
Citation: Chiu, K.; Marquez, S.;

Asundi, S. Model Based Systems

Engineering with a Docs-as-Code

Approach for the SeaLion CubeSat

Project. Systems 2023, 11, 320.

https://doi.org/10.3390/

systems11070320

Academic Editors: Ed Pohl and Eric

Specking

Received: 25 April 2023

Revised: 30 May 2023

Accepted: 2 June 2023

Published: 23 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Model Based Systems Engineering with a Docs-as-Code
Approach for the SeaLion CubeSat Project
Kevin Chiu *,† , Sean Marquez † and Sharanabasaweshwara Asundi †

Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA;
sasundi@odu.edu (S.A.)
* Correspondence: kchiu002@odu.edu
† These authors contributed equally to this work.

Abstract: The SeaLion mission architecture team sought to create a model-based systems engineering
approach to assist improving CubeSat success rates as well as for the SeaLion CubeSat project to
guide an implementation for the flight software. This is important because university CubeSat teams
are growing in number but often have untrained students as their core personnel. This was done
using a document-as-code, or docs-as-code, approach. With this the team created tools for the systems
architecture with the Mach 30 Modeling Language to create an architecture that is easy to learn and
use even for newly admitted team members with little to no training. These tools generate documents
via its own code for easy presentation on a local file system without any proprietary software while
keeping the model content format-agnostic.

Keywords: systems engineering; CubeSat; MBSE

1. Introduction

Presented here is the systems engineering approach of the SeaLion CubeSat mission
architecture. This includes the modeling language, tools, and technical approach used
to facilitate the configuration management, design, specification, and implementation of
the SeaLion mission architecture for the flight software using a model-based approach.
Through model-based systems engineering (MBSE), the SeaLion mission architecture team
was able to create models, as opposed to documents, that serve as the authoritative source
of truth for the conduction of system engineer activities [1]. These models were used to
conduct activities such as design, specification, analysis, verification, and validation of the
system. This was performed by applying the NASA handbook on systems engineering [2] to
CubeSat mission design in efforts to facilitate a top-down design methodology from mission
concept to specification of subsystem components, including flight software architecture [3].
The approach presented herein had additional intentions to make it as simple and easy to
use as possible. This was performed by a filesystem-based modeling language that adheres
to expected patterns in agile software engineering (i.e., elements for stakeholder needs,
user stories, data structures, etc.) using a lightweight YAML-based syntax. This article also
serves as an expansion of the conference proceedings (copyright held by Kevin Chiu and
Sean Marquez) presented at American Institute of Aeronautics and Astronautics (AIAA)
SciTech Forum 2023 [4].

1.1. CubeSat

The CubeSat, originating from California Polytechnic State University in 1999, is a stan-
dardized form of nanosatellites. Nanosatellites are satellites typically defined with a mass
of less than 10 kg. CubeSats, also known as Cube Satellites, are defined by the standardized
and modular architecture of a 1-Unit (1U) cube with dimensions of 10 cm × 10 cm × 10 cm
with a mass of up to 2 kg [5]. They can be scaled to 2 Units (2U), 3 Units (3U), or higher
depending on units added as shown in Figure 1 with sizes designated by the CubeSat

Systems 2023, 11, 320. https://doi.org/10.3390/systems11070320 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems11070320
https://doi.org/10.3390/systems11070320
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0009-0009-4164-3735
https://orcid.org/0009-0009-1634-3343
https://orcid.org/0000-0003-0989-682X
https://doi.org/10.3390/systems11070320
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11070320?type=check_update&version=2


Systems 2023, 11, 320 2 of 24

specification [5]. This is performed by the addition of standardized cube units to upscale
the CubeSat. The ability to scale by modularity gives a highly standardized structure for
ease of expansion to provide versatility in functionality. Due to their small size, mass, and
lack of dedicated launch vehicles, CubeSats are typically launched as secondary payloads in
conjunction with other larger satellites, informally known as “piggy-backing”. This greatly
decreases the cost of launching a CubeSat which increases the accessibility of inserting
objects into space. As such, low budget groups such as universities have gravitated towards
CubeSats with increasing numbers [6]. However, this presents challenges since many of
the developers in universities are completely new to spacecraft development or systems
engineering in general.

Figure 1. CubeSat variations by size [5].

1.2. SeaLion Mission

The SeaLion CubeSat mission is a joint project between Old Dominion University
(ODU), the United States Coast Guard Academy (USCGA), and the Air Force Institute of
Technology (AFIT). The end goal is to produce a 3U CubeSat consisting of three payloads
for on-orbit validation. ODU provided one payload while the USCGA and AFIT provided
the other two payloads. SeaLion was initially planned to launch as a secondary payload on
a Northrop Grumman Antares Rocket from Wallops Flight Facility (WFF) during March
2023. The prototype CubeSat model is shown in Figure 2. The intended mission profile
was to have an on-orbit time for mere days due to its planned very low earth orbit (VLEO)
altitude. Thus, SeaLion was to complete validation of its payloads before either power
is lost in its non-rechargeable batteries or the satellite re-enters and burns up in Earth’s
atmosphere. The predicted on-orbit time was 10 days. However, mass considerations on
the planned Antares rocket caused SeaLion to be moved to a Q4 2023 launch on a Firefly
rocket from Vandenberg Space Force Base into a sun synchronous orbit of 500 miles altitude.
The content presented in this article is based on the prior mission profile from the launch at
WFF into VLEO.



Systems 2023, 11, 320 3 of 24

Figure 2. Blownup SeaLion CubeSat Prototype.

The first payload, provided by the USCGA and AFIT, is the Impedance Probe (IP).
The IP is derived from U.S. Naval Research Laboratory’s (NRL’s) ‘Space PlasmADiagnostic
suitE’ (SPADE) aboard NASA’s International Space Station (ISS) where plasma density and
temperature are computed with alternating current (AC) impedance measurements using
an innovative, first of its kind, surface mounted dipole radio frequency antenna. The IP
part is shown in Figure 3.

Figure 3. Impedance Probe.

The second payload, provided by the USCGA and AFIT, is the multispectral (Me-S)
‘Pixel Sensor’ with a 450–1000 nm spectral range. Its purpose is to provide SeaLion’s in situ
spectral data as a baseline. This baseline will be used for future missions that may require
this spectral data. The Me-S part is shown in Figure 4.

Figure 4. Me-S ‘Pixel Sensor’.

The third payload, provided by ODU, is the deployable composite structure (DeCS).
This payload is a proof-of-concept deployable mechanism and composite boom that is
meant to be a platform host of a number of applications. For example, these applications
include solar panels, solar sails, drag sails, sensory sails, and magnetometer booms. De-
ployment on SeaLion is meant to validate the deployable mechanism for a composite boom



Systems 2023, 11, 320 4 of 24

in the space environment and to validate boom dynamics during and after deployment in
orbit. The DeCS upon deployment is shown in Figure 5.

Figure 5. DeCS as the black popout booms.

The mission scope with three payloads requires special care and attention to ensure
success of the mission. However, many of the SeaLion project team members are new to
spacecraft development and systems engineering. In response, experienced team members
took action to provide a mission architecture for the SeaLion team to better organize and
direct the efforts of the team, to guide an implementation for the flight software, and to
facilitate interface and assembly documentation.

2. Motivation
2.1. CubeSat Populations

CubeSats were initially conceived as educational tools for space systems engineer-
ing [7]. Now, their roles have been expanded to not only just educational tools but for
observation, technology demonstrations, and research that were previous monopolized by
much larger satellites due to the low cost of production and launch of these CubeSats. As
such, there has been increasing popularity for CubeSats as seen by the number of launches
in Figure 6 since the year 2000 [6] apart from the notable exceptions in the years 2020
and 2021; the authors speculate that this downturn is due to the COVID-19 pandemic.
The CubeSat design specification [5] as well as the availability of commercial off-the-shelf
(COTS) parts and kits have greatly influenced the rise of popularity. For example, a basic
CubeSat kit from a space systems company such as Pumpkin can be purchased with a
baseline price of as little as USD 6250 [8]. The SeaLion CubeSat also utilizes many COTS
parts as well. Thus, CubeSats have become highly accessible to low-budget groups such as
small companies and university groups. CubeSats have caused the “democratization” of
space by allowing many groups to fly satellites [9].



Systems 2023, 11, 320 5 of 24

Figure 6. Nanosatellite launch data provided by M. Swartwout as of 21 July 2021 [6].

University groups are especially a large contributor in the overall number of launches
of yearly CubeSats. As of 27 July 2021, there have been 68 CubeSat launches with 40 of them
being from university groups (about 58 percent of launches) in the year of 2021; university
groups have consistently maintained plurality on total launches [6]. This showcases directly
how many university-based CubeSat projects occurred or potentially may occur if trends
continue onward into the future. However, this presents its own challenges.

2.2. Ensuring CubeSat Success

The motivation of this article is to improve the success rate of CubeSat missions from
university groups by providing readily available and usable tools for university teams. To
further reinforce the need to improve the success rate, the following data is presented in
Figure 7 which showcases the total successes and failures of CubeSats from universities
for the given time periods [10]. The data provided is categorized by six different mission
success statuses of unknown, launch fail, dead on arrival (DOA), early loss, partial mission,
and full mission.



Systems 2023, 11, 320 6 of 24

Figure 7. Mission status of CubeSat university–class missions provided by Swartwout [10].

As seen in the preceding Figure 7, university CubeSat mission failure rates have
increased while partial and full mission success rates have decreased in conjunction with
the increasing number of missions as seen in Figure 6. However, Swartwout notes that
the highest number of failures originate from “regular independent” groups with a failure
rate of 65 percent at the time of data gathering in 2017 [10]. These “regular independent”
groups have fewer than four missions performed nor are designated as a national center
for spacecraft development by its government.

The issue present is that many of the growing number of university groups producing
CubeSats lack the resources, training, experience, or methodology to reliably give assurance
to their missions. The majority of the work is often performed by untrained students that
are unfamiliar with the aspects of CubeSat development (e.g., system engineering, design
methods, and testing). The SeaLion team also faced these issues as well.

To address some of these issues, SeaLion team members sought to simplify the develop-
ment process by providing readily available and learnable system engineering approaches
and tools. These provided approaches and tools include factors such as planning, doc-
umentation, project management, and simplifying the process. This is important since
special attention should be given to systems engineering and information exchange for
multidisciplinary teams [11]. To showcase these factor’s importance, a survey of forty
CubeSat groups on how to set up CubeSat projects, conducted by the University of Bristol,
emphasized the following relevant lessons learned [12]:

• Planning: Make efforts to “spend a lot of time in the planning stage”.
• Documentation/Project Management: Groups should have “good documentation of

requirements, work done and work to do”.
• Simplicity: Simplify anything you possibly can to increase confidence in success.

The developed mission architecture and associated findings will emphasize the afore-
mentioned points to further the SeaLion CubeSat’s development.

3. Goals

The goal of the SeaLion CubeSat mission architecture was to capture the data structures
and expected behaviors for the development of the flight software. The data structures
and expected behaviors were captured in such a way that can unambiguously understood
well enough to be implemented, as well as provide full traceability and rationale for
architectural elements with minimal configuration management overhead [13]. Thus, the
SeaLion CubeSat mission architecture had to achieve the following:

• Ensure templates only contain formatting data (this includes not storing boilerplate
text in templates);

• Ensure models are the authoritative source of truth for all artifact content (e.g., artifact
structure, meta-data, boilerplate, commentary, discussion, diagrams, tables, etc.);

• Models should persist on the local filesystem;



Systems 2023, 11, 320 7 of 24

• Documents should be in plain text as to be compatible with modern distributed
version control system (e.g., Git) and for ease of use;

• Documents should be able to persist alongside code and communicate to one another;
• Documents should be model-based as to have a separation of concerns between

content and formatting as well as be both human and machine readable for querying
and generating views.

A MBSE approach was adopted by the SeaLion CubeSat mission architecture team
since it provided benefits such as reducing the ambiguity that usually comes with using in-
formal language to specify systems or its various aspects. It also minimized the duplication
of content that tends to accumulate in a document-based system engineering approach.

Proper adoption of a MBSE approach also includes the selection of the modeling
language and modeling tool. Considerations when selecting the modeling language and
tool was overhead incurred from training the team, the technical overhead of setting up
modeling tools and future adaptability. Refer to Table 1 for modeling language down
selection overview. In addition, the SeaLion CubeSat mission architecture team eventually
decided to adopt a docs-as-code approach to further enhance the MBSE approach to achieve
the listed goals shown above.

Table 1. Modeling Language Downselect by Criteria Fulfillment Marked by ’X’.

Criteria SysML v1 SysML v2 PlantUML M30ML

Extensible ontology language X X X X

Supports both textual and
graphical view generation X X

Lightweight textual syntax X X X

Relatively minimal overhead
with modern doctools X X

Supports execution
semantics X

3.1. Model-Based Systems Engineering

As noted before, attention should be given for planning, documentation, project
management, and simplifying the process. Special emphasis should be given to systems
engineering and information exchange [11].

Traditional approaches use documents as their authoritative source of truth for con-
ducting system engineering activities [1]. Information in a traditional systems engineering
approach today is mostly captured informally. For example, this causes disadvantages
such as information not being authored based on a methodology, spontaneously and infre-
quently integrated, not properly configuration managed, not properly changed managed,
and not effectively shared with stakeholders [14]. These documents often do not have a
living relationship with other documents or to other corresponding elements; thus, changes
to one document require manual changes to other documents [15]. Document-based ap-
proaches can exacerbate problems since it lacks point-to-point communication channels as
well as lacking methods to enforce consistency [16].

In contrast, a MBSE approach captures information in a highly structured modeling
language, authored based on a methodology, configuration managed in a common tool,
highly integrated, traceable to its provenance, and sharing with stakeholders. Models
provide the following key advantages over document-based approaches [15]:

• Information is readily communicated and shared within the project.
• Changes are easily accommodated.
• Traceability is automated.

To showcase the benefits, an architecture process of 4858 information element transfers
was performed. It noted that all of these transfers were performed manually with non-



Systems 2023, 11, 320 8 of 24

MBSE approaches; however, 13% of these transfers were automated with MBSE with
the potential of up to 81% should it be used for trade study and peer review tasks [17].
The SeaLion mission architecture team seeks to take advantage of these efficiency gains
that MBSE can achieve. Space projects have been taking advantage of MBSE such as the
ExoMars mission, Euclid, Galileo, and nanosatellite programs [18–20]. CubeSat projects
have also been using MBSE and have shown to “hold promise of reducing the burden of
system engineering tasks” [21] and can “promote uniformity and consistency across future
CubeSat models” [21]. These attributes are important to reduce workload among team
members and to facilitate new team members as they join future projects. Facilitation of
new members is especially useful for universities since students are not available long term
due to events such as graduation.

3.2. Documents-as-Code Approach

Documents-as-code (Docs-as-code) refers to a philosophy that team members should
be writing documentation with the same tools as code [22]. This allows for documentation
to be updated seamlessly without additional work with document tools (doctools). The
code tools would include version control (e.g., Git), issues trackers, code tools (e.g., Visual
Studio Code), etc. To do so would mean that writers would follow the same workflows
as the development team and they would be integrated into the product team. A stated
result would be to enable “a culture where writers and developers both feel ownership
of documentation, and work together to make it as good as possible” [22]. The SeaLion
team taking advantage of the aforementioned philosophy would realize the benefits of
utilizing the same principles and practices used to manage software, using modern version
control tools (e.g., Git), for the configuration management of mission and flight software
architecture documentation, and captured in a model-based approach [22]. In addition,
these models can be stored and used persistently on a local file system without the use
of cloud based services. Proprietary services are not required to generate documentation,
modify documentation, or modify models. Similar approaches have been seen in Structur-
izr [23] and F Prime Prime (FPP) [24]. FPP is based on F Prime which is an open-source
software framework developed by NASA’s Jet Propulsion Laboratory [25]; it is a model-
driven approach for producing flight software code that can be compiled directly onto
flight hardware. While docs-as-code has precedent, the methodologies noted are not easily
accessible to those without a sufficient background in programming.

4. Modeling Language and Methodology

The languages considered were SysML V1 [26], SysML V2 [27], PlantUML [28], and the
Mach 30 modeling language (M30ML) [29] with the mission architecture team conducting a
trade study to determine the most suitable one. The down selection criteria that the SeaLion
CubeSat mission architecture team has taken into consideration is shown in Table 1.

M30ML was chosen for its lightweight human and machine-readable textual syntax,
file-based model interchange support (for persisting models directly on the local filesystem),
ability to generate both textual and graphical views, and relatively minimal overhead with
modern doctools [29]. The lightweight textual syntax and minimal overhead is especially
important for for a team that has very minimal experience working with such tools. Other
candidate modeling languages lacked in many regards compared to M30ML in these criteria
and thus, M30ML was selected. SysML v2 had a good number of characteristics that M30ML
had; however, the lack of minimal overhead with modern doctools prevented its adoption.
At the time of publication of this article, the current state-of-the-art MBSE languages (e.g.,
SysML v2) have not prescribed an approach for file-based model interchange for persisting
models on the local filesystem. SysML v1 has XML Metadata Interchange (XMI) as a file-
based interchange but it can only handle graphical views and not textual views. Adapting
other MBSE languages would take significant work to adopt a docs-as-code approach in
their current states.



Systems 2023, 11, 320 9 of 24

4.1. Ontological Modeling Language

M30ML was developed using the Ontological Modeling Language (OML) as its basis.
OML is a language that enables defining systems engineering vocabularies and using them
to describe systems [30]. OML, inspired by Web Ontology Language 2 (OWL2) and the
Semantic Web Rule Language (SWRL), is meant to be a more gentler and more disciplined
method of the aforementioned standard for use in systems engineering [30]. OWL2 does
not conform easily to individual modeling rules without tooling support; thus, OML was
created. OML is a tool to improve the speed of modeling and the quality of models while
in a more concise and human-friendly high-level external representation [31]. However,
more recently, M30ML’s development has been moved from OML to LinkML since it uses
a lighter weight toolchain and YAML-based syntax [32].

4.2. Mach 30 Modeling Language

M30ML is a language for modeling an architecture with YAML-based modeling. YAML
as a file type is a highly structured, machine queryable, human readable, lightweight, and
line-oriented markup language. This makes it ideal for document generation use cases
as well as use with version control tools such as Git. The simple line by line structure
as shown in Figure 8 exemplifies its simplicity. Users are readily able to read, interpret,
and edit documents using the YAML file format so as long they are taught what each line
element is. Doctools such as asciidoctor and bibtex were made compatible with minimal
technical overhead which was taken advantage of for the submission to the AIAA SciTech
2023 Forum [4]. M30ML also provided modeling elements familiar in agile software
development, such as stakeholder needs, user stories, data structures, and with relationship
elements for defining traceability between modeling elements [29].

Figure 8. Example YAML file.

5. Architecture Implementation

The implementation of M30ML serves as the basis for SeaLion mission architecture.
Presented here are the various elements, components, and products generated that is stored
on the SeaLion-mission-architecture GitHub page [13]. At the time of publication of this
article, the implementation of the SeaLion mission architecture was performed to the prior
mission parameters where the SeaLion CubeSat was designed for a short lifespan compared
to now greatly extended planned lifespan. Since the mission parameters was changed
rather recently prior to publication, the architecture had yet to be updated for them.

5.1. File Structure

The SeaLion mission architecture is organized into two main folders of architecture
and of components [13]. Architecture contains the references, stakeholder needs, user
stories, and data structures shown in Figure 9. Components, as the name implies, contains
the components and subcomponents of the CubeSat. For the focus of this article, the
architecture folder is the primary concern. Components is currently a work in progress at
time of publication of this article and will be addressed with future required work. For the
mission architecture shown in Figure 9, generally data structures are derived from user
stories. Furthermore, user stories are subsequently derived from stakeholder needs with
their respective references.



Systems 2023, 11, 320 10 of 24

Figure 9. References file structure.

References are simply stored reference material such as standards, specifications books,
etc. They are very simple two-line YAML files as shown in Figure 10. This creates a contin-
ued link between the YAML files within their respective folders from which documents can
be updated seamlessly. Information changed within one file can interact with other files.
All YAML references files in the mission architecture at the time of article’s publication is
listed within Figure 9.

Figure 10. References YAML file.

5.2. Stakeholder Needs

The development of SeaLion’s mission architecture is guided by a series of stakeholder
needs [33]. After SeaLion’s project methodology documentation is committed to using
M30ML based on YAML modeling tools, the first step is to identify all stakeholder needs.
The two primary stakeholders of SeaLion are ODU and the USCGA. Their respective needs
are classified from primary, secondary, and tertiary based on mission importance.

Stakeholder YAML files are stored in the ‘1-StakeholderNeeds’ folder shown in
Figure 11. Each file is numbered with a X.X number format with the first number designat-
ing if it is primary, secondary, or tertiary and the second number denoting a place within
a list of that class (e.g., 1.1 would indicate primary stakeholder need 1). In addition, the
letter associated (e.g., A1, B1, C1, etc.) in the filename would also signify if it’s a primary,
secondary, or tertiary stakeholder need. Each YAML file contains an id number, name,
statement, and derived-from field shown in Figure 12. Note the reference YAML file that
has filed in the derived From field that serves as the basis for the stakeholder need. While
not all stakeholder needs have it filled, it is available to be used as needed. Figure 11
showcases all the YAML files stored in the stakeholders file folder.



Systems 2023, 11, 320 11 of 24

Figure 11. Stakeholders file structure.

Figure 12. Stakeholder YAML file.

Figure 13 presents all the stakeholder needs via a unified modeling language (UML)
diagram generated from the YAML files within the ‘1-StakeholderNeeds’ folder. The two
primary stakeholders are ODU and the USCGA. The generation of these diagrams via the
YAML files presented herein showcases the docs-as-code approach. YAML files structured
as a code are then converted into human readable documents for presentation.



Systems 2023, 11, 320 12 of 24

Figure 13. Stakeholder UML Diagram.

5.3. User Stories

Once the SeaLion mission architecture’s stakeholder needs are identified and recorded,
the stakeholder needs are then used to identify a series of user stories which then lead to
design decisions captured in data structure and activity definitions [34]. These user stories
are written from the perspective of the ground operator which would be a student from
ODU who monitors and controls the functions of the SeaLion CubeSat. User story YAML
files are stored in the ‘2-UserStories’ folder shown in Figure 14. These files are all given an
ID number in no particular order of importance. See the following Figure 14 for the user
story YAML file structure.

As an example, the second user story desire is to “verify that satellite is operating
nominally” [13]. Its full statement, derived from the actor, behavior, and rationale, would
read “as a Ground Station Operator I want to view satellite beacon data (alternating
between health and mission data), received via UHF so that I can verify that satellite is
operating nominally” [34]. Its associated YAML file named ‘2-ViewBeaconData.yaml’ is
presented in Figure 15. Note that this user story is derived from stakeholder needs A1, A3,
A5, B1, B2, C1, C2, and C3 which are stakeholder needs mentioned in the prior section
detailing stakeholder needs. Additionally, the example statement is cut-off in Figure 15 for
readability. It should read in full as “View satellite beacon data (health or mission data)
to verify that state vector correspond with expected orbit profile and/or to validate that a
mission mode was successful”. This satellite beacon data, transmitted via UHF, is used to
validate that any and all functions of the satellite are operating nominally or as planned in
respect to their payloads hence the large derived-from list in the associated YAML file.



Systems 2023, 11, 320 13 of 24

Figure 14. User stories file structure.

Figure 15. View Beacon YAML structure.

Figures 16 and 17 are UML diagrams generated using the YAML files stored in the
‘2-UserStories’ folder. Figure 16 is an excerpt of mapping of stakeholder needs to user
stories. It does not provide the full readable map; however, it does illustrate the intent of
the map. Figure 17 is the user stories presented in a use case diagram to showcase what the
ground station operator needs to perform. The generation of these diagrams via the YAML
files presented herein showcases the docs-as-code approach. YAML files structured as a
code are then converted into human readable documents for presentation.



Systems 2023, 11, 320 14 of 24

Figure 16. Excerpt of UML diagram of user stories.



Systems 2023, 11, 320 15 of 24

Figure 17. UML diagram of ground station operator.

5.4. Data Structures

User stories once identified will then lead to design decisions captured in data struc-
tures and activity definitions. These data structures are the data that would be transmitted
back and forth between ground station operator and CubeSat. Data structure YAML files
are stored in the ‘3-DataStructures’ folder shown in Figure 18. Each data structure YAML
has name, purpose, template, elements, and derived from elements as shown in Figure 19
as an example. Name and purpose are for identification and stated use case. Template lists
out all the elements that are called out via their identifying key. Elements detail the specific
values as part of the data structure; each element has their own identifying information
and descriptions. The derived from field is used to tie back the data structure to a user
story YAML file should it be applicable. Table 2 is a table generated from the YAML file
shown in Figure 19 for documentation purposes. Figure 18 details the file structure under
the 3-DataStructures’ folder.



Systems 2023, 11, 320 16 of 24

Table 2. Data Structure of Packet.

Field Type Description

call_sign string Identifying call sign for the SeaLion mission.

battery_health float Percent value indicating the remaining charge of
the batteries.

temperature_battery float The temperature of the battery. Units in Kelvin.

mode integer
Integer value indicating current mission mode. 0 = Safe,
1 = mission mode 1, 2 = mission mode 2, 3 = mission

mode 3.

state_vector ECIStateVector ECI state vector from orbit propagator at time
of beacon.

Figure 18. Data Structure: File Structure.

As shown in Figure 19, the data structure, with YAML file named ‘1-SatelliteHealth.yaml’
is for determining the satellite’s health. This data would be transmitted with the beacon
data to be received by the ground station operator. Note that this data structure is derived
from the user stories 2 and 4.1 described in the prior section detailing user stories. These
user stories detail the ground station operator’s tasks to view the satellite beacon data and
to request the satellite health data packet so that the operator can verify that AODS sensors
and GPS data are within nominal parameters. Table 2 details the various fields that would
be required in this beacon data packet to accomplish the aforementioned tasks.



Systems 2023, 11, 320 17 of 24

Figure 19. Satellite Health Data Structure.

Figure 20 is a UML diagram of mapping of user stories to data structures generated
from the YAML file shown in Figure 19. Note that not every data structure is linked to a
user story. These unlinked data structures are necessary to CubeSat functionality without
being linked to the stakeholders and user story chain. The generation of this diagram
and the tables via the YAML files presented herein showcases the docs-as-code approach.
YAML files structured as a code are then converted into human readable documents
for presentation.

Figure 20. UML Diagram of Data Structures.



Systems 2023, 11, 320 18 of 24

5.5. Document Generation

As noted multiple times throughout this article, there have been a number of figures
and tables generated from the YAML files placed within the SeaLion mission architecture
GitHub repository. Many of the figures are UML diagrams that are auto-generated artifacts
rendered from the M30ML modeling language and formatted using the Liquid template
language. This is how the docs-as-code approach is implemented. YAML code files are
used to generate documents for information sharing between group members. This means
that any changes made to the SeaLion mission architecture model can immediately be used
to generate new documents. Whether it be diagrams, tables, or text, continuous updating is
ensured that any changes affecting dependencies within the mission architecture are kept
in sync. YAML files are automatically processed using templates language (e.g., Jinja2) via
a build shell script. This also means that content of the model and formatting of documents
are decoupled. The model is formatting-agnostic for documentation purposes as this is
handled by the template language. A conference proceeding manuscript presented in
AIAA SciTech 2023 was created purely by a docs-as-code format [4]. The team used a
LaTeX template to automatically format the manuscript to the conference guidelines and
subsequently inject items such as the generated diagrams, tables, and references directly
into the manuscript.

6. M30ML Extensions for Component Implementation

The implementation of M30ML for components, at the time of this article’s publication,
is currently in the process of integrating content information into the model. A brief
description of current component implementation into the SeaLion model is provided.
However, the model content mentioned herein is subjected to change.

6.1. Distributed OSHW Framework

The current SeaLion mission architecture repository, at time of article publication,
for components is “structured as a Distributed OSHW Framework (DOF)—component
for defining the contents of the Mission concept of operations (ConOps) as a collection of
nested subcomponents, component interfaces, and component functions for generating bill
of materials (BOMs) and assembly instructions for the SeaLion CubeSat” [13]. The DOF
pillars are based on Open Source Hardware (OSHW) principals [29]. The implementation
methodology presented herein is an extension of M30ML specifically for the use of modeling
a CubeSat design.

The SeaLion mission architecture repository has a components folder dedicated to
its namesake. Inside the components folder of the repository are two subfolders; one
labeled with ‘sealion-cubesat’ and another labeled with ‘sealion-ground-station’. Each
of those folders would contain a components folder and subsequently those individual
labeled components can have their own components folder. Thus, a chain of components
and subcomponents can be created as illustrated in Figure 21. A parts YAML file in each
components folder details what the subcomponents would be. An excerpt example for
the main SeaLion CubeSat is provided in Figure 22 that is associated with the file folders
shown in Figure 21.



Systems 2023, 11, 320 19 of 24

Figure 21. Components Folder File Structure.

Figure 22. Component YAML File.

6.2. Component Data Structure and File Implementation

A series of YAML files for components have been created. Figure 22 showcases the
parts YAML file; however, parts is only one element of the component’s data structure thus
far. Showcased in Table 3 is the entire component data structure from the SeaLion DOF
templates [33]. There are a number of component data structures prepared; however, it is
still in contention whether or not all of these data structures will be used. The SeaLion DOF
templates document have been generated in the DOF repository [33]. The data structures
created are as follows:

• Component: Represents the smallest logical element in an OSHW project. A Compo-
nent may be a project in its own right (with a sub-component hierarchy) or may be
nested as a sub-component in the “source” of another component.

• Component List Item: Identifies a part or tool used in the fabrication of the component.
Parts and tools are defined by their source material in the components list.

• Activity Step: Defines a single step in an activity (e.g., assembly instructions).
• Parameter: Defines a data structure for an input or output of a component function.
• Function: Defines a data structure for a component function.
• Interface List Item: Identifies an interface on a part or tool.

The initial goal is to list the components of the SeaLion CubeSat and to generate assem-
bly steps for them. Through which the architecture can provide detailed documentation
to assemble the SeaLion CubeSat. These assembly instructions would also be generated
through the SeaLion mission architecture repository much akin to other documents for



Systems 2023, 11, 320 20 of 24

SeaLion. Thus, it creates a human readable document from the YAML files code as per the
docs-as-code approach.

Eventually, the purpose of all these component data structures is to also create a N2
diagram. A N2 diagram is used to “capture the interfaces, mechanical and electrical, for all
components of the satellite obtained through the mapping process” [3]. An example has
been provided in Figure 23. The end goal is that the architecture would use interfaces and
junctions within the YAML files code to automatically generate an N2 diagram. Thus, it
allows for continuous updating that ensures that any changes affecting dependencies within
the mission architecture are kept in sync. This would allow for a team to identify “areas
where conflicts could arise in interfaces, and highlights input and output dependency
assumptions and requirements” [3]. Thus, leading to higher efficacy in planning the
development and assembly of the satellite.

Table 3. Component Data Structure.

Field Type Item Type Description

name string Source representation of the component’s name. Format = single word,
only lowercase letters, and may contain hyphens and underscores.

version string Version number of the component’s source. Format = x.x.x per semantic
versioning guidelines.

description string Human readable representation of the component’s name. Typically used
in rendered documentation referencing the component.

license string List of licenses used within the component’s source. Format = SPDX
license expression.

author string
Identifies author (e.g., owner of source intellectual property). Format

(email and website are optional) = Author Name <email address>
(website URL)

dependencies dictionary string Per NPM/Yarn. Key = dependency name. Value = Semantic versioning
version string.

components dictionary Component Listing of sub-components directly owned by this component.
Key = sub-component’s name. Value = sub-component’s data structure.

parts dictionary Component List Item Listing of the component’s parts (and substitutions) defined as
sub-components. Key = part’s id. Value = part’s key data.

functions list Function Listing of component functions.

tools dictionary Component List Item Listing of the required tools (and substitutions) defined as sub-components.
Key = tool’s id. Value = tool’s key data.

precautions list string Listing of caution statements (e.g., safety warnings) for the component.

assemblySteps list Activity Step Sequence of steps required to assemble the component.



Systems 2023, 11, 320 21 of 24

Figure 23. N2 Chart Example.

7. Future Work and Observations

Implementation of the overall mission architecture has been successful for the original
mission profile. Future work includes adapting the mission architecture to the new mission
profile from the launch delay. For example, it has spawned a trade study for rechargeable
batteries and solar panels. However, the original mission architecture does not require any
extensive reworking since many attributes are similar. The mission architecture requires
only a few sessions between team members to make adaptations. All documentation would
be automatically updated to reflect these changes per the docs-as-code approach which
will eliminate additional work in that category.

Extensions to the DOF data model are also under development for enabling additional
use cases, such as the N2 chart, for CubeSat systems engineering [33]. This extended data
model would serve as a self-describing specification that new CubeSat projects could adopt
for their own CubeSat missions, whereby the SeaLion mission would serve as the first
reference implementation. Additionally, training material will be developed around this
new data model in efforts to help guide incoming CubeSat developers. Multiple team
members of the SeaLion mission have been able to quickly learn the methodology of using
the docs-as-code approach within a short training session with an experienced member.
However, a fully realized tutorial would be beneficial to allow for self-learning. Current
guides are lists of definitions and format guides rather than a step-by-step tutorial on using
the approach, which has caused confusion among members that attempted to learn the
material by themselves.

Additionally, observations from the implementation of the docs-as-code approach
noted that an effective communication plan between team members is key to the overall
effectiveness of the mission architecture. Team members focused on specific parts of the
CubeSat’s development (e.g., structure, payload, etc.) are required to add all necessary
content to the architecture. If team members are unavailable due to other more important
obligations (e.g., university courses), it can cause considerable delays in the architecture’s
completion. The SeaLion mission architecture team necessitated frequent meetings with
individual team members to gather the necessary content for the architecture to capture



Systems 2023, 11, 320 22 of 24

all legacy work. Legacy work refers to design decisions made prior to the architecture
model’s introduction. In an ideal case, a mission architecture would be formatted prior to
any major design decision so that all team members can work directly on the architecture
model rather than adapting legacy work to the model.

8. Conclusions

The SeaLion mission architecture team used MBSE with a docs-as-code approach to
the SeaLion project. This was performed in an effort to reduce the friction and disconnect
associated with traditional systems engineering for CubeSat developers. This is particularly
important when CubeSat projects are growing more numerous with many of their respective
team members being new to space systems development. The methodology presented
herein has accomplished the ability to create individual elements of the architecture in an
human readable code that is also easy to make revisions to and persists on a local file system.
Even for those who are unfamiliar with coding software or methodology. Thus, minimal
training is required for usage. The mission architecture presented captures the necessary
information required of its original mission profile while also generating documents for
easy presentation as well. Further work is required to create tutorials to train new users in
a self-learning environment. Other future work includes the components implementation
to facilitate interfaces and junctions for proper component relationships and planning, DOF
data model extensions, and adaption to the new mission profile. Additionally, new users to
this methodology should establish an effective team communication plan at the beginning
of a project in order to prevent delays or rework in the creation of a mission architecture.

Author Contributions: Conceptualization, K.C. and S.M.; methodology, S.M.; software, S.M.; valida-
tion, K.C. and S.M.; formal analysis, K.C., S.M. and S.A.; investigation, K.C. and S.M.; resources, S.M.
and S.A.; data curation, K.C. and S.M.; writing—original draft preparation, K.C.; writing—review
and editing, S.M. and S.A.; visualization, K.C. and S.M.; supervision, S.A.; project administration,
S.M. and S.A.; funding acquisition, S.A. All authors have read and agreed to the published version of
the manuscript.

Funding: The Mission SeaLion project has received funding from the Virginia Space Grant Consor-
tium (VSGC) to support the involvement of undergraduate students. The project has also received
support from the Virginia Institute of Spaceflight and Autonomy (VISA) to procure parts and fab-
ricate systems for the Mission SeaLion CubeSat spacecraft. The authors would like to generously
acknowledge the support of VSGC and VISA.

Data Availability Statement: The SeaLion mission architecture and methodology is available in
a publicly accessible repository. The data presented in this study are openly available in sealion-
mission-architecture at GitHub, reference number.

Acknowledgments: Special thanks to the SeaLion Project Team.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

1U 1-Unit
2U 2-Unit
3U 3-Unit
AC Alternating Current
AFIT Air Force Institute of Technology
AIAA American Institute of Aeronautics and Astronautics
AODS Altitude and Orbit Determination System
BOM Bill of Material
ConOps Concept of Operations
COTS Commercial Off-the-Shelf
DeCS Deployable Composite Structure



Systems 2023, 11, 320 23 of 24

DOA Dead on Arrival
doctools Document Tools
DOF Distributed OSHW Framework
EVR Event
FPP F Prime Prime
GPS Global Positioning System
ISS International Space Station
M30ML Mach 30 Modeling Language
MBSE Model Based Systems Engineering
MC3 Mobile CubeSat Command and Control
Me-S Multi-spectral Sensor
NRL Naval Research Laboratory
ODU Old Dominion University
OML Ontological Modeling Language
OSHW Open Source Hardware
OWL2 Web Ontology Language 2
Q4 Quarter Four
SPADE Space PlasmADiagnostic suitE
SWRL Semantic Web Rule Language
UHF Ultra High Frequency
UML Unified Modeling Language
USCGA United States Coast Guard Academy
VGSC Virginia Space Grant Consortium
VISA Virginia Institute of Spaceflight and Autonomy
VLEO Very Low Earth Orbit
WFF Wallops Flight Facility
XMI XML Metadata Interchange

References
1. Friedenthal, S.; Oster, C. Architecting Spacecraft with SysML; CreateSpace Independent Publishing Platform: Scotts Valley, CA,

USA, 2017.
2. NASA. NASA System Engineering Handbook Revision 2; NASA: Washington, DC, USA, 2020. Available online: https://www.nasa.

gov/connect/ebooks/nasa-systems-engineering-handbook (accessed on 15 March 2023).
3. Asundi, S.; Fitz-Coy, N. CubeSat mission design based on a systems engineering approach. In Proceedings of the 2013 IEEE

Aerospace Conference, Big Sky, MT, USA, 2–9 March 2013; p. nil. [CrossRef]
4. Sean Marquez, S. Model-Based CubeSat Flight-Software Architecture using a Docs-as-Code approach. In Proceedings of the

AIAA Scitech Conference 2023, National Harbor, MD, USA, 23–27 January 2023. [CrossRef]
5. The CubeSat Program, Cal Poly SLO. CubeSat Design Specification Rev. 14; The CubeSat Program; Cal Poly SLO: San Luis Obispo,

CA, USA, 2022.
6. Swartwout, M. CubeSat Database. 2021. Available online: https://sites.google.com/a/slu.edu/swartwout/cubesat-database

(accessed on 27 July 2021).
7. Heidt, H.; Puig-Suari, J.; Moore, A.; Nakasuka, S.; Twiggs, R. CubeSat—A new generation of picosatellite for education and

industry low-cost space experimentation. In Proceedings of the 12th AIAA/USU Annual Conference On Small Satellites, Logan,
UT, USA, 21–24 August 2000. Available online: https://www.proquest.com/conference-papers-proceedings/cubesat-new-
generation-picosatellite-education/docview/27219077/se-2 (accessed on 1 April 2023).

8. Shop, C. Pumpkin CubeSat Kits. 2023, 3. Available online: https://www.cubesatshop.com/product/pumpkin-cubesat-kits/
(accessed on 15 March 2023).

9. Cappelletti, C.; Battistini, S.; Malphrus, B.K. Cappelletti Cubesat Handbook: From Mission Design to Operations; Elsevier Science &
Technology: Amsterdam, The Netherlands, 2020.

10. Swartwout, M. Reliving 24 Years in the Next 12 Minutes: A Statistical and Personal History of University-Class Satellites.
2018. Available online: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4277&context=smallsat (accessed on 30
July 2021).

11. Praks AALTO-1 earth observation cubesat mission—Educational outcomes. In Proceedings of the IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015.

12. Berthoud, M. How to Set Up a CubeSat Project—Preliminary Survey Results. In Proceedings of the 30th Annual AIAA/USU
Conference On Small Satellites, Toulouse, France, 27–30 September 2016.

13. Team, S. SeaLion Mission Architecture. Old Dominion University. 2022. Available online: https://github.com/ODU-CGA-
CubeSat/sealion-mission-architecture (accessed on 30 May 2023).

https://www.nasa.gov/connect/ebooks/nasa-systems-engineering-handbook
https://www.nasa.gov/connect/ebooks/nasa-systems-engineering-handbook
http://doi.org/10.1109/AERO.2013.6496900
http://dx.doi.org/10.2514/6.2023-1126
https://sites.google.com/a/slu.edu/swartwout/cubesat-database
https://www.proquest.com/conference-papers-proceedings/cubesat-new-generation-picosatellite-education/docview/27219077/se-2
https://www.proquest.com/conference-papers-proceedings/cubesat-new-generation-picosatellite-education/docview/27219077/se-2
 https://www.cubesatshop.com/product/pumpkin-cubesat-kits/
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=4277&context=smallsat
https://github.com/ODU-CGA-CubeSat/sealion-mission-architecture
https://github.com/ODU-CGA-CubeSat/sealion-mission-architecture


Systems 2023, 11, 320 24 of 24

14. Wagner, D.; Kim-Castet, S.Y.; Jimenez, A.; Elaasar, M.; Rouquette, N.; Jenkins, S. CAESAR Model-Based Approach to Harness
Design. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020.. [CrossRef]

15. Brown, B. Model-Based Systems Engineering: Revolution or Evolution? IBM Rational: Somers, NY, USA, 2011.
16. Call, D.; Herber, D. Applicability of the diffusion of innovation theory to accelerate model-based systems engineering adoption.

Syst. Eng. 2022, 25, 574–583. [CrossRef]
17. Younse, P.; Cameron, J.; Bradley, T. Comparative analysis of model-based and traditional systems engineering approaches for

architecting a robotic space system through Automatic Information Transfer. IEEE Access 2021, 9, 107476–107492. [CrossRef]
18. Mazzini, S.; Tronci, E.; Paccagnini, C.; Olive, X. A Model-Based methodology to support the Space System Engineering (MBSSE).

In Proceedings of the ERTS2 2010, Embedded Real Time Software & Systems, Toulouse, France, 19–21 May 2010. Available online:
https://hal.science/hal-02267836 (accessed on 28 April 2023).

19. ESA. Model-Based System Engineering. Available online: https://www.esa.int/Enabling_Support/Preparing_for_the_Future/
Discovery_and_Preparation/Model-based_system_engineering (accessed on 28 April 2023).

20. Nottage, D.; Corns, S. Application of model-based systems engineering on a university satellite design team. Procedia Comput. Sci.
2012, 8, 207–213. [CrossRef]

21. Kaslow, D.; Ayres, B.; Cahill, P.; Hart, L.; Yntema, R. Developing a CubeSat Model-Based System Engineering (MBSE) reference
model—Interim status #3. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; pp. 1–15.

22. Holscher, E. Docs as Code. 2022. Available online: https://www.writethedocs.org/guide/docs-as-code/ (accessed on 15
March 2023).

23. Structurizr Software Architecture Models as Code. Structurizr. Available online: https://structurizr.org/ (accessed on 17
April 2023).

24. Bocchino, R.; Levison, J.; Starch, M. FPP: A Modeling Language for F Prime. In Proceedings of the 2022 IEEE Aerospace
Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; pp. 1–15.

25. NASA. F’ a Flight Software and Embedded Systems Framework. F’. Available online: https://nasa.github.io/fprime/ (accessed
on 17 April 2023).

26. Partners, S. SysML Specifications. 2023. Available online: https://sysml.org/sysml-specs/ (accessed on 10 April 2023).
27. Seidewitz, E.; Bajaj, M. SysML-v2-Release. 2023. Available online: https://github.com/Systems-Modeling/SysML-v2-Release

(accessed on 10 April 2023).
28. PlantUML. PlantUML. 2023. Available online: https://plantuml.com/ (accessed on 10 April 2023).
29. Simmons, J. Mach30 Modeling Language. Mach30 Foundation. 2022. Available online: https://github.com/Mach30/m30ml

(accessed on 15 March 2023).
30. Maged Elaasar, N. Ontological Modeling Language: Origin and Rationale. 2022. Available online: http://www.opencaesar.io/

oml/ (accessed on 10 April 2023).
31. Jenkinis, S. Ontological Modeling Language 1.4. 2022. Available online: http://www.opencaesar.io/imce/2021/06/19/OML-

Origin-and-Rationale.html (accessed on 10 April 2023).
32. Mungall, C. LinkML Model Your Data. LinkML. Available online: https://linkml.io/ (accessed on 10 April 2023).
33. Simmons, J. Extension of the Distributed OSHW Framework (DOF) for Modeling CubeSats. Old Dominion University. 2023.

Available online: https://odu-cga-cubesat.github.io/dof-cubesat/ (accessed on 30 May 2023).
34. Marquez, S. SeaLion Mission Architecture. Old Dominion University. 2023. Available online: https://odu-cga-cubesat.github.io/

sealion-mission-architecture/ (accessed on 30 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/AERO47225.2020.9172630
http://dx.doi.org/10.1002/sys.21638
http://dx.doi.org/10.1109/ACCESS.2021.3096468
https://hal.science/hal-02267836
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/Model-based_system_engineering
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/Model-based_system_engineering
http://dx.doi.org/10.1016/j.procs.2012.01.044
https://www.writethedocs.org/guide/docs-as-code/
https://structurizr.org/
https://nasa.github.io/fprime/
https://sysml.org/sysml-specs/
https://github.com/Systems-Modeling/SysML-v2-Release
https://plantuml.com/
https://github.com/Mach30/m30ml
http://www.opencaesar.io/oml/
http://www.opencaesar.io/oml/
 http://www.opencaesar.io/imce/2021/06/19/OML-Origin-and-Rationale.html
 http://www.opencaesar.io/imce/2021/06/19/OML-Origin-and-Rationale.html
https://linkml.io/
https://odu-cga-cubesat.github.io/dof-cubesat/
https://odu-cga-cubesat.github.io/sealion-mission-architecture/
https://odu-cga-cubesat.github.io/sealion-mission-architecture/

	Introduction
	CubeSat
	SeaLion Mission

	Motivation
	CubeSat Populations
	Ensuring CubeSat Success

	Goals
	Model-Based Systems Engineering
	Documents-as-Code Approach

	Modeling Language and Methodology
	Ontological Modeling Language
	Mach 30 Modeling Language

	Architecture Implementation
	File Structure
	Stakeholder Needs
	User Stories
	Data Structures
	Document Generation

	M30ML Extensions for Component Implementation
	Distributed OSHW Framework
	Component Data Structure and File Implementation

	Future Work and Observations
	Conclusions
	References

