The Impact of Digital Finance on Urban and Rural Household Carbon Emissions: Evidence from China
Abstract
1. Introduction
2. Research Design and Methodology
2.1. Theoretical Framework and Research Hypothesis
2.2. Model Design
2.2.1. Baseline Model Design
2.2.2. Model Design for Mechanism Analysis
2.3. Variable Measurement and Data Sources
2.3.1. Dependent Variable: Per Capita HCEs
2.3.2. Core Explanatory Variable: DF
2.3.3. Impact Mechanisms and Instrumental Variables
2.3.4. Control Variables
2.4. Overview of Urban and Rural HCEs and the Development of DF in China
3. Empirical Results and Discussion
3.1. Baseline Estimation Analysis
3.2. Heterogeneity Analysis
3.2.1. Estimation by Sub-Indicators of DF
3.2.2. Estimation by Region
3.3. Robustness Tests
4. Mechanism Analysis
4.1. Mediating Effect of Energy Consumption Scale and Composition
4.2. Moderating Effects of Government Expenditure on Energy Conservation and Environmental Protection and Financial Regulation
5. Conclusions and Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, M.; Huang, W.; Chen, M.; Song, B.; Zeng, G.; Zhang, Y. (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. J. Clean. Prod. 2020, 254, 120138. [Google Scholar] [CrossRef]
- Mi, Z.; Meng, J.; Guan, D.; Shan, Y.; Song, M.; Wei, Y.-M.; Liu, Z.; Hubacek, K. Chinese CO2 emission flows have reversed since the global financial crisis. Nat. Commun. 2017, 8, 1712. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Liu, J.; Xu, D. Digital financial development and indirect household carbon emissions: Empirical evidence from China. Environ. Dev. Sustain. 2023, 26, 23401–23435. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, B.; Ji, H. How to decouple income growth from household carbon emissions: A perspective based on urban-rural differences in China. Energy Econ. 2023, 125, 106816. [Google Scholar] [CrossRef]
- Song, X.; Yao, Y.; Wu, X. Digital finance, technological innovation, and carbon dioxide emissions. Econ. Anal. Policy 2023, 80, 482–494. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Xiao, J.J. The impact of digital finance on household consumption: Evidence from China. Econ. Model. 2020, 86, 317–326. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, S. The effects of digital finance and financial constraint on financial performance: Firm-level evidence from China’s new energy enterprises. Energy Econ. 2022, 112, 106158. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, Q.; Liu, H. Digital finance innovation in green manufacturing: A bibliometric approach. Environ. Sci. Pollut. Res. 2022, 30, 61340–61368. [Google Scholar] [CrossRef]
- Fan, J.; Zhou, L.; Zhang, Y.; Shao, S.; Ma, M. How does population aging affect household carbon emissions? Evidence from Chinese urban and rural areas. Energy Econ. 2021, 100, 105356. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, Q.-M.; Wang, B.; Zhong, F.-X. Impact of household expenditures on CO2 emissions in China: Income-determined or lifestyle-driven? Nat. Hazards 2016, 84, 353–379. [Google Scholar] [CrossRef]
- Chen, C.; Liu, G.; Meng, F.; Hao, Y.; Zhang, Y.; Casazza, M. Energy consumption and carbon footprint accounting of urban and rural residents in Beijing through Consumer Lifestyle Approach. Ecol. Indic. 2019, 98, 575–586. [Google Scholar] [CrossRef]
- Ali, G.; Yan, N.; Hussain, J.; Xu, L.; Huang, Y.; Xu, S.; Cui, S. Quantitative assessment of energy conservation and renewable energy awareness among variant urban communities of Xiamen, China. Renew. Sustain. Energy Rev. 2019, 109, 230–238. [Google Scholar] [CrossRef]
- Khan, M.; Ozturk, I. Examining the direct and indirect effects of financial development on CO2 emissions for 88 developing countries. J. Environ. Manag. 2021, 293, 112812. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Sheng, M.S.; Wen, L. How does financial development influence carbon emission intensity in the OECD countries: Some insights from the information and communication technology perspective. J. Environ. Manag. 2023, 335, 117553. [Google Scholar] [CrossRef] [PubMed]
- Acheampong, A.O.; Amponsah, M.; Boateng, E. Does financial development mitigate carbon emissions? Evidence from heterogeneous financial economies. Energy Econ. 2020, 88, 104768. [Google Scholar] [CrossRef]
- Zafar, M.W.; Zaidi SA, H.; Sinha, A.; Gedikli, A.; Hou, F. The role of stock market and banking sector development, and renewable energy consumption in carbon emissions: Insights from G-7 and N-11 countries. Resour. Policy 2019, 62, 427–436. [Google Scholar] [CrossRef]
- Shen, Y.; Hu, W.; Hueng, C.J. Digital Financial Inclusion and Economic Growth: A Cross-country Study. Procedia Comput. Sci. 2021, 187, 218–223. [Google Scholar] [CrossRef]
- Liu, J.; Murshed, M.; Chen, F.; Shahbaz, M.; Kirikkaleli, D.; Khan, Z. An empirical analysis of the household consumption-induced carbon emissions in China. Sustain. Prod. Consum. 2021, 26, 943–957. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Xiang, D.; Worthington, A.C. Digitalization, financial inclusion, and small and medium-sized enterprise financing: Evidence from China. Econ. Model. 2023, 126, 106410. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Zhou, Z.; Wang, Z.; Mardani, A. Digital finance and enterprise financing constraints: Structural characteristics and mechanism identification. J. Bus. Res. 2023, 165, 114074. [Google Scholar] [CrossRef]
- Guo, B.; Feng, Y.; Lin, J. Digital inclusive finance and digital transformation of enterprises. Financ. Res. Lett. 2023, 57, 104270. [Google Scholar] [CrossRef]
- Luo, Y.; Peng, Y.; Zeng, L. Digital financial capability and entrepreneurial performance. Int. Rev. Econ. Financ. 2021, 76, 55–74. [Google Scholar] [CrossRef]
- Yang, X. Can digital financial inclusion promote female entrepreneurship? Evidence and mechanisms. N. Am. J. Econ. Financ. 2022, 63, 101800. [Google Scholar] [CrossRef]
- Song, Q.; Li, J.; Wu, Y.; Yin, Z. Accessibility of financial services and household consumption in China: Evidence from micro data. N. Am. J. Econ. Financ. 2020, 53, 101213. [Google Scholar] [CrossRef]
- Jiang, W.; Hu, Y.; Cao, H. Does Digital Financial Inclusion Increase the Household Consumption? Evidence from China. J. Knowl. Econ. 2024. [Google Scholar] [CrossRef]
- Li, T.; Ma, J. Does digital finance benefit the income of rural residents? A case study on China. Quant. Financ. Econ. 2021, 5, 664–688. [Google Scholar] [CrossRef]
- Yang, B.; Ma, F.; Deng, W.; Pi, Y. Digital inclusive finance and rural household subsistence consumption in China. Econ. Anal. Policy 2022, 76, 627–642. [Google Scholar] [CrossRef]
- Liu, L.; Guo, L. Digital Financial Inclusion, Income Inequality, and Vulnerability to Relative Poverty. Soc. Indic. Res. 2023, 170, 1155–1181. [Google Scholar] [CrossRef]
- Khan, K.; Luo, T.; Ullah, S.; Rasheed, H.M.W.; Li, P.-H. Does digital financial inclusion affect CO2 emissions? Evidence from 76 emerging markets and developing economies (EMDE’s). J. Clean. Prod. 2023, 420, 138313. [Google Scholar] [CrossRef]
- Lu, L.; Liu, P.; Yu, J.; Shi, X. Digital inclusive finance and energy transition towards carbon neutrality: Evidence from Chinese firms. Energy Econ. 2023, 127, 107059. [Google Scholar] [CrossRef]
- Le, T.-H.; Le, H.-C.; Taghizadeh-Hesary, F. Does financial inclusion impact CO2 emissions? Evidence from Asia. Financ. Res. Lett. 2020, 34, 101451. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Ren, X.; Wen, F. Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach. Energy Econ. 2022, 109, 105966. [Google Scholar] [CrossRef]
- Zheng, R.; Wu, G.; Cheng, Y.; Liu, H.; Wang, Y.; Wang, X. How does digitalization drive carbon emissions? The inverted U-shaped effect in China. Environ. Impact Assess. Rev. 2023, 102, 107203. [Google Scholar] [CrossRef]
- Cai, X.; Song, X. The nexus between digital finance and carbon emissions: Evidence from China. Front. Psychol. 2022, 13, 997692. [Google Scholar] [CrossRef]
- Zheng, H.; Li, X. The impact of digital financial inclusion on carbon dioxide emissions: Empirical evidence from Chinese provinces data. Energy Rep. 2022, 8, 9431–9440. [Google Scholar] [CrossRef]
- Qin, X.; Wu, H.; Li, R. Digital finance and household carbon emissions in China. China Econ. Rev. 2022, 76, 101872. [Google Scholar] [CrossRef]
- Pu, Z.; Fei, J. The impact of digital finance on residential carbon emissions: Evidence from China. Struct. Change Econ. Dyn. 2022, 63, 515–527. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, C.; Li, Z. The impact of digital financial inclusion on household carbon emissions: Evidence from China. J. Econ. Struct. 2023, 12, 2. [Google Scholar] [CrossRef]
- Zhong, S.; Wang, M.; Zhu, Y.; Chen, Z.; Huang, X. Urban expansion and the urban–rural income gap: Empirical evidence from China. Cities 2022, 129, 103831. [Google Scholar] [CrossRef]
- Cai, J.; Jiang, Z. Changing of energy consumption patterns from rural households to urban households in China: An example from Shaanxi Province, China. Renew. Sustain. Energy Rev. 2008, 12, 1667–1680. [Google Scholar] [CrossRef]
- Sun, Z.; Du, L.; Long, H. Regional Heterogeneity Analysis of Residential Electricity Consumption in Chinese Cities: Based on Spatial Measurement Models. Energies 2023, 16, 7859. [Google Scholar] [CrossRef]
- Cao, J.; Ho, M.S.; Hu, W.; Jorgenson, D. Estimating flexible consumption functions for urban and rural households in China. China Econ. Rev. 2020, 61, 101453. [Google Scholar] [CrossRef]
- Sui, Y.; Niu, G. The Urban–Rural Gap of Chinese Household Finance. Emerg. Mark. Financ. Trade 2018, 54, 377–392. [Google Scholar] [CrossRef]
- Deng, X.; Guo, M.; Liu, Y. Digital economy development and the urban–rural income gap: Evidence from Chinese cities. PLoS ONE 2023, 18, e0280225. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Weng, F.; Huo, X. Can digital finance Promote Professional Farmers’ Income Growth in China?—An Examination Based on the Perspective of Income Structure. Agriculture 2023, 13, 1103. [Google Scholar] [CrossRef]
- Barnes, D.F.; Khandker, S.R.; Samad, H.A. Energy poverty in rural Bangladesh. Energy Policy 2011, 39, 894–904. [Google Scholar] [CrossRef]
- Khandker, S.R.; Barnes, D.F.; Samad, H.A. Are the energy poor also income poor? Evidence from India. Energy Policy 2012, 47, 1–12. [Google Scholar] [CrossRef]
- Goldstein, B.; Gounaridis, D.; Newell, J.P. The carbon footprint of household energy use in the United States. Proc. Natl. Acad. Sci. USA 2020, 117, 19122–19130. [Google Scholar] [CrossRef]
- Tang, Z.; Li, D.; Guo, H. Study on Carbon Emission Pathways in the Rural Areas of Guangdong Province. Energies 2022, 15, 8886. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, Y.; Jin, M.; Ma, Q.; Zhao, J. Does New Digital Infrastructure Promote the Transformation of the Energy Structure? The Perspective of China’s Energy Industry Chain. Energies 2022, 15, 8784. [Google Scholar] [CrossRef]
- Shahbaz, M.; Li, J.; Dong, X.; Dong, K. How financial inclusion affects the collaborative reduction of pollutant and carbon emissions: The case of China. Energy Econ. 2022, 107, 105847. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zhang, J. Can digitalization facilitate low carbon lifestyle?—Evidence from households’ embedded emissions in China. Technol. Soc. 2024, 76, 102455. [Google Scholar] [CrossRef]
- Wu, S.; Hu, S.; Frazier, A.E.; Hu, Z. China’s urban and rural residential carbon emissions: Past and future scenarios. Resour. Conserv. Recycl. 2023, 190, 106802. [Google Scholar] [CrossRef]
- Xu, L.; Qu, J.; Han, J.; Zeng, J.; Li, H. Distribution and evolutionary in household energy-related CO2 emissions (HCEs) based on Chinese north–south demarcation. Energy Rep. 2021, 7, 6973–6982. [Google Scholar] [CrossRef]
- Zhang, X.; He, S.; Ma, L. Local environmental fiscal expenditures, industrial structure upgrading, and carbon emission intensity. Front. Environ. Sci. 2024, 12, 1369056. [Google Scholar] [CrossRef]
- Adewuyi, A.O. Effects of public and private expenditures on environmental pollution: A dynamic heterogeneous panel data analysis. Renew. Sustain. Energy Rev. 2016, 65, 489–506. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhao, X.; Zhong, S.; Xing, Y. Digital financial inclusion, resident consumption, and urban carbon emissions in China: A transaction cost perspective. Econ. Anal. Policy 2024, 81, 1336–1352. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Q.; Dong, X.; Dong, K.; Jiang, H. How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China. Energy Econ. 2022, 105, 105704. [Google Scholar] [CrossRef]
- Huang, S.; Yang, L.; Yang, C.; Wang, D.; Li, Y. Obscuring effect of income inequality and moderating role of financial literacy in the relationship between digital finance and China’s household carbon emissions. J. Environ. Manag. 2024, 351, 119927. [Google Scholar] [CrossRef]
- Wang, J.; Li, H. The mystery of local fiscal expenditure and carbon emission growth in China. Environ. Sci. Pollut. Res. 2019, 26, 12335–12345. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S. The impacts of GDP, trade structure, exchange rate and FDI inflows on China’s carbon emissions. Energy Policy 2018, 120, 347–353. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, H.; Su, X.; Wang, R. Exploring the role of green finance and natural resource policies in carbon emission efficiency of China’s manufacturing industry in the context of post-COVID-19 period. Resour. Policy 2023, 86, 104243. [Google Scholar] [CrossRef]
- Zhao, B.; Yang, W. Does financial development influence CO2 emissions? A Chinese province-level study. Energy 2020, 200, 117523. [Google Scholar] [CrossRef]
- Balezentis, T. Shrinking ageing population and other drivers of energy consumption and CO2 emission in the residential sector: A case from Eastern Europe. Energy Policy 2020, 140, 111433. [Google Scholar] [CrossRef]



| Variable | Definition | Obs | Mean | SD | Min | Max |
|---|---|---|---|---|---|---|
| HCE_city | Per capita urban HCEs | 330 | 0.499 | 0.194 | 0.230 | 1.892 |
| HCE_rural | Per capita rural HCEs | 330 | 0.603 | 0.313 | 0.119 | 2.164 |
| lnDFI | Logarithm of Digital Financial Inclusion Index | 330 | 5.283 | 0.669 | 2.909 | 6.129 |
| lnCOV | Logarithm of the coverage of DF | 330 | 5.149 | 0.817 | 0.673 | 6.072 |
| lnUSE | Logarithm of the usage penetration of DF | 330 | 5.266 | 0.652 | 1.911 | 6.236 |
| lnDIG | Logarithm of the digitization level of DF | 330 | 5.556 | 0.681 | 2.026 | 6.136 |
| lnCEC | Logarithm of the total energy consumed by urban households | 330 | 6.155 | 0.792 | 3.757 | 7.733 |
| lnREC | Logarithm of the total energy consumed by rural households | 330 | 5.754 | 0.858 | 3.163 | 7.565 |
| CG | Natural gas consumption by urban households as a share of total energy consumption | 330 | 0.224 | 0.143 | 0.000 | 0.661 |
| RG | Natural gas consumption by rural households as a share of total energy consumption | 330 | 0.036 | 0.065 | 0.000 | 0.388 |
| GER | Ratio of energy conservation and environmental protection expenditure to government general expenditure | 330 | 0.030 | 0.009 | 0.012 | 0.068 |
| FRER | Ratio of financial regulation expenditure to government general expenditure | 330 | 0.003 | 0.003 | 0.000 | 0.019 |
| IBP | The number of internet access ports per capita | 330 | 0.475 | 0.230 | 0.096 | 1.074 |
| GOV | Ratio of government expenditure to GDP | 330 | 0.249 | 0.103 | 0.107 | 0.643 |
| ENV | Ratio of investment in industrial pollution to industrial value added | 330 | 0.298 | 0.295 | 0.009 | 2.804 |
| AGE | Population aged 65 and above as a percentage of the total population | 330 | 0.231 | 0.438 | 0.046 | 2.029 |
| lnRGDP | Logarithm of regional GDP per capita | 330 | 10.88 | 0.444 | 9.706 | 12.12 |
| SI | Value added of secondary industry as a share of domestic GDP | 330 | 0.427 | 0.088 | 0.158 | 0.590 |
| (1) | (2) | (3) | (4) | |
|---|---|---|---|---|
| HCE_City | HCE_Rural | HCE_City | HCE_Rural | |
| lnDFI | −0.187 *** (0.068) | 0.216 *** (0.078) | −0.234 *** (0.068) | 0.275 *** (0.079) |
| GOV | −0.292 (0.457) | 0.231 (0.525) | ||
| ENV | −0.030 (0.037) | −0.011 (0.043) | ||
| AGE | −0.045 (0.090) | 0.065 (0.103) | ||
| lnRGDP | 0.298 ** (0.119) | −0.387 *** (0.137) | ||
| SI | −0.494 (0.371) | 1.073 ** (0.427) | ||
| _cons | −1.449 (1.245) | 3.003 ** (1.430) | ||
| Province FE | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes |
| N | 330 | 330 | 330 | 330 |
| R2 | 0.065 | 0.252 | 0.123 | 0.299 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| HCE_City | HCE_Rural | HCE_City | HCE_Rural | HCE_City | HCE_Rural | |
| lnCOV | −0.047 * (0.028) | 0.101 *** (0.032) | ||||
| lnUSE | −0.084 (0.052) | −0.002 (0.060) | ||||
| lnDIG | 0.073 (0.045) | −0.081 (0.052) | ||||
| _cons | −1.889 (1.273) | 3.771 *** (1.446) | −1.334 (1.277) | 3.225 ** (1.475) | −1.959 (1.279) | 3.581 ** (1.472) |
| Controls | Yes | Yes | Yes | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
| N | 330 | 330 | 330 | 330 | 330 | 330 |
| R2 | 0.096 | 0.294 | 0.096 | 0.269 | 0.096 | 0.275 |
| Eastern | Central | Western | ||||
|---|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | (6) | |
| HCE_City | HCE_Rural | HCE_City | HCE_Rural | HCE_City | HCE_Rural | |
| lnDFI | −0.454 *** (0.071) | 1.054 *** (0.251) | −0.001 (0.215) | −0.016 (0.277) | 0.076 (0.195) | 0.132 (0.119) |
| _cons | 5.514 *** (0.978) | 1.185 (3.446) | −5.531 ** (2.497) | −5.308 (3.214) | −11.789 *** (3.419) | 1.021 (2.083) |
| Controls | Yes | Yes | Yes | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
| N | 121 | 121 | 88 | 88 | 121 | 121 |
| R2 | 0.595 | 0.379 | 0.475 | 0.510 | 0.226 | 0.551 |
| IV-2SLS Regression | Replacing Variables | Winsorize 1% | ||||
|---|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | (6) | |
| HCE_City 2nd-Stage | HCE_Rural 2nd-Stage | HCE_City | HCE_Rural | HCE_City | HCE_Rural | |
| lnDFI | −0.541 *** (0.154) | 0.671 *** (0.195) | −0.252 *** (0.071) | 0.305 *** (0.081) | ||
| L.lnDFI | −0.174 *** (0.057) | 0.240 *** (0.073) | ||||
| _cons | 2.111 * (1.276) | 2.059 (1.616) | −0.223 (1.139) | 4.285 *** (1.442) | −1.391 (1.243) | 2.927 ** (1.427) |
| Controls | Yes | Yes | Yes | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
| F-statistic value | 397.999 | 397.999 | ||||
| N | 330 | 330 | 300 | 300 | 330 | 330 |
| R2 | 0.118 | 0.336 | 0.127 | 0.304 | ||
| City Consumption Scale Effect | Rural Consumption Scale Effect | |||||
|---|---|---|---|---|---|---|
| (1) Baseline | (2) | (3) | (4) Baseline | (5) | (6) | |
| HCE_City | lnCEC | HCE_City | HCE_Rural | lnREC | HCE_Rural | |
| lnDFI | −0.234 *** (0.068) | −0.093 (0.088) | −0.171 *** (0.035) | 0.275 *** (0.079) | 0.176 * (0.096) | 0.156 *** (0.044) |
| lnCEC | 0.671 *** (0.234) | |||||
| lnREC | 0.676 *** (0.044) | |||||
| _cons | −1.449 (1.245) | 1.436 (1.601) | −2.412 *** (0.632) | 3.003 ** (1.430) | 5.200 *** (1.751) | −0.512 (0.816) |
| Controls | Yes | Yes | Yes | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
| N | 330 | 330 | 330 | 330 | 330 | 330 |
| R2 | 0.123 | 0.511 | 0.776 | 0.299 | 0.325 | 0.779 |
| City Consumption Composition Effect | Rural Consumption Composition Effect | |||||
|---|---|---|---|---|---|---|
| (1) Baseline | (2) | (3) | (4) Baseline | (5) | (6) | |
| HCE_City | CG | HCE_City | HCE_Rural | RG | HCE_Rural | |
| lnDFI | −0.234 *** (0.068) | 0.088 *** (0.030) | −0.186 *** (0.068) | 0.275 *** (0.079) | −0.012 (0.024) | 0.266 *** (0.077) |
| CG | −0.544 *** (0.132) | |||||
| RG | −0.720 *** (0.188) | |||||
| _cons | −1.449 (1.245) | 0.068 (0.543) | −1.412 (1.212) | 3.003 ** (1.430) | 0.596 (0.441) | 3.433 (1.402) |
| Controls | Yes | Yes | Yes | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
| N | 330 | 330 | 330 | 330 | 330 | 330 |
| R2 | 0.123 | 0.312 | 0.173 | 0.299 | 0.271 | 0.334 |
| Environmental Conservation Expenditure Ratio | Financial Regulation Expenditure Ratio | |||
|---|---|---|---|---|
| (1) | (2) | (3) | (4) | |
| HCE_city | HCE_rural | HCE_city | HCE_rural | |
| lnDFI | −0.072 (0.091) | 0.570 *** (0.102) | −0.307 *** (0.070) | 0.328 *** (0.082) |
| GER | 17.562 *** (6.601) | 32.133 *** (7.399) | ||
| GER | −3.163 *** (1.204) | −6.187 *** (1.349) | ||
| FRER | −82.381 *** (25.364) | 67.809 ** (29.416) | ||
| FRER | 13.840 *** (4.578) | −13.184 ** (5.310) | ||
| _cons | −1.995 (1.254) | 1.851 (1.405) | −1.305 (1.227) | 3.314 ** (1.423) |
| Controls | Yes | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes |
| N | 330 | 330 | 330 | 330 |
| R2 | 0.145 | 0.350 | 0.164 | 0.319 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Zou, Y. The Impact of Digital Finance on Urban and Rural Household Carbon Emissions: Evidence from China. Systems 2024, 12, 543. https://doi.org/10.3390/systems12120543
Wu H, Zou Y. The Impact of Digital Finance on Urban and Rural Household Carbon Emissions: Evidence from China. Systems. 2024; 12(12):543. https://doi.org/10.3390/systems12120543
Chicago/Turabian StyleWu, Hao, and Yang Zou. 2024. "The Impact of Digital Finance on Urban and Rural Household Carbon Emissions: Evidence from China" Systems 12, no. 12: 543. https://doi.org/10.3390/systems12120543
APA StyleWu, H., & Zou, Y. (2024). The Impact of Digital Finance on Urban and Rural Household Carbon Emissions: Evidence from China. Systems, 12(12), 543. https://doi.org/10.3390/systems12120543

