, T.; Dietrich, F.; Droder, K. Development of an automated assembly
process supported with an artificial neural network. J. Mach. Eng. 2018, 18, 28-41. [CrossRef]

Meiners, M.; Franke, ]J. Concept of a Machine Learning supported Cross-Machine Control Loop in the Ramp-Up of Large Series
Manufacturing. In Proceedings of the 2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing
Technologies (ICMIMT 2020), Cape Town, South Africa, 20-22 January 2020; pp. 155-160.


https://doi.org/10.1007/s10845-013-0839-6
https://doi.org/10.1016/j.procir.2014.03.154
https://doi.org/10.1016/j.cirpj.2015.05.007
https://doi.org/10.1080/00207543.2015.1064185
https://doi.org/10.1016/j.cirp.2021.05.008
https://doi.org/10.1080/10686967.2016.11918461
https://doi.org/10.3139/104.111733
https://doi.org/10.3390/pr10102005
https://doi.org/10.1016/j.procir.2016.05.045
https://doi.org/10.1016/j.procir.2016.01.014
https://www.designsociety.org/publication/42552/development+of+strategic+guidelines+for+agile+parts+ma-+turity+management+of+engine+subsystems+in+the+automotive+industry+during+series+ramp-up
https://www.designsociety.org/publication/42552/development+of+strategic+guidelines+for+agile+parts+ma-+turity+management+of+engine+subsystems+in+the+automotive+industry+during+series+ramp-up
https://www.designsociety.org/publication/42552/development+of+strategic+guidelines+for+agile+parts+ma-+turity+management+of+engine+subsystems+in+the+automotive+industry+during+series+ramp-up
https://doi.org/10.1016/j.mfglet.2020.09.010
https://doi.org/10.1016/j.cirpj.2023.06.002
https://doi.org/10.1016/j.procir.2013.06.016
https://doi.org/10.1016/j.procir.2014.10.058
https://doi.org/10.1016/j.procs.2015.12.247
https://doi.org/10.1016/j.procir.2016.05.042
https://doi.org/10.3182/20120523-3-RO-2023.00288
https://doi.org/10.1109/TSMC.2013.2294155
https://doi.org/10.5604/01.3001.0012.4605

Systems 2024, 12, 575 18 of 19

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Lanza, G.; Sauer, A. Simulation of personnel requirements during production ramp-up. Prod. Eng. 2012, 6, 395-402. [CrossRef]
Schmid, F.; Schneidewind, J.; Wild, T.; Galka, S.; Schuhegger, L.; Vogl, T. Simulation Based Approach for Reconfiguration and
Ramp Up Scenario Analysis in Factory Planning. In Proceedings of the 2022 Winter Simulation Conference (WSC), Singapore,
11-14 December 2022; pp. 2842-2852.

Spath, D.; Pokorni, B.; Ganschar, O.; Schlund, S. Intelligenter Storungsassistent im Serienanlauf als Industrie 4.0-Anwendungsfall.
Industrie 2014, 4, 343-371.

Haller, J.; Kaven, L.; Goppert, A.; Schmitt, R H. Industry 4.0 advancements in discrete production ramp-ups: A systematic
literature review. J. Intell. Manuf. 2024. under revision.

Padrén, M.; Haller, J.; Schmitt, R.H. Production ramp-up in discrete manufacturing systems: A systematic literature review of
modelling methods. Procedia CIRP 2024. in print.

Forrester, ].W. Industrial Dynamics. J. Oper. Res. Soc. 1997, 48, 1037-1041. [CrossRef]

Page, M.].; McKenzie, J.E.; Bossuyt, PM.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, ] M.; Akl, E.A,;
Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BM] 2021, 372, 71.
[CrossRef]

Pufall, A; Fransoo, ].C.; de Kok, A.G. What Determines Product Ramp-Up Performance?: A Review of Characteristics Based on a Case
Study at Nokia Mobile Phones; Beta, Research School for Operations Management and Logistics; Technische Universiteit Eindhoven:
Eindhoven, The Netherlands, 2007.

Calantone, R.J.; Randhawa, P.; Voorhees, C.M. Breakeven Time on New Product Launches: An Investigation of the Drivers and
Impact on Firm Performance. J. Prod. Innov. Manag. 2014, 31, 94-104. [CrossRef]

Kampker, A.; Kreiskother, K.; Lutz, N.; Gauckler, V.; Hehl, M. Re-Ramp-Up Management of Scalable Production Systems in the
Automotive Industry. In Proceedings of the 2019 8th International Conference on Industrial Technology and Management: ICITM
2019, Cambridge, UK, 2—4 March 2019; pp. 137-141.

Stauder, J.; Buchholz, S.; Klocke, F; Mattfeld, P. A New Framework to Evaluate the Process Capability of Production Technologies
during Production Ramp-Up. Procedia CIRP 2014, 20, 126-131. [CrossRef]

Kornas, T.; Knak, E.; Daub, R.; Biihrer, U.; Lienemann, C.; Heimes, H.; Kampker, A.; Thiede, S.; Herrmann, C. A Multivariate
KPI-Based Method for Quality Assurance in Lithium-Ion-Battery Production. Procedia CIRP 2019, 81, 75-80. [CrossRef]

Islam, M.H.; Chavez, Z.; Birkie, S.E.; Bellgran, M. Key Factors on Utilizing the Production System Design Phase for Increasing
Operational Performance. In Springer eBook Collection, Volume 592, Advances in Production Management Systems. Towards Smart and
Digital Manufacturing, Proceedings of the IFIP WG 5.7 International Conference, APMS 2020, Novi Sad, Serbia, 30 August—3 September
2020, 1st ed.; Proceedings, Part II; Lalic, B., Majstorovic, V., Marjanovic, U., von Cieminski, G., Romero, D., Eds.; Springer
International Publishing: Cham, Switzerland, 2020; pp. 740-748.

Verhaelen, B.; Martin, M.; Peukert, S.; Lanza, G. Practice-oriented methodology for increasing production ramp-up efficiency in
global production networks of SME. Prod. Eng. 2022, 17, 145-177. [CrossRef]

Carrillo, J.E.; Franza, R.M. Investing in product development and production capabilities: The crucial linkage between time-to-
market and ramp-up time. Eur. J. Oper. Res. 2006, 171, 536-556. [CrossRef]

Hansen, K.R.; Grunow, M. Modelling ramp-up curves to reflect learning: Improving capacity planning in secondary pharmaceuti-
cal production. Int. J. Prod. Res. 2015, 53, 5399-5417. [CrossRef]

Terwiesch, C.; Bohn, R.E. Learning and process improvement during production ramp-up. Int. J. Prod. Econ. 2001, 70, 1-19.
[CrossRef]

Doltsinis, S.C.; Ratchev, S.; Lohse, N. A framework for performance measurement during production ramp-up of assembly
stations. Eur. J. Oper. Res. 2013, 229, 85-94. [CrossRef]

Safri, S.B.; Bazin, N.E.N.B. Conceptualization of factors influencing new product introduction within shorter product life cycle. In
Proceedings of the 2012 4th Conference on Data Mining and Optimization (DMO), Langkawi, Malaysia, 2—4 September 2012;
pp. 143-148.

Xu, X.G.; Shen, D.B. Research on Enterprises Knowledge Transfer under NPI Model Based on the System Dynamics. Adv. Mater.
Res. 2014, 945-949, 2977-2981. [CrossRef]

Chen, Y.; Lee, T.R.; Wang, ].W. Two-stage decision support for production ramp-up. Int. J. Agil. Syst. Manag. 2011, 4, 364.
[CrossRef]

Ali-Qureshi, Z.; EIMaraghy, W.H. Procurement of Reconfigurable Assembly System a Justification for Effective Production
Ramp-up Planning. Procedia CIRP 2014, 16, 164-169. [CrossRef]

Stiller, S. Qualitatsorientierte Produktionstheorie zur Beherrschung Dynamischer Produktrealisierender Prozesse. Ph.D. Thesis,
Apprimus, Aachen, Germany, 2015.

Ngo, Q.H. Gestaltungsmodell fiir Qualititsorientierte Produktionsanliufe; Apprimus: Aachen, Germany, 2020.

Haller, J.; Beckschulte, S.; Padrén, M.; Ngo, Q.H.; Schmitt, R.H. Framework for Target Classification and Strategy Derivation
during Production Ramp-up. In Proceedings of the 2023 IEEE International Systems Conference (SysCon), Vancouver, BC,
Canada, 17-20 April 2023; pp. 1-5.

Kampker, A.; Deutskens, C.; Deutschmann, K.; Maue, A.; Haunreiter, A. Increasing Ramp-up Performance By Implementing the
Gamification Approach. Procedia CIRP 2014, 20, 74-80. [CrossRef]

Almgren, H. Pilot production and manufacturing start-up: The case of Volvo S80. Int. ]. Prod. Res. 2000, 38, 4577—-4588. [CrossRef]


https://doi.org/10.1007/s11740-012-0394-6
https://doi.org/10.1057/palgrave.jors.2600946
https://doi.org/10.1136/bmj.n71
https://doi.org/10.1111/jpim.12194
https://doi.org/10.1016/j.procir.2014.05.043
https://doi.org/10.1016/j.procir.2019.03.014
https://doi.org/10.1007/s11740-022-01154-7
https://doi.org/10.1016/j.ejor.2004.08.040
https://doi.org/10.1080/00207543.2014.998788
https://doi.org/10.1016/S0925-5273(00)00045-1
https://doi.org/10.1016/j.ejor.2013.02.051
https://doi.org/10.4028/www.scientific.net/AMR.945-949.2977
https://doi.org/10.1504/IJASM.2011.043132
https://doi.org/10.1016/j.procir.2014.03.005
https://doi.org/10.1016/j.procir.2014.05.034
https://doi.org/10.1080/00207540050205316

Systems 2024, 12, 575 19 of 19

61.

62.

63.

64.

65.
66.

67.
68.
69.
70.
71.
72.

73.
74.

Jurging, J.; Milling, PM. Manufacturing Start-Ups in the Automobile Industry. 2006. Available online: https://proceedings.
systemdynamics.org/2006/proceed /papers/JUERG310.pdf (accessed on 7 October 2024).

Bulto, R;; Viles, E.; Mateo, R. Overview of ramp-up curves: A literature review and new challenges. Proc. Inst. Mech. Eng. Part B ].
Eng. Manuf. 2018, 232, 755-765. [CrossRef]

Klocke, E,; Stauder, J.; Mattfeld, P.; Miiller, ]. Modeling of Manufacturing Technologies During Ramp-up. Procedia CIRP 2016, 51,
122-127. [CrossRef]

Kukulies, J.; Schmitt, R. Stabilizing production ramp-up by modeling uncertainty for product design verification using Dempster—
Shafer theory. CIRP J. Manuf. Sci. Technol. 2018, 23, 187-196. [CrossRef]

Gartzen, T. Diskrete Migration als Anlaufstrategie fiir Montagesysteme; Apprimus: Aachen, Germany, 2012.

Javadi, S.; Bruch, J.; Bellgran, M. Characteristics of product introduction process in low-volume manufacturing industries.
J. Manuf. Technol. Manag. 2016, 27, 535-559. [CrossRef]

Burggraf, P.; Dannapfel, M.; Voet, H. Potentials of Factory Standards in Production Ramp-Ups. Procedia CIRP 2016, 51, 134-139.
[CrossRef]

Viles, E.; Bult6, R.; Mateo, R.; Jurburg, D. Production ramp-up in European automotive production systems: A performance
analysis. Prod. Plan. Control 2021, 32, 34-51. [CrossRef]

Haller, M.; Peikert, A.; Thoma, J. Cycle time management during production ramp-up. Robot. Comput. Manuf. 2003, 19, 183-188.
[CrossRef]

Bohn, R.E.; Terwiesch, C. The economics of yield-driven processes. J. Oper. Manag. 1999, 18, 41-59. [CrossRef]

Jackson, M.C. Systems Thinking: Creative Holism for Managers; Wiley: Chichester, UK, 2003.

Zeugtrager, K. Anlaufmanagement fiir Grofianlagen; VDI: Diisseldorf, Germany, 1998.

Nakajima, S. Introduction to TPM: Total Productive Maintenance; Productivity Press: Cambridge, MA, USA, 1988.

Chatzimichali, A.P.; Tourassis, V.D. Hierarchies of adaptable learning during product development. In Proceedings of the 2011
IEEE International Conference on Systems, Man and Cybernetics—SMC, Anchorage, AK, USA, 9-12 October 2011; pp. 458-464.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://proceedings.systemdynamics.org/2006/proceed/papers/JUERG310.pdf
https://proceedings.systemdynamics.org/2006/proceed/papers/JUERG310.pdf
https://doi.org/10.1177/0954405416654416
https://doi.org/10.1016/j.procir.2016.05.098
https://doi.org/10.1016/j.cirpj.2017.09.008
https://doi.org/10.1108/JMTM-03-2015-0017
https://doi.org/10.1016/j.procir.2016.06.088
https://doi.org/10.1080/09537287.2020.1711980
https://doi.org/10.1016/S0736-5845(02)00078-9
https://doi.org/10.1016/S0272-6963(99)00014-5

	Introduction 
	Related Research 
	Materials and Methods 
	Descriptive Stability Model 
	System Dynamics Simulation 
	Base Module 
	Learning Module 
	Disruptions Module 
	Control Factors 
	OEE Module 
	Breakdown Module 
	Technological Maturity Module 
	System Capacity Module 
	Process Maturity Module 
	Worker Skill Module 
	Structural Complexity Module 


	Results and Model Validity 
	Stability Model Validation 
	Simulation Model Validation 

	Discussion 
	Appendix A
	References

