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Abstract: Global industrial chain resilience refers to the capability of industrial chains, on a global
scale, to maintain or restore their normal operations and value-creating ability in the face of various
risks and uncertainties. This resilience is crucial for addressing crises, promoting economic growth,
and upholding national security. However, there is currently a lack of unified standards and methods
for measuring and enhancing global industrial chain resilience. This study constructs a global
industrial chain production model in a multi-country and multi-stage open economy context. It
utilizes data from the 1990–2021 Eora MRIO (Multi-Regional Input–Output) dataset to analyze the
formation, measurement, and influencing factors of global industrial chain resilience. The research
findings indicate that since 2010, the disparity in industrial chain resilience between different countries
has gradually widened. Manufacturing plays a pivotal role in maintaining industrial chain stability.
Additionally, factors such as input costs and technological levels have been found to positively impact
the enhancement of global industrial chain resilience. Therefore, this study provides theoretical and
empirical support for exploring and improving global industrial chain resilience, offering valuable
guidance for policymakers and entrepreneurs.

Keywords: global industrial chain; resilience; measurement; influencing factors

1. Introduction

The global industrial chain constitutes a complex network that encompasses diverse
regions, cultures, and organizational entities engaged in production, distribution, and
consumption activities [1,2]. This intricate structure plays a crucial role in driving economic
growth, promoting trade liberalization, and fostering global integration. However, it is
also exposed to various risks and uncertainties, including natural disasters, geopolitical
conflicts, trade protectionism, and the COVID-19 pandemic [3–5]. These factors can lead to
disruptions or failures within the global industrial chain, resulting in significant economic
losses and societal impacts. Consequently, the assessment and enhancement of global
industrial chain resilience—defined as its ability to maintain or restore normal operations
and value creation in the face of disturbances—have emerged as critical concerns for
governments, businesses, and scholars worldwide.

With the objective of exploring the theme “Global Industrial Chain Resilience Research:
Theory and Measurement”, this paper addresses the following key questions: What are
the nature and characteristics of global industrial chain resilience? What is the theoretical
foundation and framework underpinning global industrial chain resilience? How can
the resilience level of global industrial chains be effectively measured and evaluated? To
achieve this, we leverage multi-country, multi-stage open economy contexts, utilizing
Eora MRIO (Multi-Region Input–Output table) data from 1990 to 2021. We combine social
network theory with the PageRank algorithm to iteratively model the global industrial chain
network, constructing a comprehensive resilience index that captures its multidimensional
traits. The primary innovations and contributions of this paper are as follows: (1) This
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study extends the specialized production stage in a multi-stage general equilibrium model
to derive a country’s participation probability within the global industrial chain under
the circumstances of multiple references and referenced situations in a multi-country
and multi-production stage context. This approach examines the resilience of chains
from the perspective of interdependence among countries, regions, and sectors globally.
(2) Leveraging Eora MRIO data, the conceptualization of the global industrial chain is
transformed into a complex network, departing from the existing depiction of a “snake-like”
production division path. Within this framework, the study employs social network theory
and the PageRank algorithm to comprehensively analyze the formation, measurement,
and influencing factors of global industrial chain resilience from various angles. (3) The
introduction of a comprehensive resilience index further enhances the study’s scope. Rooted
in the derivation of a multi-country and multi-stage general equilibrium model and the
intricate network setting, this holistic resilience metric captures the characteristics of the
global industrial chain’s complex system. It reflects attributes across national, sectoral, and
regional levels, providing a novel tool to assess and compare the resilience of the global
industrial chain.

The subsequent sections of this paper are organized as follows: Section 2 provides a
literature review. Section 3 outlines the theoretical model underlying the formation of global
industrial chain resilience. Section 4 introduces the data and relevant variables employed
in our study. The measurement results and analysis of influencing factors are covered in
Section 5. Lastly, Section 6 presents the conclusions and policy recommendations.

2. Literature Review

In the backdrop of a highly interconnected global economy, the resilience of global
industrial chains has emerged as a focal point of attention. Resilience in this context refers
to the ability of industrial chains to maintain or restore their normal operations in the face
of uncertainties and disruptions [6–8].

Presently, global industrial chains confront significant risks and challenges, underscor-
ing the need for in-depth exploration of the theory and measurement of global industrial
chain resilience in order to provide more effective strategies for mitigation. Scholars have
engaged in extensive discussions within the realm of industrial chain resilience, exploring
diverse concepts and theories. Dynamic capability theory offers a multidimensional and
multilayered perspective for understanding industrial chain resilience, emphasizing the
collaborative interactions among various segments and participants [9–11]. Meanwhile, the
complex systems theory directs attention towards the systemic and nonlinear attributes of
industrial chain resilience, aiding in comprehending the interdependencies and influences
within supply chains [12–14].

In the measurement of industrial chain resilience, researchers have employed a variety
of indicators and methods to comprehensively capture its multidimensional nature. Core
capabilities, performance metrics, and topological indices have been applied for evaluating
industrial chain resilience across different levels [15–18]. Furthermore, mathematical
models, simulation techniques, and statistical approaches have provided a diverse array of
methodologies for studying this topic [19–21].

To enhance industrial chain resilience, scholars have proposed an array of strategies
and measures. These strategies encompass cost optimization, the establishment of multi-
supplier collaborations, and heightened visibility, as well as flexible utilization of digital
technologies and resource allocation [22–25]. However, existing strategies may require
refined design approaches [26] to suit the diverse nature of industrial chains and
potential disruptions.

While substantial progress has been made in the domain of global industrial chain
resilience research, challenges persist. The diversity of conceptual approaches necessitates
clearer definitions and unified frameworks to facilitate the integration of theory and practice.
Additionally, limitations in measurement methods may hinder an accurate reflection of
the multidimensional facets of industrial chain resilience, urging continual refinement and



Systems 2023, 11, 466 3 of 19

expansion. Given the challenges confronted by global industrial chains in an increasingly
complex environment, delving into the theory and measurement of global industrial chain
resilience holds paramount importance.

3. Theoretical Model

Given the critical importance of global industrial chain resilience and its impact on
economic development, this paper conducts a thorough analysis of the complex challenges
faced by industrial chain resilience. In this regard, it draws inspiration from the research
approach of Antràs and Gortari (2020) [27] , as well as from the work of Caliendo and Parro
(2015) [28]. It aims to delve into the intricate process of resilience formation within global
industrial chains and examine the underlying factors that shape it. It establishes a multi-
country, multi-stage production model under the framework of an open economy. In an
open economic environment with N countries, each country participates in the production
process based on its unique technological capabilities and factor endowments. To represent
countries, we use i, n, m, k ∈ {1, 2, · · · , N}, while j ∈ {1, 2, · · · , J} represents different
production stages along the industrial chain. The final product is denoted as ω ∈ [0, 1].
Hence, during the production process, the production of a product is decomposed into
a series of independent production stages. Each stage is undertaken by countries with a
comparative advantage and involves the production of intermediate goods for global trade.

3.1. Consumer Preferences

To determine consumer preferences, we draw upon the research conducted by Melitz
(2003) [29]. We assume that consumers in country i contribute Li units of labor without
elasticity to produce intermediate or final products. As a result, they receive wage compen-
sation of wi units, which they utilize for consuming final products and derive utility from
them. We represent consumer preferences using a CES utility function, as follows:

Ui =

[∫ 1

0

(
CF

i (ω)
)(σ−1)/σ

dω

]σ/(σ−1)

(1)

In Equation (1), CF
i (ω) represents the consumer’s consumption of the final product,

and σ represents the substitution elasticity coefficient of the final product ω when utility
is constant.

3.2. Production and Technology

During the global division of labor within the industrial chain, the final product ω
undergoes multiple stages of production. Each country selects its position in the produc-
tion process based on its technological level and factor endowments, contributing to the
production of each final product. To depict the technological characteristics of countries
within the industrial chain, we define zj

i(ω) as the technological level, V j
i (ω) as the do-

mestic value added, and Mj
i (ω) as the foreign value added. Considering the participation

of each country in the production stages, the production function is represented by the
Cobb–Douglas production function:

f j
i (ω) = zj

i(ω)
(

V j
i (ω)

)γj(
Mj−1

i (ω)
)1−γj

(2)

In Equation (2), f j
i (ω) represents the output level of a country in different production

stages. The technology level zj
i(ω) is assumed to follow the Fréchet extreme value distribu-

tion [30]. Mj−1
i (ω) denotes the utilization of intermediate products from stage j− 1 during

stage j, which represents the domestic value added. The parameter γj represents the share
of domestic value added produced by a country, while (1− γj) represents the share of
accumulated value added from intermediate products in the previous production stage.
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Under the specified open economic conditions, the domestic value added V j
i (ω) is

composed of two components: composite intermediate inputs and labor input. Hence, the
expression for domestic value added can be formulated as

V j
i (ω) =

(
xj

i(ω)
)1−αi

(
Lj

i(ω)
)αi

(3)

By substituting Equation (3) into Equation (2), we can derive the production function
for a specific stage. In this formulation, αi represents the output elasticity of labor input
in domestic value added, while 1− αi represents the output elasticity of composite inter-
mediate inputs in domestic value added. The composite intermediate inputs xj

i(ω) are
produced by utilizing the final composite products Qi, where a portion of Qi is allocated
for composite intermediate inputs and the remaining portion is used for final consumption.
Thus, we can formulate an equation to determine Qi:

Qi =

[∫ 1

0

(
f J
i (ω)

)(ρ−1)/ρ
dω

]ρ/(ρ−1)

(4)

We make the assumption that the distribution of technology levels in country i follows
a Fréchet extreme value distribution. The distribution function is denoted as Fi(Z) =

e−Aiz−θ
, where Ai > 0 represents the parameter associated with the technology level of

country i, and θ represents heterogeneity of goods in production.
We further assume that the market operates under perfect competition. Within the

framework of general equilibrium conditions, we solve for the profit maximization function
of a country given a wage rate Wi and a CES price index. Consequently, the factor input
cost associated with not including intermediate products from country i in each production
stage can be expressed as

ci =

(
Pi

1− αi

)1−αi
(

wi
αi

)αi

(5)

3.3. Global Industrial Chain Production

In the model proposed by Eaton and Kortum (2002) [31], the decision-making process
for countries’ procurement of intermediate goods is relatively straightforward, as they
only need to choose the product with the lowest price in the global market. However, in
the multi-country, multi-stage production model under open economic conditions, the
selection of intermediate products in the global market is more complex and goes beyond
simply seeking the lowest price. The division of labor in production becomes intricate,
characterized by intricate network relationships. Baldwin and Venables (2013) argue
that a country’s participation in global competition does not solely involve exporting a
single product [32]. Instead, a country’s involvement in the industrial chain includes both
supplying intermediate products to other countries and importing intermediate products
from other countries. Furthermore, the country’s position in the production process can
vary. Therefore, the division of labor exhibits a “snake-type” path, which is characterized
by multiple production stages. The specification of this path is as follows:

lk = {lk(1), lk(2), · · · , lk(J)} (6)

In the context of the global division of labor system, the final product undergoes
a series of specialized production stages and is eventually consumed by consumers in
different countries represented by k. We use the symbol k to denote the destination country
where the final product is sold and to specify the globally integrated production path. This
path can be traced back from country k in a unique pattern. In Equation (6), let lk represent
a specific production path with j stages for a given value of k ∈ {1, 2, . . . , N}. The element
lk(1) in this set represents the country participating in the first stage of production for that
particular production chain.
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In each production stage, country lk(j) needs to buy upstream products from the
previous stage at the lowest global prices. Hence, each country at stages j ∈ {2, 3, . . . , J}
faces a decision on purchasing products with the minimum prices from their respective
upstream stages. However, since the production technology level of each upstream country
follows a Fréchet extreme value distribution, downstream countries cannot fully observe
the technology levels when making purchasing decisions for upstream products. This
complexity adds difficulty to the pricing issues.

To address the complexity of purchasing upstream products, we assume that a country
at a certain production stage j cannot directly observe the lowest price of upstream products
from stage (j− 1) before making a purchase decision. Instead, it can only predict the lowest
price of the upstream product based on the global distribution of productivity.

Furthermore, we introduce the concept of iceberg trade costs to determine the mini-
mum price for purchasing products in stage j. Let τin denote the trade costs when country
i engages in trade with country n. We assume that the trade cost for the domestic trade
of intermediate goods is τin = 1. This implies that to compensate for the loss due to
inter-country trade costs, country i needs to transport τin ≥ 1 units of goods to country n
when transporting one unit of intermediate product. To ensure no arbitrage in inter-country
trade, we impose the triangular inequality of trade: τimτmn ≥ τin. For this reason, the
price formula for intermediate products in which a country participates in the stages of the
industrial chain can be derived based on general equilibrium conditions:

pj
l(j) =

c
jj−1

(
pj−1

l(j−1)τ
j
l(j−1)(j)

)1−γj

(j)

zj
l(j)

(7)

Consequently, if country i provides intermediate products to downstream indus-
tries, its cost cannot exceed the price of importing such intermediate products from
other countries:

i = arg min
l(j)


(

cl(j)

)γ(
pj

l(j−1τl(j−1)l(j)

)1−j

zl(j)

 (8)

as the price pj
l(j) of country i participating in the global industrial chain is related to the

price pj−1
l(j−1) of the upstream stage in the industrial chain. There will be a continuous

iterative process, using the iterative expectation solution rule. By iterating the expectations
of pricing strategies for upstream and downstream participating countries, we can obtain
the expected procurement decision of downstream countries on upstream. The specific
calculation formula is as follows:

ε
j
i[s] = Ej

[(
pj

l(j)τi(j)i

)s]
(9)

By continuously iterating from Equation (7) to Equation (9), we can derive the
following results:

ε
j
i[s] = Ej


(

cl(j)

)γ′s
ε

j−1
l(j−1)

[(
1− γj)s](τl(j−1)(j)

)s

(
zj

l(j)

))s

 (10)
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Let s = 1− γj+1. Using the iterative rule of Equation (9) in Equation (8), we can obtain
the condition for country i to provide intermediate products downstream:

i = arg min
l(j)

 c
γj(1−γj+1)
l(j) ε

j−1
l(j−1)

[(
1− γj)(1− γj+1)](τl(j−1)l(j)

)1−γj+1

(
zj

l(j)

)1−γj+1

 (11)

During the continuous iteration process, an increase in the foreign value-added share
of 1− γj+1 results in higher trade costs and greater production technology requirements
for downstream countries as the production stage increases. To capture the variations in
trade costs across different stages of production, we define βj = ∏N

j′=j+1

(
1− γj′

)
. As there

are more downstream production stages and a higher share of national value additions, βj

approaches 1, indicating that βj is an increasing function of production stage j.

Based on the Fréchet distribution function, Fi

((
zj

l

)βj)
= eA−βj

i z−θ
can be defined.

Based on Fi

((
zj

l

)βj)
, the probability that country i provides intermediate goods from

production stage j to production stage j + 1 in the industrial chain is expressed as

Pr(l(j) = i) = Pr

[(
ci

zj
i(ω)

)jβj

ε
j−1
i

[(
1− γj+1

)(
1− γj

)](
τl(j−1)i

)1−γj+1

≤
(

cn

zj
n(ω)

)γj βj

ε
j−1
n

[(
1− γj+1

)(
1− γj

)](
τl(j−1)n

)1−γj+1] (12)

Based on Equation (12) and employing the processing methodology introduced by
Eaton and Kortum (2002) [31], we utilize the properties of the Fréchet distribution function
to determine the probability of a country becoming the jth production stage and supplying
intermediate goods to the j + 1th stage country:

Pr(l(j) = i) =
Ai

((
cj

i

)γj

τl(j−1)i

)−θβi

ε
j−1
i
[(

1− γj+1)(1− γj)]−θβj+1

∑n∈N An

(
(cn)

γjτl(j−1)n

)−θβj

ε
j−1
n
[(

1− γj+1
)(

1− γj
)]−θβj+1

(13)

Equation (13) highlights that the probability of country i supplying intermediate
goods to production stage j + 1 is primarily influenced by two key factors: technology
level and factor utilization costs 1. When country i possesses a superior technology level
compared to other countries, the proportion of intermediate products procured by country
j + 1 from country i tends to approach 1. In addition, under other fixed conditions, coun-
tries with lower wage costs or higher levels of openness enjoy a competitive advantage
in participation 2.

Based on the aforementioned analysis, it can be inferred that within the global in-
dustrial division system, the production of final goods is not solely determined by the
purchasing decisions of downstream countries. It also depends on the technological distri-
bution and pricing strategies of upstream countries. Consequently, a specific “snake-type”
division pathway for the production of final goods emerges with distinct probabilities:

πli =
∏N−1

j=1 Al(j)

((
cl(j)

)ri

τl(j)l(j+1)

)−θβj

· Al(N)

((
cl(N)

)γj

τl(N)i

)−θβj

∑l′∈N ∏N−1
j=1 Al′(j)

((
cl′(j)

)ri

τl′(j)l′(j+1)

)−θβj

· Al′(N)

((
cl′(N)

)ri

τl′(N)i

)−θβj (14)
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Based on the analysis above, it is evident that the participation of countries in different
stages of the division of labor is primarily influenced by their technological levels and
factor cost efficiencies. Additionally, this participation is closely related to the domestic
value-added share and labor output elasticity of each country. While πli can represent the
probability of country i participating in a specific production stage, it is important to recog-
nize that multiple countries interconnected within a complex network are encompassed.The
resilience refers to its ability to recover from shocks within this intricate environment. Thus,
it becomes essential to integrate the participation probability πli of country i in a specific
production stage with the network to better comprehend and assess the level of resilience.

3.4. Network and Resilience

According to the previous assumption of one country participating in each production
stage, there is a one-to-one correspondence between the production stages and the countries
involved. Specifically, if country i is at production stage j denoted as i = lk(j), then it follows
that j = l−1

k (i). However, it is evident that the single production pathway relationship
cannot fully capture the hierarchical, complex, and systemic nature, nor can it adequately
explain the inherent resilience in complex external environments. As a result, building
upon the theoretical model derivation in the previous sections, we propose the concept of
global industrial networks.

In global industrial networks, a country’s decision to purchase intermediate products
during production stage j is represented by a decision set Djn = (j, n), indicating that the
country purchases intermediate goods from another country in that production stage. The
collective purchasing decision sets of multiple countries’ paths can be represented as λi

λl′ =

{
Dl′ |D(n|j=j′)

=
(

j′, n
)
, j′ ∈ {1, 2, · · · , J}, n ∈ {1, 2, · · · , N}

}
(15)

Assuming that there is one country participating in each stage of the division of
labor, we can construct a network set consisting of N J industrial chains, denoted as λi =
{λ1, λ2, · · · , λN J}, where i represents the country that consumes the final product. In
this network set, each network represents a specific combination of countries involved
in the production process, with the final product being consumed by country i. The
number of networks in the set is determined by the number of countries that consume the
final product.

With the concept of global industrial chain networks, we can define multiple reference
and multiple referred relationships within the network. In a directed global industrial
chain network, if intermediate products from country lk0(j) flow to the next production
stage process while also pointing towards lK(j + 1), where K ∈ {k1, k2, · · · , kn}, it can be
said that country lk0(j) has multiple reference relationships in the global division of labor
process. This can be expressed mathematically as

lk0(j)n {lk1(j + 1), lk2(j + 1), · · · , lkn(j + 1)} (16)

The symbol n is introduced as a directed multi-reference relationship symbol, rep-
resenting the reference relationship where a single node country in the directed network
points to a set of multiple node countries. By utilizing Equation (16), we can calculate the
probability of multi-reference relationships within the directed network under the division
of labor conditions:

π
(
i | {l(j) | lk1(j + 1), lk2(j + 1), · · · , lk∗(j + 1)}

)
= {π(i | l(j)),

π(i | lk1(j + 1)), π(i | lk2(j + 1)), · · · , π(i | lk∗(j + 1))}
(17)
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If intermediate products flow from country lK(j − 1) to country lk0(j) in the next
production stage, where K ∈ {k1, k2, · · · , kn}, it implies multiple references to country lk0(j)
in the jth production stage. Mathematically, this can be expressed as

lk0(j)o
{

lk1(j− 1), lk2(j− 1), · · · , lk0(j− 1)
}

(18)

Utilizing Equation (18), we can calculate the probability of directed referential rela-
tionships:

π
(({

l(j) | lk1(j− 1), lk2(j− 1), · · · , lkn(j− 1)
}
| i
))

={
π
(
i | lk1(j− 1)

)
, π
(
i | lk2(j− 1)

)
, · · · , π(i | lk∗(j− 1)) | π(i | l(j))

} (19)

Considering that, in reality, we can mathematically represent the complex network re-
lationship of country i in the global industrial chain network using Equations (16) and (18),{

lk1(j− 1), lk2(j− 1), · · · , lk∗(j− 1)
}
n lk0(j)n

{
lk2(j + 1), lk2(j + 1), · · · , lkn(j + 1)

}
(20)

The expression of participation probability in a directed network with multiple ref-
erences and multiple referred relationships is complex and cannot be easily presented in
a concise form as shown in Equation (20). In an industrial chain network, the presence
of multiple references and multiple referred relationships results in a large number of
probability relationships, which grows exponentially with the number of stages in the
division of labor. Therefore, the participation probability πli calculated using Equation (14)
only reflects the participation rate of local countries, and to measure resilience accurately,
it is necessary to calculate the participation rates of various countries from a global per-
spective. Hence, this paper further utilizes the PageRank algorithm to calculate the global
participation probability of each country in the industrial chain, considering the cases of
multiple references and multiple referred relationships within the network. The participa-
tion probability is computed in a complex network environment, which reflects a country’s
ability to withstand adverse external shocks within a complex system. Thus, the calculated
participation probability, denoted as πPR, serves as an indicator of a country’s resilience.
The calculation method for a country’s resilience in the global Industry chain is further
demonstrated in Section 4.

This chapter constructs a multi-country, multi-stage global industrial chain production
model, analyzes the status and role of each country in the global industrial chain, evaluates
the resilience of the global industrial chain, and explores the factors that affect its resilience,
such as domestic value added, trade openness, labor elasticity, and human capital. The
comprehensive explanation of these factors helps to reveal the formation mechanism
and influencing factors of global industrial chain resilience, and provides a basis for the
subsequent chapters of the study.

4. Data Source and Variable Construction
4.1. Data Source

Eora MRIO (Multi-Region Input–Output table) covers 189 countries and includes 26
industry classifications. Each year’s input–output tables comprise the intermediate demand
matrix, final demand matrix, and value-added matrix. A summarized representation of
these matrices can be seen in Table 1. Other studies in international research have utilized
the Organization for Economic Co-operation and Development database (OECD), Inter-
Country Input–Output (ICIO) tables or the World Input–Output Database (WIOD). But
they cover fewer countries and have a relatively shorter time span. By leveraging the Eora
MRIO, we can overcome these limitations and measure the resilience of multiple countries
in the global industrial chain over an extended period. In addition to assessing country
resilience, the dataset also facilitates the computation of participation rates, iceberg trade
costs matrices, and domestic value-added shares.
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Table 1. Simplified schematic diagram of an input–output table 3.

Input Use & Value Use Final Use
Total UseCountry

1 · · · Country
J

Country
l · · · Country

J

Output supplied

Country
1 H11 · · · H1J F11 · · · F1J Y1

...
... ∵ ...

... ∵ ...
...

Country
J HJ1 · · · HJ J FJ1 · · · FJ J YJ

Value
added W1L1 · · · WJ LJ

Gross
output Y1 . . . YJ

The human capital index, labor elasticity, total factor productivity, and gross domestic
product (GDP) are derived from the data of PWT9.1 for the period 1990–2019. The descrip-
tive statistics of these variables are presented in Table 2. It is evident that there is a notable
difference in resilience at both the national and industry levels. Specifically, at the national
level, the difference in resilience between the maximum and minimum values is 0.33, and at
the industry level, the difference is 0.35. It highlights the heterogeneity in resilience among
entities within the global economy, emphasizing the importance of understanding and
assessing the factors that contribute to resilience in order to enhance the overall stability
and adaptability of countries and industries in the face of challenges.

Table 2. Descriptive statistics of variables.

Variable N Mean SD Min Max

π-country 6048 0.010 0.010 0.000 0.330
π-industry 832 0.004 0.006 0.000 0.350
Ice_cost 6048 9.69 8.99 2.99 281.20
DVA_share 6048 0.61 4.64 −182.20 1.17
HC 4320 2.42 0.70 1.03 4.35
TFP 3450 0.65 0.24 0.070 1.53
Labor_share 4077 0.51 0.12 0.09 0.90
lnGDP 5070 11.08 2.02 5.30 16.84

4.2. Variable Construction
4.2.1. Global Industrial Chain Resilience

Global industrial chain resilience refers to a country’s ability to adapt and recover
quickly from external shocks and internal disruptions within the complex global system.
Input–output tables provide valuable insights into the position and influence of countries
in the division of labor, as well as the interdependencies between industries. They enable
the analysis and evaluation of resilience at both the country and industry levels. Before
conducting any calculations, it is crucial to construct a participation rate matrix that includes
all countries worldwide. Some scholars, such as Antràs and Gortari (2020) [27], have
used structural modeling techniques to estimate parameters for calculating participation
rates. However, it is important to recognize that these methods rely on the assumptions
of the theoretical model and that precise parameter estimation often requires numerical
simulations that may not perfectly align with real-world conditions. To address this issue,
we adopt the approach employed by Aslam et al. (2017) [33] and utilize data from the
Eora MRIO. The participation rate of a country is measured by the share of value added in
bilateral trade between that country and another. This method captures the contribution
of a country’s products or services to the value of production in another country, thereby
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reflecting the level of participation between the two countries. The specific calculation
formula for the participation rate is as follows:

TVAv =


v̂1 0 · · · 0
0 v̂2 · · · 0
...

...
. . .

...
0 0 · · · v̂N




B11 B12 · · · B1N
B21 B22 · · · B2N

...
...

. . .
...

BN1 BN2 · · · BNN




e1 0 · · · 0
0 e2 · · · 0
...

...
. . .

...
0 0 · · · eN

 (21)

In Equation (21), where N is the total number of countries covered in the Eora MRIO
(specifically, N = 189), it refers to the construction of the participation rate matrix between
countries. The symbol v̂N represents the value-added ratio, and the corresponding diagonal
matrix is calculated by subtracting the sum of the direct consumption coefficients of each
country from the identity matrix. The specific calculation formula is as follows. The matrix
V̂ is defined as I189×189 − diag(∑N=189

s As1, . . . , ∑N=189
s As189), where s ∈ {1, 2, . . . , N} and

AsN represents the direct consumption coefficient of country N. The matrix BNN denotes
the inverse matrix of the Leontief matrix. The value eN represents the total export trade
volume of country N. The matrix TVAv obtained corresponds to πli in the previous
theoretical model, representing the probability of a country participating in the production
stage of another country along the “snake-type” path.

The TVAv matrix, as mentioned previously, does not fully capture the intricate multi-
ple references and the division of labor paths from a global perspective. Consequently, to
determine the participation probability of countries, we utilize the PageRank algorithm.
This algorithm allows us to analyze the relationship between the local participation prob-
ability π(l(j) = i) of countries in the chain and the overall structure. Through iterative
traversal of the network, the algorithm converges to a stable state, enabling us to calculate
the participation of each country and evaluate its resilience within the chain.

In summary, assuming that country i is participating in the division of labor in a
networked manner, where i ∈ {1, 2, . . . , N}, we define ODi as the outdegree of country i,
and πi represents the resilience value of country i. The calculation formula is

π(l(j = i) | t + 1) =
1− q

N
+ q ∑

i≡{1,2,··· ,N}

π(l(j = i) | t)
ODi

(22)

In Equation (22), the maximum number of iterations is defined as 1000. Here, the variable
N represents the total number of countries. To address the issue of isolated country nodes
resulting in an outdegree of 0, we set the damping factor q to 0.85. This choice ensures that
even if there are isolated nodes, the calculations can still be performed. Regarding the initial
resilience value π at time t = 0, we select {π(l(j) = i) | i ∈ {1, 2, · · · , N}, j ∈ {1, 2, · · · , J}}
as the representation. When the π value for a particular country i is high, it indicates that
the country has a greater level of involvement and centrality in the global industrial chain
network. In such cases, we can consider that country i possesses higher resilience.

4.2.2. Cost of Iceberg Trading

Based on the previous analysis, we observe the presence of iceberg trade costs in
international import and export trade. To calculate these costs, we refer to Head and
Ries (2001) [34], who proposed a method for estimating bilateral trade costs between
countries based on the share of final products in bilateral trade. We utilize Eora MRIO to
compute the iceberg trade cost matrix. In this context, we define Min as the quantity of
intermediate products that country i inputs from country n, and Fin represents the amount
of intermediate products used by country i from country n. The proportion of final products
purchased by country i from country n is expressed as

τF
ni =

Fni

∑I
n=1 Fni
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We determine the bilateral iceberg trade cost between countries i and n as follows:

τin =

(
τF

inτF
ni

τF
ii τF

nn

)−1
2θ

where θ is a parameter associated with the elasticity of substitution. After obtaining the
iceberg trade cost matrix τin, we calculate the average trade cost faced by country i by
taking the row average of this matrix. We denote this average trade cost as τi.

4.2.3. Domestic Value Added Share

We already completed the calculation of the matrix of value-added ratios matrix TVAv.
The diagonal elements of this matrix represent the proportion of a country’s own value
added to its total export trade. Therefore, we can extract the diagonal elements to obtain
the domestic value-added ratio data for each country. These values provide insights into
the extent to which a country’s exports rely on its own domestic value added, as opposed
to incorporating imported value added from other countries.

4.2.4. Human Capital Index

Using the education attainment data based on Barro and Lee (2013) [35] and the
education return data calculated by Patrinos and Psacharopoulos (2004) [36], we compute
the average human capital index of a country’s population. This indicator is used to
measure a country’s human capital situation.

4.2.5. Labor Force Elasticity

We use the share of labor compensation in a country’s gross domestic product to
measure its labor elasticity.

4.2.6. Total Factor Productivity

We calculate the total factor productivity (TFP) related to welfare using purchasing
power parity (PPP), and compare it with the United States (whose value is 1) as a benchmark.
This indicator is used to measure a country’s technological level.

5. Discussion
5.1. Spatial Analysis

The analysis of resilience measurements for the years 1990, 2000, 2010, and 2021 is
conducted using Stata 17 software. The results obtained are utilized to generate a spatial
evolution map illustrating the resilience of the global industrial chain as shown in Figure 1.
Based on the distribution characteristics of resilience values across the mentioned years,
we classify them into distinct categories. The resilience values are categorized as follows:
0.0050–0.0100 represents a relatively lower level of adaptability; 0.0100–0.0500 indicates a
moderate level of robustness; and 0.0500–0.1100 denotes a higher level of resilience. The
United States consistently demonstrates a high level of resilience, emphasizing its pivotal
role in the division of labor within the global industrial chain. This can be attributed to the
United States’ exceptional competitiveness and its advantages in high-value sectors, such
as technology, finance, and healthcare. These industries serve as key drivers for the United
States’ active engagement, allowing it to secure a competitive edge. European countries
and Japan also exhibit notable strength in terms of resilience. These regions have diverse
industrial structures and place a strong emphasis on innovation, which contributes to their
sustained performance and resilience within the global industrial chain.

Additionally, Figure 1 illustrates a significant increase in the resilience of BRICS
countries (China, India, Russia, and Brazil) from 1990 to 2021. This highlights their growing
importance and ability to play pivotal roles in the industrial chain. Several factors contribute
to this positive trend. First, BRICS countries benefit from abundant resources and a large
labor force. China, in particular, possesses the world’s largest labor market, while India
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excels as a major exporter of IT services. Furthermore, these nations’ governments have
implemented effective policies and measures to attract foreign investment and promote
economic development. Notable examples include China’s “Belt and Road” Initiative and
India’s “Make in India” campaign, both aimed at supporting their economic expansion.

However, African and Central Asian countries have consistently displayed lower levels
of resilience, facing challenges in recovering swiftly from external shocks within limited
timeframes. This situation can be largely attributed to inherent limitations stemming from
their relatively limited industrial diversification. These regions heavily rely on traditional
raw materials and industries with low value-added sectors, while their presence in high-
value-added and technology-intensive sectors remains notably deficient.

Figure 1. Temporal evolution of resilience spatial distribution (1990–2021).

5.2. Temporal Trend

To analyze the temporal changes in the resilience of global industrial chains at a
global level, we employ kernel density estimation and plot the density for the years
1990, 2000, 2010, and 2021 (refer to Figure 2). The analysis reveals a distinct long-tail
distribution pattern in the resilience of global industrial chain across the four years 4. A
noticeable leftward shift in the mean of the density distribution of resilience is observed
after 2000, indicating a weakening of the overall resilience level. One plausible explanation
for this phenomenon could be the adoption of trade protectionism policies by certain
countries and regions in recent years. Measures such as tariffs and import restrictions
have contributed to increased trade barriers and elevated risks, thereby reducing resilience.
Furthermore, it is important to acknowledge the significant impact of major public health
events. The outbreak of the COVID-19 pandemic in 2020 serves as a prominent example,
leading to widespread disruptions, halted production activities, and a substantial decline in
international trade. These consequences have had profound effects on the global economy
and highlight its vulnerability in the face of such events.

The variance of the kernel density distribution indicates a noticeable decrease in the
steepness of resilience in 2021 compared to 2010, suggesting a widening divergence in
resilience levels among countries. The analysis reveals that countries that initially had lower
levels of resilience have experienced further declines in this context. This phenomenon
can be attributed to the dominant positions held by certain countries in global technology
and innovation. These countries are able to effectively adapt to evolving market demands,
optimize production efficiency, and enhance product quality. As a result, their capacity to
withstand and recover from disruptions within the framework has been strengthened.
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Figure 2. Kernel density distribution of resilience.

To analyze the resilience changes in selected countries or regions, the study focuses on
19 major countries or regions, including Australia, Brazil, Canada, China, Germany, Spain,
France, the United Kingdom, Indonesia, India, Japan, South Korea, Mexico, Russia, Turkey,
the United States, Hong Kong, Macau, and Taiwan. These countries and regions were
chosen because, although they represent less than 1/10 of the total number of countries
globally, they account for over 60% of the global population and over 70% of global GDP
based on the PWT 9.1 data. Thus, studying the changes in resilience levels in these sample
countries provides a strong representation of the overall trend. Figure 3 presents the
temporal changes in resilience for the 19 countries and regions mentioned. From 1990 to
2021, their resilience exhibited distinct patterns. A noticeable decline in resilience occurred
in 1996, followed by a significant improvement in 1999. This suggests that these countries
experienced changes in resilience around the time of the 1998 financial crisis. Prior to the
crisis, resilience weakened, indicating a decreased ability to withstand external shocks.
However, after the crisis, countries demonstrated an enhanced capacity to swiftly recover
and restore normal functioning, leading to an increase in resilience. It is worth noting that
starting from 2015, the resilience levels of the United States and China diverged from those
of other countries. The gap in resilience between these two nations and other countries
gradually widened. By 2021, China’s resilience level surpassed that of the United States,
contributing significantly to its ability to maintain robust economic vitality even after the
outbreak of the COVID-19 pandemic.

Figure 3. Temporal trends in global industrial chain resilience at the national level: 1990–2021.
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We conduct a comprehensive examination of the temporal dynamics of resilience
within global industrial chains at the industry level. To accomplish this, we utilize the
Eora MRIO, which offers a classification of 26 industries. The time-varying trends of
industry-specific resilience from 1990 to 2021 are presented in Figure 4. The analysis
reveals a remarkable level of resilience in the manufacturing sector. This can be primarily
attributed to the decentralized distribution of value chains within manufacturing, which
effectively mitigates risks associated with excessive concentration of products or services.
The persistent resilience of the manufacturing industry also highlights China’s remarkable
trajectory in terms of resilience. As a prominent manufacturing powerhouse, China has
consistently demonstrated robust growth in its manufacturing sector. According to data
released by the Ministry of Industry and Information Technology of China, in 2022, China’s
manufacturing value added accounted for nearly 30% of the global total, and the sector has
maintained its position as the world’s largest for 13 consecutive years. It is incontrovertible
that upholding a formidable presence in the manufacturing sector serves as a paramount
determinant of a nation’s resilience amidst the intricacies. In contrast, the resilience levels
of the postal and telecommunications services, public utility sectors, including electricity,
gas, and water supply, as well as trade modes, such as re-exports and re-imports, exhibit a
relatively diminished magnitude.

Figure 4. Temporal evolution of mean resilience across industries (1990–2021).

5.3. Impact Factors

To further understand the underlying factors that shape global industrial chain re-
silience, a detailed analysis of influencing factors is necessary. These factors go beyond
the scope of the theoretical model and include variables such as domestic value addi-
tion, labor elasticity, and human capital. The third section of the scholarly work provides
comprehensive explanations of each of these variables. Furthermore, by conducting the
VIF test and observing that all VIF values are below the threshold of 10, it confirms that
there is no significant multicollinearity among the selected variables related to industrial
chain resilience. This finding supports the rationale behind considering these variables as
independent factors influencing resilience.

Considering the inherent heterogeneity across countries in terms of the unobservable
individual-specific effects and the time-varying unobserved time trends associated with
the impact of different factors on resilience, we employ a fixed effects model to scrutinize
the intricate interplay between a country’s resilience and the myriad of influencing factors.
The model is precisely formulated as follows:

π−country yit = Ice_costit−1 + DVA−shareit−1 + HCit−1

+ TFPit−1 + Labor_shareit−1 + λi + δt + εit
(23)

In Equation (23), where i represents the country, t represents the year, π−country yit
represents the resilience level of a country in a given year, λi represents individual fixed
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effects for each country, δt represents time fixed effects, and εit represents random error
terms. To address the potential endogeneity issues arising from reverse causality between
explanatory factors and resilience, all explanatory variables are lagged by one year. To
account for heteroscedasticity, robust standard errors are used, clustered at the country-year
level. This clustering approach considers potential heterogeneity and correlation within
each country–year observation, resulting in more reliable test results.

Furthermore, to enhance the robustness of the estimates obtained from the fixed
effects model, a centrality metric called degree is formulated. This metric serves as an
indicator of localized resilience exhibited by countries. The construction of this centrality
measure follows the methodology outlined by Wasserman and Faust (1994) [37] for devising
centrality metrics within the realm of resilience analysis:

Degreeit =
n

∑
j=1

yij,t (24)

Degreeit represents the centrality of country i in the network in year t. yij,t denotes the
extent to which country i participates in the production division of labor of country j in
year t within the industrial chain. To facilitate comparison, we have normalized Degreeit.

The empirical findings of Equation (23) are presented in Table 3. The results indicate a
significant inverse relationship between iceberg trade costs and both the macro-level and
micro-level resilience of countries. These findings suggest that reduced transportation costs
facilitate the seamless circulation of intermediate goods across international, enabling coun-
tries to effectively leverage production specialization and thereby enhance their resilience
architecture. Furthermore, the negative coefficient of iceberg trade costs on the resilience
highlights the advantages of countries expanding their trade openness and lowering tariff
barriers. This fosters heightened levels of trade cooperation, fostering the seamless flow of
advanced products and cutting-edge technologies network. Consequently, it empowers
countries to enhance their technological capabilities, fortify their position, and strengthen
their overall resilience.

The proportion of domestic value added has been found to have a significant posi-
tive impact on a country’s resilience within local global industrial chains, indicating its
importance in enhancing resilience at the local level. A higher proportion of domestic
value added suggests that a country has a stronger capability for independent research and
production, leading to higher value-added activities and greater resilience within its local
industry chains. However, when examining resilience at the global level, the influence of
the proportion of domestic value added is not as evident. This is because global production
specialization is more complex, and a lower proportion of domestic value added does not
necessarily indicate a weak position for a country.

Both human capital and total factor productivity have been found to have a significant
positive impact on a country’s resilience in global industrial chains, regardless of whether
it is at the global or local level. This highlights the critical role of human capital and
technological advancements in maintaining a country’s core competitiveness within the
global industrial chains. Consequently, investing in human capital development and
fostering technological advancements are crucial strategies for countries to enhance their
position and resilience within global industrial chains. These factors contribute to improved
labor productivity, industrial competitiveness, and overall economic performance, enabling
countries to adapt to external shocks and disruptions more effectively. Labor elasticity
has been found to have a significant inverse impact on a country’s resilience in global
industrial chains, both at the local and global levels. At the local level, higher labor
elasticity promotes an increase in resilience. This suggests that countries with high labor
returns and a stable labor supply are better able to optimize their industrial structure
and adapt to changing market conditions. A flexible labor market allows for the efficient
allocation of labor resources, leading to increased productivity and competitiveness within
local industrial chains. In contrast, at the global level, higher labor elasticity and a larger
share of labor costs have a negative impact on a country’s resilience. This indicates that
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countries heavily reliant on low value-added industries, where labor costs are a significant
proportion of production costs, face challenges in maintaining a competitive advantage
in global industrial chains. Such industries often face intense global competition and are
more susceptible to disruptions and shocks.

Table 3. Estimation results of resilience determinants.

(1) (2)
π-Country Degree

L. Ice_cost −0.0004 ** −0.0030 ***
(0.0002) (0.0011)

L. DVA_share 0.0005 0.0035 ***
(0.0004) (0.0013)

L. H C 0.0041 *** 0.0443 ***
(0.0009) (0.0064)

L. T F P 0.0045 *** 0.0364 ***
(0.0009) (0.0052)

L. Labor_share −0.0042 ** 0.0345 ***
(0.0018) (0.0102)

Constant −0.0005 −0.0653 ***
(0.0028) (0.0201)

Country Fixed Effects Yes Yes
Year Fixed Effects Yes Yes
N 3450 3450
R2 0.751 0.936

Note : Robust standard errors clustered at the country level are presented in parentheses. The significance levels
** and *** correspond to the 5%, and 1% levels.

6. Conclusions and Recommendation
6.1. Conclusions

By constructing a multi-country and multi-stage global industrial chain production
model and utilizing Eora MRIO data from 1990 to 2021, this study analyzed the formation,
measurement, and influencing factors of global industrial chain resilience. The research
findings are as follows: Firstly, within the framework of the multi-country and multi-stage
global industrial chain production model, the formation of a country’s resilience is primar-
ily determined by its technological proficiency and the cost of utilizing production factors.
Secondly, concerning the spatial pattern of global industrial chain resilience, developed
countries, such as the United States and those in Europe, have consistently maintained a
high level of resilience, while the resilience of BRICS countries has notably improved. In
contrast, countries in Africa and Central Asia have consistently exhibited lower levels of
resilience. Furthermore, examining the temporal trends in global industrial chain resilience
reveals that disparities between countries have gradually widened since 2010. China’s
position within the global industrial chain has significantly elevated, resulting in a substan-
tial increase in resilience levels, surpassing that of the United States by 2021. Moreover,
the manufacturing sector has maintained a higher level of resilience within the global
industrial chain, whereas the resilience of the service sector has become comparatively
weaker. Finally, empirical tests confirm that hidden trade costs and technological profi-
ciency positively impact a country’s resilience within the global industrial chain. Human
capital also plays a significant role in enhancing a country’s resilience, while domestic
value-added ratios and labor elasticity only exhibit positive effects on the resilience of
countries within domestic networks.

6.2. Recommendation

This section outlines the following policy recommendations, based on the aforemen-
tioned conclusions, with the aim of strengthening national resilience within the global
industrial chain.

To start with, enhancing technological capabilities and overall factor productivity is
of the utmost importance. These factors play a critical role in determining a country’s
resilience within the global industrial chain. In light of this, governments should increase
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investments in research and development, encourage domestic enterprises to allocate more
resources towards technological innovation, and facilitate collaboration between academia,
industry, and research sectors to both advance and implement cutting-edge technologies.
This concerted effort will not only enhance national production efficiency and product
quality but also bolster the country’s fundamental competitiveness in the global industrial
chain, thereby fortifying its ability to withstand external shocks.

Moreover, promoting trade openness and fostering cooperation are vital components.
Iceberg trade costs are mainly caused by high tariffs and non-tariff barriers, which restrict
the cross-border flow of goods and services. To address this challenge, governments should
undertake measures such as reducing trade barriers, streamlining trade procedures, and
facilitating trade liberalization and regional integration. Concurrently, governments should
also strengthen the development and negotiation of international trade regulations, culti-
vating an open and transparent external environment while ensuring equal participation
rights for all nations in the global production division. This will empower countries to
more actively and effectively engage in the global industrial chain and effectively respond
to external changes.

Furthermore, nurturing the integration of manufacturing and service sectors holds
significant value. Governments can realize this through initiatives like establishing industry
alliances, promoting technological cooperation, and encouraging innovation partnerships,
all of which contribute to the harmonious advancement of diverse industries along the
supply chain. Additionally, governments should provide support to emerging industries
and high-tech enterprises, while gradually phasing out obsolete production capacities
and integrating traditional industrial structures. These efforts will facilitate the seamless
convergence of manufacturing and service sectors, ultimately enhancing the efficiency and
cohesion of the entire production chain.

In conclusion, with the acceleration of globalization, the global industrial chain is
becoming increasingly intricate, dynamic, and diverse. This presents both heightened
competition and cooperative opportunities for countries participating in the global indus-
trial chain. Governments should tailor their policies using scientific evaluation metrics
and adaptive interventions that align with their positions and developmental trajectories
within the global industrial chain. Such an approach will effectively elevate the stability
and flexibility of the global industrial chain.
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Notes
1 Factor utilization costs encompass factors such as factor input costs and Iceberg trade costs.
2 Openness includes various Iceberg trade costs associated with international trade, such as transportation costs, tariff barriers, and

cultural differences.
3 This table represents a simplified illustration of the Eora MRIO, which does not include the intra-industry input–output

relationships within the table. For the specific structure and detailed industry classifications, please refer to the official website at
http://worldmrio.com.

4 To highlight the significant portion of resilience distribution (referred to as head classes), values below 0.02 representing less
frequent occurrences (tail classes) were excluded from the analysis.
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