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Abstract: The growing consumer demand for unique products has made customization and personal-
ization essential in manufacturing. This shift to low-volume, high-mix (LVHM) production challenges
the traditional paradigms and creates difficulties for small and medium-sized enterprises (SMEs).
Industry 5.0 emphasizes the importance of human workers and social sustainability in adapting to
these changes. This study introduces a digital twin design tailored for LVHM production, focusing
on the collaboration between human expertise and advanced technologies. The digital twin-based
production optimization system (DTPOS) uses an intelligent simulation-based optimization model
(ISOM) to balance productivity and social sustainability by optimizing job allocation and scheduling.
The digital twin model fosters a symbiotic relationship between human workers and the produc-
tion process, promoting operational excellence and social sustainability through local innovation
and economic growth. A case study was conducted within the context of a printed circuit board
assembly (PCBA) using surface mount technology to validate the digital twin model’s efficacy and
performance. The proposed DTPOS significantly improved the performance metrics of small orders,
reducing the average order processing time from 19 days to 9.59 days—an improvement of 52.63%.
The average order-to-delivery time for small orders was 19.47 days, indicating timely completion.
These findings highlight the successful transformation from mass production to mass personalization,
enabling efficient production capacity utilization and improved job allocation and scheduling. By
embracing the principles of Industry 5.0, the proposed digital twin model addresses the challenges
of LVHM production, fostering a sustainable balance between productivity, human expertise, and
social responsibility.

Keywords: digital twin; simulation; low-volume, high-mix production; printed circuit board
assembly; modelling

1. Introduction

With the advent of Industry 4.0, manufacturers are shifting from mass production
to mass customization, designing products to meet unique customer needs [1,2]. This
shift begins with the new product development process. Mass production typically in-
volves high-volume, low-variety manufacturing, while mass customization necessitates
a low-volume, high-variety model that produces a broad array of tailor-made products
in smaller quantities [3]. In order to meet the growing demand for bespoke products,
manufacturers are transitioning from a high-volume, low-variety (HVLM) production
model to a low-volume, high-variety (LVHM) model. This strategy allows manufacturers
to concentrate on specific customer segments and offer a wide variety of product varia-
tions, enabling mass customization. Despite the significant challenges associated with this
transition, manufacturers must be competitive and maintain a substantial market share in
customized products.
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Implementing a low-volume, high-variety strategy, for instance, introducing new
products and managing small customer orders in a high-volume production setting without
impacting overall efficiency, poses significant challenges [4]. Manufacturers often grapple
with managing diverse product designs due to the limitations and resource constraints
of existing production facilities and machinery [5]. Manufacturers typically prioritize
high-volume, low-variety production orders to maximum economic benefit. As a result,
the introduction of a small-scale new product and customer orders often get overlooked in
favor of customers who provide a larger amount of business. This focus on large orders
can lead to small orders being side-lined, which can be detrimental to new or small-scale
business customers who may become large-scale business customers in the future.

Moreover, production supervisors often rely on subjective criteria, such as personal
experience or customer relationships, to make decisions on job prioritization, rather than
objective or strategic criteria. These decisions can be inconsistent and misaligned with
corporate strategy and marketing plans, resulting in significant business impacts, both
positive and negative. There is an opportunity for manufacturers to develop more system-
atic, data-driven methods for optimizing order scheduling. In practice, production orders
arrive at the factory and are processed in a dynamic system, meaning that order priorities
may shift during the job allocation process. This dynamic nature of the system makes
the optimization process for job allocation and scheduling far more complex under mass
personalization initiatives, with conventional optimization approaches being effective but
computationally demanding in such an environment.

In order to address these challenges, a digital twin model featuring an intelligent
simulation-based optimization model (ISOM) is proposed to improve production perfor-
mance in dynamic environments with numerous interacting components and unpredictable
events. As shown in Figure 1, the typical SMT-based production lines for handling PCBA
production orders are considered. In the conventional stage, production optimization was
based on a specific system state assumption. Whenever the system state changed, the
optimization process had to be re-run to find the best solution. However, in the era of
digital twins, virtual replicas of the production lines can account for dynamic system states,
while the ISOM provides optimal solutions through simulation analysis. Simulation [6] is
beneficial for analyzing dynamic systems with multiple interacting components and unpre-
dictable events. It can help predict a range of possible outcomes from various decisions
by exploring different scenarios. This research is driven by the real-world challenge of
designing and building a low-volume, high-mixed (LVHM) production workshop. Such
a workshop can provide low-volume manufacturing services to startups, aligning with
government initiatives to commercialize research results. In order to assess the proposed
concepts’ viability and performance, a case study was conducted on a surface mount
technology (SMT)-based production line for the printed circuit board assembly (PCBA)
process. This study allows for a comparison between traditional and digital twin-based
approaches while gauging the practicality of production optimization in an LVHM envi-
ronment. Through this, the feasibility of implementing mass personalization in line with
Industry 5.0 can be evaluated.

With the aid of the proposed solution, the linkages between the role of humans and
social sustainability in the LVHM production environment can be established. In the LVHM
production environment, the digital twin solution plays a pivotal role in harmonizing hu-
man expertise with social sustainability goals. Human workers are essential to overseeing
operations, monitoring machinery, and making real-time decisions based on their judgment
and experience. The digital twin solution, through model-based simulations, complements
human expertise by optimizing the production system across its entire life cycle, from
design and planning to diagnostics and optimized operations. This collaborative approach
not only enhances the efficiency and effectiveness of the LVHM production process but
also contributes to social sustainability by accelerating time-to-market capability for new
product introductions and fostering local innovation. By offering manufacturing design
services to local start-ups, the digital twin solution helps mitigate the risks associated with
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scaling up, enabling these companies to focus on core propositions and market develop-
ment. Ultimately, the synergy between human expertise and the digital twin solution drives
both operational excellence and social sustainability in the LVHM production landscape.
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The rest of the paper is organized as follows. Section 2 provides a literature review on
LVHM production, as well as advanced simulation and optimization techniques. Section 3
elaborates on the proposed digital twin model with the ISOM. A case study involving the
use of the proposed digital twin model to optimize job allocation and scheduling in the
SMT production line for the PCBA process is presented in Section 4. Section 5 discusses the
corresponding results and implementation to highlight the value of the proposed digital
twin model. Finally, Section 6 draws the conclusion of this research.

2. Literature Review

In this section, recent research studies focusing on the following three fields are
reviewed: (i) the evolution of production engineering, (ii) simulation and digital twins in
production, and (iii) the state-of-the-art techniques in simulation-based optimization. This
review allows for the identification of research gaps.

2.1. Evolution of Production Scheduling

Recent investigations in the field of production research have been conducted across
various industries by scholars, revealing that a reduction in production unit cost and an in-
crease in productivity rate can be attributed to the learning effect within the manufacturing
industry [7]. This learning effect arises from the transfer of knowledge or shared experience
from the production of past similar items, which is then deployed into new production
shipments. This phenomenon, termed by the researchers as the ‘learning effect’, helps foster
self-competence in production scheduling and job allocation within a company, learning
from prior assignments [8]. However, the systematic capture of this experiential knowledge
for future improvements and knowledge retention is often neglected within companies.
Historically, the learning effect has been widely applicable in the field of management
science. However, its application in the context of production scheduling has not been
extensively explored. Existing studies often focus on isolated production processes or
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single production systems [9,10] rather than a sequence of interconnected work processes
forming a comprehensive production chain environment. Consequently, the ability of these
silo production systems to accommodate multi-configuration capabilities is limited.

Traditional manufacturing industries tend to optimize production output and schedul-
ing plans based on past experiences and techniques learned from previous production
activities. These optimization procedures focus on routing flexibility, concurrent multi-stage
processes, a reduced makespan, and shared resources [11]. Researchers have suggested
the use of a flexible manufacturing system (FMS) and various algorithms, such as genetic
algorithm, simulated annealing algorithm, memetic algorithm, and particle swarm algo-
rithm, to solve scheduling optimization problems. To be specific, traditional scheduling
and job allocation practices are often grounded in the assumptions that the shop floor is
perpetually idle with limitless resources at disposal, that job allocation is limited to a single
machine per operation, and that process planning and scheduling focus on optimizing
single work operations rather than entire production floors. Multiple methods, including
the control of production lead times through order release [12], workload control [13], and
constant work-in-process [14], have been proposed to manage job flow within the shop.

In the current era of short product life cycles and economic volatility, the need for
agile and flexible production systems is paramount. These systems must be capable of
reconfiguring to accommodate multiple product designs. The advent of the cyber-physical
production system (CPPS) offers new opportunities for self-organization in production
arrangements. CPPS utilizes multi-agent systems and knowledge modeling for managing
multiconfiguration production, compiling various work processes for managerial decision-
making [15]. Production planning and scheduling present enduring challenges for the
manufacturing industry. Many studies [16–18] have been conducted to develop strategies
for maximizing production output in the face of unpredictable and random events in
continuous or batch manufacturing processes. However, many small and medium-sized
enterprises (SMEs) in the manufacturing sector have struggled to incorporate the smart
manufacturing paradigm into their operations over the past few decades [19]. In response,
manufacturers are seeking expedient solutions to enhance productivity, machine utilization,
overall equipment effectiveness (OEE), and return on investment (ROI). With the support of
academic innovations and technological advancements, SMEs hope to maintain customer
satisfaction, meet shipment deadlines, and uphold high-quality standards.

Several studies [20] have argued that production scheduling and job allocation should
be treated as separate planning processes rather than a combined workstation. The manu-
facturing industry generally utilizes either sequential or concurrent production planning
methods to estimate the start and end dates for given job assignments. This involves de-
composing a single job assignment into several smaller, subsequent operations to maximize
production output and optimize production floors. However, this approach is most suitable
for the mass production of HVLM items and less applicable for LVHM products in the
current manufacturing environment.

2.2. Simulation and Digital Twins in Production

In production management, research work [21] has posited that the profitability of a
manufacturing firm fundamentally hinges on a high-quality production scheduling and job
allocation system. This system encompasses the initial stages of product design, material
usage, the availability of resources, machine utilization, human resource planning, and
a strategic product launch. Production planning and scheduling systems play a crucial
role in maintaining cost competitiveness by streamlining raw material preparation and
transformation into the final product. The entire value chain, including production systems,
machine availability, and work processes, relies heavily on the effectiveness and efficiency
of production scheduling and job allocation systems. However, these planning components
are highly interrelated and interconnected, not only within the manufacturing firm but also
with customers, business partners, material supply chains, and support vendors.
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Simulation analysis [22] enables the examination of changes in system configuration
and their impacts. Production processes, order workflows, and scheduling can be tested
through simulation across various scenarios, measuring key performance metrics to iden-
tify and select the optimal job allocation solution. The advancements in manufacturing
technology, including industrial software, sensors, communication technology, artificial
intelligence, and big data analytics, have matured and are ready for deployment. The
recent development of smart manufacturing infrastructure has generated significant value
in the manufacturing sector. Real-time monitoring systems offer transparency and trace-
ability of production performance, facilitating the seamless alteration and correction of
system parameters at any time and from anywhere. The growth of smart manufacturing
is based on high-level digital capacity and quality for the future analysis, prediction, and
self-adaptation of manufacturing systems. Due to being supported by cutting-edge infor-
mation technology and the Industrial Internet of Things (IoT), production systems can be
seamlessly connected for data interconnectivity and interpretability.

In the era of Industry 4.0, digital twin (DT) technology is a key driver of building
industrial intelligence, having been adopted in various sectors of the manufacturing indus-
try, including health maintenance, repair, and operations (MRO), product design, facility
utilization, and live dataset collection for manufacturing processes [23]. As a rapidly
developing technology, digital twin serves as a state-of-the-art criterion for advanced
manufacturing. It is a critical component for real-time simulation and decision-making
in complex systems [24]; however, the manufacturing industry often faces challenges in
integrating such technologies. The authors of [25] proposed simulation-based digital twins
(SBDTs) as an online model-based application capable of generating high-fidelity predic-
tions and accurate production forecasts for production systems. Despite the limitations
and challenges associated with implementing the SBDT model, its potential benefits in
job allocation and production scheduling are substantial. A digital twin can provide a
virtual environment for the in-depth analysis of various scheduling options. Additionally,
machine learning and optimization techniques can be applied using the digital twin to
determine an optimized schedule through simulation.

2.3. State-of-the-Art Techniques in Simulation-Based Optimization

Simulation-based optimization (SBO) has emerged as a prominent approach in pro-
duction optimization [26]. It is a powerful tool that aids decision-makers in identifying and
implementing operational improvements by simulating different scenarios and outcomes,
thereby enabling the evaluation of a multitude of strategies under varying conditions. SBO
is particularly useful in production environments characterized by complexity, uncertainty,
and interdependence among variables, where mathematical modeling may not be feasible
or effective. One of the significant facets of SBO is its ability to provide insights into the
system dynamics and relationships that are often non-intuitive or counterintuitive. By
representing real-world systems and their inherent variability, SBO can model complex
interactions and dependencies, making it ideal for complex manufacturing environments
where numerous variables interact in intricate and often unpredictable ways.

Metaheuristic algorithms are integral to SBO and offer flexible, robust optimization
strategies. A prominent method among metaheuristic algorithms is the genetic algorithm
(GA), which utilizes a population-based search technique to identify the Pareto-optimal set
of solutions. Other approaches within the metaheuristic framework incorporate elements
such as fuzzy logic, ant colony optimization, and particle swarm optimization [27,28]. The
NSGA III leverages historical data as foundational information to predict production based
on prior customer order trends. The model considers various scenarios by simulating the
effects of diverse scheduling options, aiming to optimize in accordance with definitive
business objectives, customer relationships, and the inherent trade-offs in a scheduling
plan. Consequently, the NSGA model facilitates informed decision-making in the realms
of job allocation and production scheduling. On the other hand, greedy algorithms form
a category of algorithms that make locally optimal decisions at each stage in the pursuit



Systems 2023, 11, 454 6 of 19

of achieving a global optimum. These algorithms find widespread use in job scheduling
and optimization problems due to their simplicity of implementation and their tendency
to yield satisfactory results. In the realm of job scheduling, greedy algorithms operate by
selecting the subsequent job to be processed based on s a specific heuristic rule, such as the
shortest processing time or the highest priority.

Furthermore, advancements in technology have augmented the capabilities of SBO.
The integration of machine learning and artificial intelligence can enhance the performance
of SBO by improving predictive accuracy, reducing computational times, and aiding in
decision-making processes [29,30]. As a representative machine learning algorithm, deep
neural networks (DNNs) have recently gained traction in tackling scheduling problems. By
possessing the ability to learn intricate patterns and associations between input and output
data, DNNs prove useful in forecasting job processing durations, enhancing schedules,
and curtailing the total makespan of a production line [31]. One strategy for applying
DNNs for scheduling involves reinforcement learning. In this method, the DNN refines the
scheduling policy through environmental interactions and feedback received as rewards or
penalties. The DNN, in turn, adapts its policy to augment rewards and curtail penalties,
leading to a refined scheduling plan. Another strategy employs DNNs for predicting job
processing durations. By using historical data to train the DNN, it can learn to estimate
a job processing time based on its characteristics, such as its magnitude, intricacy, or
priority. This information is then used to optimize the scheduling of jobs on the production
line. DNNs can also be harnessed for optimizing the scheduling of jobs in a setting with
multiple objectives, where the goal is to simultaneously optimize several objectives, such as
minimizing the makespan and reducing energy usage. By training the DNN on historical
data and optimizing for several objectives, it can learn to create scheduling plans that
balance the trade-offs between different objectives. Consequently, DNNs show promise in
resolving scheduling problems in production lines. With the capability to learn complex
patterns and associations in datasets, DNNs contribute to the optimization of production
schedules and the enhancement of production line efficiency.

In addition, the incorporation of Industry 4.0 technologies, such as the Internet of
Things (IoT) and Digital Twins, has enhanced the accuracy and utility of SBO. Real-time
data from IoT devices can be fed into simulation models to improve their accuracy, and
Digital Twins can provide a high-fidelity representation of the production system for more
accurate and detailed simulations [32]. However, SBO is not without its challenges. The
modeling of complex production systems can be time-consuming and computationally
intensive. Moreover, the quality of the simulation results heavily depends on the accuracy
of the model and the input data. Despite these challenges, the benefits of SBO in identifying
optimal production strategies, reducing costs, improving efficiency, and enhancing overall
system performance make it an invaluable tool in production optimization. Its ability
to model complex systems, coupled with advancements in computation and technology,
offers significant potential for improving production efficiency and effectiveness. As the
manufacturing industry continues to evolve, SBO will undoubtedly play a pivotal role in
navigating this complex landscape.

2.4. Summary of the Literature Review

The research identifies a significant gap in the transition from high-volume, low-variety
(HVLM) production models to low-volume, high-variety (LVHM) models in the manufac-
turing industry, a shift necessitated by the increasing demand for bespoke, mass-customized
products. From the extant literature, although there are a number of research studies about
the job allocation and scheduling problem in the context of Industry 5.0 [33,34], the re-
search on solving such problems in the LVHM production environment for promoting
mass personalization is relatively limited. The challenge lies in managing new product
introductions and small customer orders within high-volume production settings without
impacting overall efficiency. Existing systems often overlook small-scale orders in favor of
high-volume ones, leading to potential disappointment for new or smaller customers and
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misalignment with corporate strategies and marketing plans. The dynamic nature of the
system and the complexity of the job allocation process under mass personalization initia-
tives further complicate the optimization process. Conventional optimization approaches,
while effective, can be computationally demanding in such environments.

In response to these challenges, research on the digital twin model in the LVHM
production environment is urgently needed. This model, unlike traditional production
optimization approaches that rely on specific system state assumptions, accommodates
dynamic system states and offers optimal solutions through simulation analysis. The
research is contextualized within the practical challenge of developing a low-volume,
high-variety production workshop to provide manufacturing services to start-ups, a goal
that aligns with government initiatives to commercialize research results. The research,
therefore, seeks to fill the gap in understanding and implementing mass personalization
strategies in line with Industry 5.0 within a low-volume, high-variety production context.

3. Research Methodology

The research methodology is presented by the design of the digital twin-based produc-
tion optimization system (DTPOS) for the LVHM production process in order to optimize
the job allocation and scheduling between several production lines. The design of the
proposed digital twin-based solution aims to get rid of several computationally expensive
re-runs within the optimization problem. Instead, the inference process by leveraging ma-
chine learning and simulation techniques can be established to adapt to dynamic changes
in the real-life production environment. In this section, the system architecture is first
illustrated to outline the essential components of the DTPOS, and two key modules, namely
(i) cyber-physical data collection and (ii) intelligent simulation-based optimization model
(ISOM), are elaborated.

3.1. System Design and Architecture

Regarding the design of the DTPOS, it consists of two major components, namely
cyber-physical data collection and the intelligent simulation-based optimization model,
following the digital twin paradigm, as shown in Figure 2. In the realm of SMT-based
production lines for PCBA, the implementation of a digital twin holds immense importance.
In this case, a digital twin is a virtual replica of a physical production process, allowing
for real-time monitoring, analysis, and optimization. In the dynamic and rapidly evolving
landscape of PCBA production, where efficiency, precision, and adaptability are paramount,
the digital twin concept has become a promising tool for driving intelligent optimization.
In this study, the physical production environment refers to the SMT-based production lines
for the PCBA operations, covering solder paste printing machines, solder paste inspection,
pick and place machines, reflow ovens, and automatic optical inspection. The processing
speed and capacity of the production machines are modeled in the virtual replica so as to
determine the effective job allocation and scheduling for LVHM production orders. The
entire design of the DTPOS follows the following design principles and ideas. Firstly, the
proposed system entails capturing and modeling the entire production process, including
machines, materials, components, and their interactions. This holistic representation
enables a comprehensive understanding of the system’s behavior and dynamics. By
integrating data from various sources, such as machine sensors, production logs, and supply
chain information, the digital twin provides a rich and accurate simulation environment.
Another of the core principles behind the digital twin in PCBA production lines is its
ability to reflect the dynamic nature of the environment. Traditional, one-off optimization
approaches are ill-suited to cope with the constantly changing conditions and uncertainties
inherent in SMT-based production lines. In contrast, the digital twin offers real-time insights
into the state of the production line, allowing for continuous monitoring, analysis, and
adaptation. It facilitates the identification of bottlenecks, inefficiencies, or quality issues
promptly, enabling swift corrective actions.
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Regarding the two core system modules, cyber-physical data collection is designed to
consolidate not only the production orders from the order management system but also
the data of physical and virtual production lines. The virtual replica of the production
lines is essential for simulating different machine conditions, which influence production
efficiency and capacity. In response to the dynamic nature of the production lines, the
intelligent-simulation-based optimization model is designed to evaluate the order priority
through the deep neural network. The order priority weights, machine configurations, and
production order details are considered in the proposed simulation algorithm to determine
the job allocation and scheduling among the production lines. The optimal job allocation
and scheduling plan is then deployed in the physical production lines, aiming to improve
process productivity and quality.

3.2. Cyber-Physical Data Collection

In order to deploy the proposed system in the production environment, essential data
from the management systems, physical production lines, and virtual production lines are
needed. In order to achieve job allocation and scheduling optimization, the production
order details, including order ID, product ID, order date, due date, and quantity, are
extracted from the order management system. Subsequently, the production lines are
operated, which aims to fulfill as many of the production orders as possible. Regarding
job allocation and scheduling optimization, the machine configuration and operational
constraints are considered. The former refers to the processing speed of the machines per
individual production line, for example, the solder paste printer, the pick and place machine,
the hot air reflow oven, and automatic optical inspection in the SMT-based production
line for PCBA. The latter represents the setup time of the production line of a specific
product. When it comes to the LVHM production process, being able to frequently change
the product type to be manufactured cannot be neglected, and the change of the product
type in the production lines may constitute a specific setup time, covering the fine-tuning of
machine parameters and changes in the electronic components for autonomic replacement.
Therefore, job allocation and scheduling optimization should consider reducing the impact
of the set-up time, which is like the idle time in the production process. In the real-life
production environment, it is difficult to deploy different scenarios in terms of machine
capacities, material availability, and setup time. Therefore, a digital twin of the physical
production lines is developed to perform the simulation and analysis, resulting in the
optimal production practice to be implemented in the physical production lines.
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3.3. Intelligent Simulation-Based Optimization Model

In the intelligent simulation-based optimization model, the DNN is hybridized into
simulation-based optimization to perform job allocation and scheduling with different
production parameters, resulting in enhanced performance for the LVHM production.

3.3.1. DNN for Order Prioritization

In order to perform order prioritization by means of DNN, the proximity to the due
date, order quantity, and setup time of the production orders are considered to develop a
priority rating. In order to leverage the power of the DNN for capturing the knowledge
from domain experts in deciding the priority rating, a historical dataset about the effect of
proximity to the due date (in hours), order quantity (in units), and setup time (in hours) in
the priority rating is collected. Subsequently, the shallow neural network is then applied to
perform fitting between the input and output parameters.

Regarding the design of the neural network, a multi-layer feedforward network with
sigmoid hidden neurons and linear output neurons [35] is built, in which the number of
hidden layers and hidden neurons per layer should be investigated. The mechanism of
an artificial neural network (ANN) revolves around interconnected neurons organized
into input, hidden, and output layers. These neurons process input data by calculating
weighted sums and applying activation functions, such as the sigmoid function. The process
of passing input through the network to generate output is called forward propagation,
which involves a series of matrix multiplications and activation function applications. The
processes from the input layer to the first hidden layer, the first hidden layer to the second
hidden layer, and the second hidden layer to the output layer are mathematically expressed
as in Equations (1)–(3), where a() denotes the activation functions, x refers to the inputs,
and W and b represent the weights and biases, respectively.

h1 = a1(W1x + b1) (1)

h2 = a2(W2h1 + b2) (2)

y = a3(W3h2 + b3) (3)

Learning in ANNs occurs through backpropagation, a technique that adjusts the
weights and biases in the network to minimize prediction errors. Backpropagation em-
ploys gradient descent to update the network parameters based on the gradients of
the cost function [36,37]. Mathematically, the weights and biases are updated, as per
Equations (4) and (5), where L is the loss function and η is the learning rate.

W = W− η
∂L
∂W

(4)

b = b− η
∂L
∂b

(5)

Moreover, the neural network training algorithms play an essential role in capturing
the knowledge from the dataset, such that the decision in selecting the training algorithms,
such as Levenberg-Marquardt, one-step secant, and variable learning rate backpropagation,
in the industrial dataset should be made. In brief, the number of hidden layers, the number
of hidden neurons per layer, and the training algorithms can be investigated to measure the
network performance in terms of the mean square error (MSE). In brief, a sample neural
network for order prioritization is illustrated in Figure 3.
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In addition, the ratios for dividing the training, validation, and testing datasets are
0.7, 0.15, and 0.15, respectively. Allocating 70% of the data to training provides the ANN
model with a substantial amount of information to learn from, enabling it to capture the
underlying patterns and relationships in the data. A larger training dataset helps reduce the
risk of overfitting and improves the model’s generalization capabilities. Reserving 15% of
the data for validation allows for effective model tuning and hyperparameter optimization.
The validation set helps assess the performance of the model during training and prevents
overfitting by revealing if the model is performing well on previously unseen data. Setting
aside 15% of the data for testing offers a reliable and unbiased evaluation of the model’s
performance on completely new data.

3.3.2. SBO for Job Allocation and Scheduling

Once the production orders are prioritized, the job allocation and scheduling in the
SMT production lines can be made according to the sorted production orders in terms of
order quantity and priority rating sequentially, as shown in Figure 4.

In practical production environments, orders are received and processed concurrently,
resulting in potentially fluctuating priority ratings during the job allocation process. Con-
sequently, the decision-making process must interact with the optimization algorithm,
guiding intermediate decisions towards optimal solutions. In these circumstances, simu-
lation can offer valuable insights into potential outcomes, thereby supporting improved
decision-making by considering the range of possible results for any uncontrollable factors.
In order to illustrate this, the elements in the blue nodes include the product and production
information, which serve as constraints for the simulation. The elements in the yellow
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nodes represent the computing processes to work out the optimal solutions (in this LVHM
case, this means facilitating smaller orders), and this can be categorized in different steps
such as sorting, comparing, splitting, and allocating. The elements in the green nodes
represent the results of the computing and assigning steps; the order list of scheduling
solutions has been generated and saved into the corresponding folders.
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Provided that there are p production lines operating in the manufacturing site, the
capacity at the current time, t, and the max capacity of the production lines are specified
as Ct

p and Cmax
p . In order to determine the most appropriate speed for the production

machines, the SBO approach is considered to investigate the production performance over
various production speeds. Although a higher production speed may increase production
efficiency and capacity, the life span of the production machines, which are at full speed
all the time, might be shortened. Consequently, an iterative job allocation and scheduling
algorithm is thus developed, as illustrated in Algorithm 1, based on the existing research
foundation [38,39].

Given that the production speed of ω is defined in advance, the production time
PTi for order i can be simply determined by (Qi·Ni)/ω, where Qi and Ni represent order
quantity and the number of PCBs per item to be produced for the order i. Together with
the setup time with a specific order, the production schedule among various production
lines can be generated. In this algorithm, job allocation and scheduling aim to balance the
workload between the production lines, and the production orders can be split in case of
almost reaching the maximum production capacities. Therefore, the production orders can
be allocated to the production lines in a relatively fair manner.

Consequently, there is a need to implement the proposed system for revamping the
production practice, which can be favorable to LVHM production. In order to evaluate the
production performance and benchmark for the traditional production approaches, three
performance indicators are proposed as follows. First, the overall production output (OPO)
is measured to indicate the total number of order quantities completed within a specific
production period, as in Equation (6), where Qij and Nij denote the order quantity and
number of PCBs to be printed for order i and product j, respectively.

OPO =
m

∑
i=1

n

∑
j=1

(
Qij·Nij

)
(6)

Second, the order postponement tendency (OPT), which is defined as the tendency to
postpone production orders for consolidation rather than executing them once confirmed,
is evaluated in terms of the difference between the order placement day and the actual
production day. A higher OPT value implies that the proposed algorithm intelligently
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consolidates the production orders into a batch such that the production activities can be
centralized within a certain period of time.

Third, on-time delivery (OTD) is evaluated to examine the number of orders that can
be completed before the due date, as in Equation (7). Moreover, the number of days ahead
of the due date can be summarized to examine the effectiveness of the proposed algorithm.

OTD =
No. of order completed before due date

Total number of order
× 100% (7)

Algorithm 1: Iterative Order Allocation and Scheduling

Initialise the production speed ω, period t ∈ T and stepper i = 1
Initialise the maximum production line capacity Cmax

p
Extract the quantity Qi, PCBs to be printed Ni, production time PTi, and setup time STi
for order i and product j in the sorted order list O

while t ≤ T do
Retrieve the current capacity Ct

p in the production line p and time t
Retrieve the order Oi
if Ct

p/ω + PTi + STi ≤ T then

Assign Oi in the production line with min
(

Ct
p

)
C1:t+1

p ← C1:t
p + (PTi + STi) ∗ω

else
Split Oi → Oa

i with the quantity of
(

T ∗ω− C1:t
p

)
and Ob

i with the quantity of[
Qi −

(
T ∗ω− C1:t

p

)]
Assign Oa

i the production line with min
(

Ct
p

)
C1:t+1

p ← C1:t
p + T ∗ω− C1:t

p

Oi+1 ← Oi+1 + Ob
i

end
t = t + 1
i = i + 1

end
end

4. Case Analysis

Based on the proposed system, namely DTPOS, an investigation into its viability
and performance, which is compared with the traditional production practice, is offered
in this section. In brief, the case background, performance metrics, and results of the
implementation of the DTPOS are summarized.

4.1. Case Background and Evaluation Metrics

In this case analysis, we examine the SMT-based production lines for the PCBA
process, focusing on the LVHM production practice. SMT is a cutting-edge manufacturing
process widely used in the electronics industry for PCBA. Effective job allocation and
scheduling are crucial for profitability in electronics manufacturing due to the significant
capital investment in SMT equipment and the need for high machine utilization and
efficiency [31,40,41]. However, the SMT production equipment from different vendors
typically operates as separate entities, with limited data integration or co-ordination. The
large volume of generated data cannot be effectively utilized to optimize end-to-end job
allocation and scheduling. The SMT process involves sophisticated machines, and the
key processes that significantly impact overall performance are illustrated in Figure 5
Specifically, the following four major components are described:

• Solder Paste Printer: Applies solder paste to the PCB using a stencil, creating solder
deposits in desired locations;
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• Pick and Place Machine: Places electronic components on the PCB over the solder
paste deposits using pick-and-place machines or other placement equipment;

• Hot Air Reflow Oven: Subjects the PCB to an oven, where the solder paste is heated
until it melts, creating the necessary solder joints as it cools and solidifies;

• Automatic Optical Inspection: Inspects the PCB using automated optical inspection
(AOI) systems to identify any defects in soldering or component placement and ensure
all components are present and functioning correctly according to design specifications.
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When considering the LVHM production practice, its dynamic nature should not
be overlooked. Factors such as the arrival of orders over time with different due dates,
high variations in order quantities, product complexities, and production line changeover
requirements contribute to this dynamism. When optimizing job allocation and scheduling,
various constraints need to be taken into account, including (i) equipment readiness, (ii) ma-
terial availability, (iii) order list, (iv) operational procedures, and (v) operational capacity.

4.2. Evaluation of the DTPOS

For the case analysis, the real-life production data from the SMT-based production
site were collected, and therefore ISOM could be activated to perform job allocation and
scheduling optimization. Table 1 shows the descriptive information of the LVHM produc-
tion orders to be manufactured in two SMT-based production lines.

Table 1. Descriptive information of the LVHM production orders.

Aspect Value

Total no. of orders 106

Total types of products 34

Order quantity in [min, max, average] [6, 3095, 215.7]

Total order quantity 22,864

Time for production in [min, max, average] [6, 65, 27.5]

Total PCBs to be manufactured 555,789

Total no. of small orders less than 100 (%) 67 (~63.2%)

4.2.1. Prioritization of Production Orders

Through the collection of expert evaluation, a historical dataset with 295 rows on the
relationship between (i) the proximity to the due date, order quantity, production setup
time, and (ii) priority rating was obtained. In order to determine the appropriate neural
network settings for order prioritization, the number of hidden layers in [1–3] and the
hidden neurons in [1, 10, 100] were examined, considering two training algorithms, namely,
(i) the one-step secant (OSS) algorithm and (ii) the variable learning rate backpropagation
(GDX) algorithm. For each combination, the network training and validation processes
were run 100 times to calculate the average network performance so as to determine the
appropriate network settings.
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As shown in Table 2, the average network performance with respect to different
network parameters is presented. It was found that the neural network using the OSS
algorithm (three hidden layers with 10 hidden neurons) could obtain the best performance
in fitting the input and output parameters. By doing so, the process engine for the order
prioritization was built, in which the mean square error over the epoch and the error his-
togram were plotted, as shown in Figures 6 and 7. It shows that the trained neural network
has successfully converged to capture the knowledge from the dataset and performs a good
fit in terms of suggesting the priority rating of the production orders. To be specific, the
best validation performance of the built neural network is 2.4542 at the epoch of 3741, in
which the gradient is 0.80032 at the epoch of 5741.

Table 2. Network performance for order prioritization using the OSS and GDX algorithms.

No. of Network Layer
OSS GDX

1 2 3 1 2 3

No. of hidden neurons
10 16.7004 10.2088 9.1324 33.3275 21.7187 26.4908
100 17.0049 11.4398 13.5814 34.2882 19.4279 20.3655

1000 43.8083 28.0466 36.7699 287.0047 169.0295 144.7466
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4.2.2. Job Allocation and Scheduling for LVHM Production

Based on the priority rating and machine configurations, the production orders can
be intelligently allocated to the two production lines in a chronological sequence. Among
the 106 production orders, 26 orders were assigned to production line 1, whereas the rest
of the 80 orders were assigned to production line 2. In terms of the defined performance
metrics, namely OPO, OPT, and OTD, the performance of LVHM production is illustrated
in Figure 8. It was found that the production orders were almost evenly assigned to the
production lines, the production orders waited 9.47 days on average to start production,
and the production orders could be completed 18.03 days ahead of the due date. In other
words, all the production orders have been completed on time without any delay, thanks to
the proposed algorithm.
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5. Results and Discussion

After the case study for an LVHM production environment was conducted, this section
further discusses its comparison to the traditional production practice and the implications
raised from academic and industrial perspectives.

5.1. Comparison with the Traditional Production Practice

With regard to traditional production practice (mass production, i.e., high volume,
low mix), it is generally preferable because of leveraging the economies of scale, but such a
production practice discourages manufacturing start-ups and SMEs. Furthermore, mass
personalization cannot be effectively conducted in the current production environment,
and thus, this study outlines the transmission from mass production to mass personal-
ization from the perspectives of job allocation and scheduling. Therefore, a comparison
between the traditional and proposed production practices was conducted to investigate
the performance metrics with respect to those orders with small-order quantities, namely
less than 100. Regarding the small orders in the case study, the corresponding OPT and
OTD are 9.59 days and 19.47 days. It is implied that the production lines transformed to
prefer small orders, and the small orders can be completed ahead of schedule at 19.47 days,
which is better than the average OTD in the entire production dataset. From the perspective
of the manual approach as the traditional practice, the production orders depicted in the
case analysis are completed in 19 days, in which the production orders are manufactured
subject to the capacity of the production lines. By using the proposed solution, the time
required for production is reduced to 9 days, with an improvement of 52.63%, as shown in
Table 3. In other words, the proposed DTPOS is effective in consolidating the production
orders to fully utilize production capacity. Consequently, thanks to the proposed DTPOS,
the concept of LVHM production is successfully deployed in the production lines with
enhanced job allocation and scheduling to ensure smooth operational flow.

Table 3. Comparisons between the traditional approach and DTPOS.

Traditional
Approach DTPOS % Change

Days required for the production 19 9 52.63%
OPT 0 9.59 -
OTD 100% 100% -

5.2. Managerial and Practical Implications for Industry 5.0

The managerial and practical implications of this research are substantial. The study
contributes to the field of production optimization by introducing the concept of a digital
twin-based system and demonstrates its effectiveness in improving job allocation and
scheduling. The integration of machine learning, simulation, and deep neural networks
provides a novel approach to addressing the dynamic nature of production lines. The
research also highlights the shift from mass production to mass personalization, addressing
the needs of manufacturing startups and SMEs.

Practically, the findings have direct implications for the LVHM production process.
The implementation of the DTPOS can lead to an improvement in on-time delivery and the
significant enhancement of productivity and efficiency, especially in handling small orders.
Optimized job allocation and scheduling enable the production lines to adapt to dynamic
changes and customer demands, fostering a more agile and customer-centric production
environment. Furthermore, this research opens avenues for other industries to explore
the benefits of digital twin-based production optimization systems, paving the way for
improved operational performance and competitiveness.

In view of the research findings, this research showcases the academic and practi-
cal implications of a digital twin-based production optimization system for the LVHM
production process. The findings highlight the effectiveness of the proposed system in
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improving job allocation, scheduling, and overall operational flow. The study contributes
to the academic field by introducing novel methodologies and addressing the transition
from mass production to mass personalization. Practically, the research provides insights
into the LVHM industry and opens doors for other sectors to explore the potential of digital
twin-based solutions for production optimization.

6. Conclusions

In conclusion, this research comprehensively explores the academic and practical
implications of a digital twin-based production optimization system (DTPOS) for the
LVHM production process. The study’s research methodology involves the design and
implementation of the DTPOS, which leverages machine learning, simulation, and deep
neural networks to improve job allocation and scheduling across multiple production
lines. The research findings demonstrate the effectiveness of the proposed DTPOS in
optimizing production operations. By intelligently allocating production orders based on
priority ratings and machine configurations, the system achieves balanced distribution
across the production lines. Moreover, the average waiting time for production orders to
start is significantly reduced, resulting in improved productivity and the timely completion
of orders. The comparison between the traditional mass production approach and the
proposed mass personalization approach further highlights the advantages of the DTPOS.
The system enables the prioritization of small order quantities, leading to faster production
times and improved on-time delivery performance.

In the future, more theoretical investigations in the LVHM production environment
can be explored, including mathematical problem formulation and stochastic simulation, to
truly reflect the constraints and performance in real-life production practice. Furthermore,
more case studies that implement the proposed system within the LVHM production
environment are needed to extend the methodological value to industry, resulting in the
effective transformation of the production practice. Consequently, a production practice
that is friendly to LVHM concepts has thus been established, aligning with the paradigm of
Industry 5.0.
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