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Abstract: Long-term exposure to air pollution will pose a serious threat to human health. Accurate
prediction can help people reduce exposure risks and promote environmental pollution control.
However, most previous studies have ignored the spatial spillover of air pollution, i.e., that the
current region’s air quality is also correlated with that of geographically adjacent areas. Therefore,
this paper proposes an innovative spatiotemporal hybrid early warning system based on adaptive
feature extraction and improved fuzzy cognition maps. Firstly, a spatial spillover analysis model
based on the Moran index and local gravitational clustering was proposed to capture the diffusion and
concentration characteristics of air pollution between regions. Then, an adaptive feature extraction
model based on an optimized Hampel filter was put forward to process and correct the outliers in
the original series. Finally, a hesitant fuzzy information optimized fuzzy cognitive maps model was
proposed to forecast the air quality of urban agglomeration. The experimental results show that the
air quality forecasting accuracy of urban agglomerations can be significantly improved when the
geographical conditions and other interactions among cities are comprehensively considered, and
the proposed model outperformed other benchmarks and can be used as a powerful analytical tool
during urban agglomeration air quality management.

Keywords: fuzzy theory; machine learning; optimization algorithm; air pollution forecasting;
spatiotemporal feature analysis

1. Introduction

With the advancement of science and technology, the continuous improvement of
urban spatial structure has promoted the rapid growth of the economy. But at the same
time, rapid urbanization has also caused serious air quality problems [1,2]. In addition,
studies have also shown that people’s long-term exposure to particulate pollutants and
other air pollutants mainly includes SO2, NO2, O3, and CO [3], which will cause harm to
the human respiratory system, nervous system, cardiovascular system, and reproductive
system [4–7]. Therefore, it is necessary to establish an air quality forecasting system to
grasp the development trend of air quality and air pollution, provide technical support for
regional air pollution prevention and control, and provide early warning information for
daily travel or production activities.

The individual methods commonly used to forecast air quality are summarized into
three types: data simulation method, mathematical statistics method, and machine learning
method. The data simulation method uses professional knowledge such as atmospheric
physical diffusion formulas and chemical reaction equations to simulate and forecast the
formation and diffusion of pollutants [8]. This method is simple to calculate, but it needs to
follow strict theoretical assumptions. Because the complexity that occurs in the atmosphere
cannot be considered, forecasting accuracy is low [9]. Compared with simulation-based
methods, statistical methods based on probability theory show better forecasting results.
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The most common are classical time series models, such as the auto-regressive (AR) models,
moving average (MA) models, and auto-regressive moving average (ARMA) models [10].
However, statistical methods cannot perform nonlinear fitting during the formation and
diffusion of pollutants, which leads to deviations. To address the nonlinear relationship
between input and output outcomes, scholars were beginning to leverage machine learning.
Support vector machine (SVM) [11,12], random foresting (RF) [13,14], and artificial neural
network (ANN) [15] are widely applied in air quality forecasting. Saeid et al. used artificial
neural networks to forecast PM10 concentration and applied it to health risk assessment,
and the correlation coefficient reached 0.87 [16]. In addition, as the historical data collected
by monitoring sites increases, deep learning methods for big data show superior predictive
performance. Given that the recurrent neural network (RNN) can take into account the time-
dependent effects of air quality [17], it can be applied to forecast air quality by processing
series well. However, in highly complex and large-scale monitoring site networks, it is
difficult to capture spatiotemporal correlations between sites.

Fuzzy cognitive maps (FCM) were developed in combination with the above advan-
tages. FCM not only has the ability to handle fuzzy logic uncertainty problems but also
has the machine learning algorithms used by neural networks. The model has a good
predictive effect while explaining causality [18]. For example, Liu et al. established an
EMD-HFCM model combining recurrent neural networks and fuzzy logic, which greatly
improved the performance of processing large-scale and non-stationary time series [19].
Yang et al. established the Wavelet-FCM model, which decomposed the original nonstation-
ary time series into multiple time series through the wavelet transform, which improved
the forecasting performance and could be applied to a variety of forecasting tasks [20].
Therefore, an in-depth study of FCM can effectively improve the performance of the model,
which has the potential and advantages for dealing with dynamic, noisy air quality [21].

However, the forecasting effect of individual models is limited. So, people started
building hybrid models. The multi-scale decomposition step is introduced in the forecasting
system to decompose the complex system into multiple subsystems that are easy to analyze,
such as decomposition and recombination methods [22], data reconstruction [23], feature
extraction [24], optimization algorithms [25], etc. For example, Wang et al. applied data
preprocessing based on different strategies to improve the performance of wind speed
prediction systems [26]. Yang et al. added the variational mode decomposition technique
based on adaptive parameters to the machine learning model, and the average absolute
error of the last four data sets reached 0.5121 [27]. Hybrid models can reduce the difficulty
of modeling complex systems and improve the forecasting performance of the model.
Therefore, it makes sense to construct a hybrid model based on FCM.

Based on the combing and summarizing of the literature, the research motivation
of this paper can be summarized as follows:

(1) Although the hybrid model can serve the purpose of the problem well by combining
specific methods, there are still some disadvantages. Most of the current hybrid
models only focus on extracting data features through the decomposition of time
series, which greatly improves the fitting effect of data but ignores the potential
risk of information leakage in the decomposition process [28]. Therefore, the data
preprocessing method needs to be further improved.

(2) In the past, the study of air pollution was based on the division of administrative
regions, and the effects of meteorology and time were analyzed separately. However,
air pollution is a cross-regional environmental pollution problem, and the spatial
spillover effect between urban agglomerations cannot be ignored [29].

(3) Traditional single models cannot achieve high accuracy requirements, while hybrid
models can improve forecasting accuracy.

(4) The study of time series data only focuses on the order of time and ignores the
particularities of the air quality data itself, such as the ambiguity and uncertainty of
the data.
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In order to solve the above problems, an innovative spatiotemporal hybrid forecasting
model based on adaptive feature extraction and improved fuzzy cognitive maps is proposed.
It consists of three modules: a spatial correlation analysis module, data preprocessing
module, and fuzzy information forecasting module. For the spatial correlation analysis
module, a spatial feature extraction model based on the Moran index and local gravitational
clustering (LGC) is designed that can combine spatiotemporal features and extract key
influencers from complex data to represent a variety of complex issues in a visual way. For
the data preprocessing module, a novel adaptive feature extraction model optimized by
the squirrel search algorithm (SSA) is proposed to process and correct the outliers of the
original series. Finally, novel hesitant fuzzy cognitive maps (HFCM) are proposed for the
fuzzy information forecasting module. The fuzzy logic in the original model is optimized
by hesitate fuzzy information, and the forecasting at the numerical level is transformed
into the forecasting of probability at the interval level.

In summary, the main contributions of this paper are:

• Spatial spillover effects are considered the main factors affecting the air quality index
(AQI) of different cities. It verifies that the spatiotemporal correlation of the extracted
data is necessary to improve the accuracy of air pollution forecasting.

• The Hampel filter algorithm optimized by the squirrel search algorithm is innovatively
introduced into the air quality forecasting model to process and correct the data
outliers to improve the forecasting accuracy of the hybrid model.

• Hesitant fuzzy cognitive maps are first proposed to forecast air pollution. It can effec-
tively solve the gray information of air quality or fuzzy relationships and uncertainties,
thus further improving the accuracy of forecasting.

• The proposed model was comprehensively evaluated with the actual AQI dataset,
five model evaluation criteria, and thirteen comparative models collected from the
Beijing-Tianjin-Hebei region. The empirical results show that the proposed hybrid
method has superior forecasting performance compared with the comparison models
and can provide a theoretical basis for air pollution forecasting and early warning.

2. Design of Spatiotemporal Hybrid Air Pollution Early Warning System

Air pollution not only has a temporal complexity but also has a spatial spillover effect.
Therefore, in order to forecast air pollution scientifically and rationally, this paper proposes a
spatiotemporal hybrid air pollution early warning system of urban agglomeration. Figure 1
depicts the framework of the system.

2.1. Spatial Correlation Analysis Module

In this section, the Moran I-Local gravitational clustering (ILGC) model is proposed to
verify the spatial correlation and capture the diffusion and concentration characteristics of
air pollution between regions.

2.1.1. Moran Index

The Moran index is applied to analyze the spatial correlation between different cities.
The Moran index is divided into the global Moran index and the local Moran index [30,31].
The global Moran index is used to determine whether there is aggregation or anomaly in
space, and if it is judged to be global autocorrelation, the local Moran index is further used
to explore the specific manifestations of aggregation or outliers.
Global Moran index
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Figure 1. Framework for the proposed spatiotemporal hybrid air pollution early warning system for
urban agglomeration.
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where Xc
i is each region (i = 1, 2, 3 . . . , ψ), c represents a different group of cities. The

spatial weights between features i and j are denoted as wij and the total number of features
is ψ, so that the aggregation of all spatial weights can be found.

Most of Moran’s I belong to (−1, 1), but there are also extreme cases, that is, Moran’s
value appears outside this range [32]. When Moran’s I is closer to 1, the more pronounced
the positive spatial correlation and the closer the relationship between cities. When Moran’s
I is closer to −1, the more pronounced the negative spatial correlation and the greater the
spatial difference between cities. When Moran’s I is 0, the space is random, indicating that
cities are not correlated.

2.1.2. Local Gravitational Clustering

The data are grouped using LGC based on a spatial neighborhood matrix. LGC
is a clustering algorithm based on local center metrics. It describes the connectivity of
the adjacent regions of each sample point through local gravitational resultant force and
centrality. By comparing clustering algorithms such as k-means clustering [33] and fuzzy
c-means clustering [34], LGC has the advantage of being able to train singular values to
obtain possible impact information [35].

Step 1: The local resultant force is calculated for each sample point.
The local resultant force (LRF) is the sum of the forces acting at point Xi with mass mi,

denoted as F(Xi).

F(Xi) =
1

mi

k

∑
j=1

D̂ij (3)
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where the reciprocal of all distance points acting on the k nearest neighbors of the data
point Xi is obtained by summing up mi.

mi =
1

k
∑

j=1
Dij

(4)

Dij is a unit vector connecting two mass directions and k is the number of nearest
neighbors around Xi. The closer to the center, the greater the mass of the sample points
and the less susceptible they are to other forces.

Step 2: Calculate the centrality (CE) and coordination (CO) values.
The relationship between LRF is measured by two metrics: centrality and coordination.

Where the centrality of data point Xi is calculated as follows:

CEi =

m
∑

j=1
cos(

→
F j,

→
Dij)

m
(5)

where
→
Dij is the displacement vector from Xi’s neighbor to Xi, cos(θ) belongs to (−1, 1),

and when CEi is greater than zero, it is pointed out that most of the neighbors point to it,
indicating that it has better centrality.

The CO of data point Xi is calculated as follows:

COi =
m

∑
j=1

(
→
Fi ·
→
Fj) (6)

Among them,
→
Fi and

→
Fj are the local resultant forces of points Xi and Xj, and their

neighbors, and a smaller local gravitational resultant force and a larger CE value are
selected as local proxy points in their own domain, and the local proxy point should
preferably appear above the direction pointed by the local gravitational resultant force of
the sample point.

Step 3: Clustering is performed for each sample point Xi.
The current local proxy point selected in the previous step connects to communicate

with other local proxy points. The current local proxy point looks for the target local proxy
point in the neighborhood for connection communication, and if it cannot be found, the
best sample is found in the neighborhood sample, and the intermediate communication
point continues to complete the work. The intermediate communication point must have a
CE value greater than 0 and be closer to the target proxy point than the origin. The local
proxy point itself forms a small cluster, which forms a large cluster by communicating with
the target proxy point.

2.2. Data Preprocessing Module

This stage introduces a new type of feature extraction model based on an improved
Hampel filtering method called SHP. Since the default parameters of the adaptive Hampel
filter cannot adapt to the characteristics of all data, we use the squirrel algorithm to
optimize the DX (the scalar of the half-width of the filter window), T (the threshold
used in the equation), and Threshold (adaptive threshold. The final minimum MAPE
value is the optimization goal, and the data preprocessing algorithm for different urban
agglomerations finds the best parameters and then obtains the optimal forecasting effect.
The basic theoretical composition of the model is as follows.

2.2.1. Squirrel Search Algorithm

The SSA is a naturally inspired optimization paradigm that simulates the dynamic
process of finding pinecones in southern flying squirrel gliding. Compared with other
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optimizations, SSA considers the seasonal factors of the data to be random factors, which
disrupts the search space and improves the randomness of the optimization algorithm.

First, the position of the squirrel in the dimensional search space is represented using
the following matrix:

FS =



FS11 FS12 · · · · · · FS1d
FS21 FS22 · · · · · · FS2d

...
...

. . .
...

...
...

. . .
...

FSn1 FSn2 · · · · · · FSnd

 (7)

where FSnd is the initial position. Next, random initialization is performed using the
fol-lowing formula:

FSi = FSL + U(0, 1)× (FSU − FSL) (8)

where FSi is the updated position. U(0, 1) denotes the randomness of the flying squirrel
population contained in the range 0 to 1. FSU and FSL are the upper and lower limits,
respectively.

Eventually, the squirrel colony locations are updated to the following matrix:

f =



f1
(

FS11 FS12 · · · · · · FS1d
)

f1
(

FS21 FS22 · · · · · · FS2d
)

...

...
f1
(

FSn1 FSn2 · · · · · · FSnd
)

 (9)

The difference between the advantages and disadvantages of searching for food
sources will depend on the different fitness levels of each flying squirrel’s location. There-
fore, based on the initial position of the squirrel, the position fitness is calculated by deter-
mining the variables, namely the best food source (hickory tree FSht), normal food source
(acorn tree FSat), and no food source (flying squirrel on normal tree FSnt). Its position
updating for three different foraging scenarios is mathematically modeled as follows.

Case 1: Best food source (hickory tree)

FSt+1
at =

{
FSt

at + dgGc(FSt
ht − FSt

at) Pdp ≤ R1

Random location otherwise
(10)

Case 2: Normal food source (acorn tree)

FSt+1
nt =

{
FSt

nt + dgGc(FSt
at − FSt

nt) Pdp ≤ R2

Random location otherwise
(11)

Case 3: No food source (flying squirrel on normal tree)

FSt+1
nt =

{
FSt

nt + dgGc(FSt
nt − FSt

nt) Pdp ≤ R3

Random location otherwise
(12)

where dg is the random glide distance, R1, R2, R3 is a random number in the range of [0, 1],
FSt+1

nt is the position of the squirrel reaching the hickory tree, and t is the current iteration.
The sliding constant Gc is used in the mathematical model to seek a balance between
exploration and development. Its value has a non-negligible role in the performance of
the proposed algorithm. In the current work, the value of Gc is 1.9, which is derived from
rigorous analysis. The predator presence probability Pdp is 0.1 in all cases.



Systems 2023, 11, 286 7 of 27

At the same time, in winter, due to low-temperature environmental conditions, squir-
rels tend to exercise on a small scale compared to other seasons and are mostly used to
store pecans to maintain energy for the winter, so the influence of seasonal factors is consid-
ered. It can effectively solve the problem that the algorithm is trapped in the local optimal
solution. Seasonal variables are expressed as:

St
c =

√√√√ d

∑
k=1

(FSt
at,k − FSt

ht,k)
2 (13)

Smin =
10H−6

(365)T(Tm/2.5)−1 (14)

where k is the current iteration value and Smin is a direct influence on the algorithm’s search
and development capability. The larger the Smin, the stronger the exploration capability,
and the smaller the Smin, the stronger the development capability.

After winter, flying squirrel foraging will be active again, considering that those
squirrels that have not been able to find the best food source in winter but still survive will
be able to forage again, and there is randomness, which will move in different directions.

The repositioning of the flying squirrel can be expressed by the equation as:

FSnew
nt = FSL + Lvy(n)(FSU − FSL) (15)

where FSU and FSL are the upper and lower bounds of variables, Lévy is used to generate
random solutions.

Lévy(x = 0.01× raσ

|rb|1/β
) (16)

where ra and rb are random number matrices belonging to (0, 1), β = 1.5. And σ is defined
as follows:

σ =

Γ(1 + β) sin( βπ
2 )

Γ( 1+β
2 )β2(

β−1
2 )

1/β

(17)

where Γ(x) = (x− 1)!.

2.2.2. Hampel Filter

The Hampel filter is a decision filter used to detect and remove outliers [36]. Like
the 3σ rule, which distinguishes between the mean and standard deviation, it determines
whether the data in the data set are a singular value by the median and the median that
deviates from the absolute value of the median, and then replaces the outlier with the
median of the short series in the filter movement window.

|xi − x∗| > tS j = 1, 2, . . . , N (18)

S = 1.4286median{|xi − x∗|} (19)

where t is a predefined threshold for determining the absolute difference from the median,
and x∗ denotes the median of the data sequence of length N, and S is the median absolute
difference (MAD) scale estimator. The constant 1.4286 guarantees that the expected value
of S is equal to the standard deviation of the normal distribution data [37].

2.3. Fuzzy Information Forecasting Module

In this section, the basic theory of hesitant fuzzy time series is first described, followed
by the details of the innovative hesitant fuzzy cognitive maps. This paper innovatively
proposes hesitant fuzzy cognitive maps (HFCM) and introduces the hesitant fuzzy logic
relationship to modify the output results of the fuzzy cognitive maps.
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2.3.1. The Basic Definition of Hesitant Fuzzy Theory

Before constructing hesitant fuzzy cognitive maps for forecasting, let us review the
definitions of fuzzy set, hesitant fuzzy set, and fuzzy time series (FTS). The basic theory is
as follows [38].

Definition 1. Define U = {u1, u2, · · · , un} the universe of discourse. A fuzzy set Aij in U can be
defined by its membership function.

Aij =
n

∑
i=1

m

∑
j=1

µAij(xij)

xij
=

µA11(x11)

x11
+

µA12(x12)

x12
+ · · ·+ µAnm(xnm)

xnm
(20)

where Aij : U → [0, 1] represents the membership function of the fuzzy set Aij and µAij represents
the member degree of µ to Aij.

Definition 2. H, Aij, X over the reference set U = {u1, u2, · · · , un} is represented by a mathe-
matical expression as follows:

H =
{〈

xij, hH(xij)
〉∣∣∀xij ∈ U

}
(21)

where hH
(

xij
)

is the set of possible subsets in [0, 1] by membership function that computes the
possible membership degrees of the elements in U to the set H. P[0, 1] is the set of multiple subsets of
[0, 1]. For the element u ∈ U, hH(ui) is called the hesitant fuzzy element (HFE).

Definition 3. Let Y(ξ) (ξ = 0, 1, 2, . . .) , R (a subset of real number) be a universe of dis-
course. Different fuzzy sets fi(ξ) (ξ = 0, 1, 2, . . .) are defined on Y(ξ). If F(ξ) is a collection
of fi(ξ) (ξ = 0, 1, 2, . . .), then it is known that F(ξ) is called an FTS on Y(ξ) (ξ = 0, 1, 2, . . .).

Definition 4. Let F(ξ) be the FTS and R(ξ, ξ − 1) be a first order model of F(ξ). If
R(ξ, ξ − 1) = R(ξ − 1, ξ − 2) for any time ξ, then F(ξ) is designated as time-invariant FTS,
otherwise F(ξ) is named as time-variant FTS.

Definition 5. The fuzzy logic relation (FLR) can be expressed as F(ξ − q)→ F(ξ) , Their relation-
ship can be expressed by the formula:

F(ξ) = F(ξ − q)oR(ξ − q, ξ) (22)

where “o” is a max-min composition operator, R(ξ − q, ξ) is fuzzy relationship.

Definition 6. The relationship between F(ξ) and F(ξ − q) can be denoted as Aw → Av , where
Aw and Av are called the left-hand side and the right-hand side of the FLR, respectively. FLRs with
the same left-hand side can be categorized into an ordered fuzzy logic group (FLG).

2.3.2. The FCM Framework

FCM consists of a set of nodes and weighted edges, which can be regarded as a
weighted directed graph. The nodes represent the variables in the AQI time series, that
is, each city in the urban agglomeration, and the edges represent the causal relationship
between these nodes. The set of these concept nodes is represented as vector C, that is,
the set of urban agglomerations. Each FCM containing N concepts can be defined by
four elements, (C, W, A, F), where C = {C1, C2, · · · , CN} is the collection of concepts that
represent all detected air quality indices. These concepts define the state value of t at any
moment as a vector Ai, that is, the AQI time series data of each city:

Ai = {A1, A2, · · · , AN} (23)
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where Wc : C× C → [−1, 1] is an N × N connection matrix representing the relationship
from Ci to Cj.

The circular relationship between A(ξ − 1) and A(ξ) on ξ ≥ 0 is expressed as follows:

Ac
i [k + 1] = f

(
Ac

i [k] +
m

∑
j=1,j 6=i

(
Ac

i [k]Wij
))

(24)

Ac
i (ξ) denotes the state value of node Ac

i at time ξ, Ac
i (ξ + 1) denotes the value of

node Ac
i at time ξ + 1. The state value of the node at the (t + 1)-th iteration is determined by

the weight matrix and state value of all connected nodes at the t-th iteration.
The f is the transfer function which simulates the forecasting process of the conceptual

state of the c-th FCM model. It is the activation function that updates the activation state of
the node at each iteration to perform a simulation of conceptual state forecasting.

f (x) =
1

1 + e−λx (25)

where λ(λ ≥ 0) acts as a regulator that determines the appropriate shape of the function
and the speed at which the curve converges to the boundary. λ = 1 is commonly chosen.

2.3.3. Hesitant Fuzzy Processing Time Series

Step 1: Define the universe of discourse and divide the interval.

The universe of discourse is defined as U = [Damin − σ1, Damax + σ2]. Among them,
Damax and Damin are the maximum and minimum values of AQI data, respectively, σ1 and
σ2 are the standard deviation of the training sample.

Then, the cumulative distribution function (CDF) is used to divide the equal fre-
quency interval.

F(xc
i ) = Pr(X ≤ xc

i ) f or−∞ < xc
i < ∞ (26)

To determine the optimal number of intervals, adaptive interval division is performed
based on fuzzy c-means clustering. The cluster generated by clustering is regarded as a
fuzzy set; the cluster center is the midpoint of the interval, and the size of the clustered
category is the interval size.

uc
ij =

1
k
∑

center=1
( dc

ij/dc
ik )

2/f z− 1

(27)

where uc
ij is the membership degree between the sample point xc

i and the cluster enter vc
j , i

is the sample, c is the city category, fz is the fuzzy index ( fz > 1), dc
ij is the distance between

the sample point xc
i and cluster center vc

j . The most common method for calculating the
distance is Euclidean distance.

vc
j =

n
∑

i=1
(uc

ij)
fz xi

n
∑

i=1
(uc

ij)
fz

(28)

Step 2: Calculate membership degree.

For the calculation of the weights wh
e , wh

u, this article uses the trigonometric member-
ship function with the following formula:

wh
e =

de

de + du
(29)
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wh
u =

du

de + du
(30)

where de and du are the equal and unequal spacing lengths calculated above, respectively.
The triangle membership function is used to calculate the membership degree on the

interval divided by different methods, and the mbge(i), mbgu(i) is obtained. The triangle
membership function formula is as follows:

triangle(xc
i ; a, b, c) =



0 xc
i ≤ a

xc
i−a

b−a a ≤ xc
i ≤ b

c−xc
i

c−b b ≤ xc
i ≤ c

0 c ≤ xc
i

(31)

The formula for aggregating hesitant fuzzy elements and constructing fuzzy sets,
where the aggregation operator is used to calculate the member rank of the elements, is
defined as follows:

O{x1, x2, · · · , xn} = 1−
n

∏
i=1

(1− xi)
wh

i (32)

Based on Definition 3, the fuzzy set is determined according to the maximum member-
ship principle. Because the air quality index lags one-stage correlation, the first-order fuzzy
logic relationship is determined according to Definition 5. After that, the fuzzy relationship
group is established based on Definition 6 by counting the frequency of fuzzy relationships
in the training set.

Step 3: Build fuzzy relationship matrix.

The weight matrix is established by the elements in the fuzzy relationship matrix with
the frequency of “ Aw → Av ” in the training set.

w11 w12 · · · w1m
w21 w22 · · · w2m

...
...

. . .
...

wm1 wm2 · · · wmm

 = [Wc
1 , Wc

2 , · · · , Wc
m] (33)

where wij ∈ [0, 1], (i, j = 1, 2, . . . , m). It is the result of weighting the frequency of each
fuzzy relationship.

Step 4: Defuzzify

Fuzzy output is obtained on the basis of hesitant fuzzy relations. Before that, the com-
bined midpoints of the equal and unequally spaced trigonometric membership functions
are calculated as follows:

CM =
Mewh

e + Muwh
u

eh
e + eh

u
(34)

where Me; wh
e and Mu; wh

u are the midpoints and weights of the membership functions in
the interval of equality and inequality, respectively. Use the following formula to defuzzify
them for numerical forecasting.

NF =
∑ fiCMi

∑ fi
(35)

where fi is the fuzzified output obtained by applying the max–min combination operation
on fuzzy logic relationships (FLR).

The pseudo-code of the data hesitant fuzzification process of Algorithm 1 is as follows:
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Algorithm 1: HFCM

Objective function: min (MAPE) = 1
n

n
∑

i=1

∣∣∣ ŷi(x)−yi(x)
yi(x)

∣∣∣× 100%

Input:
(

xc
1, xc

2, xc
3, . . . , xc

n
)
—a sequence of sample data.(

hc
1, hc

2, hc
3 . . . hc

n
)
—a sequence of FCM output

Output:



MAPE(r, :) = 1
n

n
∑

i=1

∣∣∣ ŷi(x)−yi(x)
yi(x)

∣∣∣× 100%

RMSE(r, :) =

√
1
n

n
∑

i=1
(yi(x)− yi(x))2

MAE(r, :) = 1
n

n
∑

i=1
|ŷi(x)− yi(x)|

Parameters:
ip: number of the intervals
i: i-th sample

j:
{

0 adaptive division interval
1 equal f requency division interval

Lo(N): the left endpoint of the adaptive division interval
Up(N): the right endpoint of the adaptive division interval
PLB(N): the left endpoint of the equal frequency division interval
PUB(N): the right endpoint of the equal frequency division interval
mbge(i): the membership degree of the adaptive division interval
mbgu(i): the membership degree of the equal frequency division interval
nn: min number of the intervals
mm: max number of the intervals

1: /* Initialize the data and convert it into growth rate */
2: /* Define the universe of discourse */
3: FOR ip = nn: mm (number of the intervals); N = ip;
4: /* Calculate Lo(N); Up(N) by cumulative distribution function. (Equation (26)) */
5: /* Calculate PLB(N); PUB(N) by fuzzy c-means clustering (Equation (27)) */
6: /* Calculate the weights of different intervals */
7: de = PUB(N)− PLB(N), du = Up(N)− Lo(N);
8: we = de/(de + du), wu = du/(de + du)
9: /* Calculate mbge(i); mbgu(i) */
10: Calculate: Membership grades u(i) = 1− ((1−mbge(i))we)× ((1−mbgu(i))wu);
11: /* Judgment fuzzy sets */ uki = max (u1i, u2i, u3i . . . ., uji), 1 < k < n
12: IF HAk is fuzzy set corresponding to uki
13: Assign fuzzy set HAk to xc

i
14: END
15: IF HAi is fuzzy production of day n, and HAK is fuzzy production of day n + 1
16: Fuzzy logic relationship =

{
HA1 − HA2, . . . , HAi − HAj

}
17: END
18: /* Determine the fuzzy logic relation group */
19: /* Count the frequency of each logical relationship */
20: /* Calculate the percentage rate of each occurrence logic */
21: /* Calculate the weight matrix and normalize the weight. */
22: Calculate: grade(i, j) = trim f

((
hc

1, hc
2, hc

3 . . . hc
n
)
, [Lower(j) , mid_point(j), Upper(j)]

)
;

23: /* The maximum membership principle determines the fuzzy set to which it belongs. */
24: Calculate: combined mid = (we. ∗mid_point(j) + wu. ∗mid_point(j)). /(we + wu);
25: /* Defuzzification to obtain the predicted value */
26: /* Turning growth rates into data ŷi(x) */
27: END
28: [r, c] = f ind(MAPE == min(MAPE))
29: Returned: r (The location of the optimal concept)



Systems 2023, 11, 286 12 of 27

2.4. Error Evaluation Module

To evaluate the superiority of the proposed system, the error evaluation module was
constructed, which contained three statistical indicators and two test models.

2.4.1. Error Test

The following three statistical indicators were employed to evaluate the effectiveness
of the predictive model: mean absolute percentage error (MAPE), root mean square error
(RMSE), and mean absolute error (MAE). They are defined as:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi(x)− yi(x)
yi(x)

∣∣∣∣× 100% (36)

RMSE =

√
1
n

n

∑
i=1

(yi(x)− yi(x))2 (37)

MAE =
1
n

n

∑
i=1
|ŷi(x)− yi(x)| (38)

where ŷi(x) is the forecasting data, yi(x) is the original data, and i is the number of samples.

2.4.2. Hypothesis Testing

This section uses the Diebold–Mariano (DM) test [39] and the modified Diebold–
Mariano (MDM) test [40] to evaluate hypothesis testing methods for the predictive perfor-
mance of different models. Its theory is described below.

The raw data is {un
t }, and for the two forecasting sequences

{
ε jt
}

and {εkt}, their error
can be calculated by the following formula:

ern
jt = ε jt − un

t (39)

ern
kt = εkt − un

t (40)

ψ
(

ern
jt

)
=
(

ern
jt

)2
(41)

ψ(ern
kt) = (ern

kt)
2 (42)

At this point, the difference between the two error sequences {di f ft} can be defined
as follow:

di f ft = ψ
(

en
jt

)
− ψ(ern

kt) (43)

The null and alternative hypotheses are set as follows:

H0 : E(di f ft) = zero;
H1 : E(di f ft) 6= zero;

The DM statistic follows a standard normal distribution and can be calculated as:

DM = di f f /
√

S2/T − 1 (44)

Specifically, T is the number of advance multi-step forecasting. Where di f f , S2 can be
defined as:

di f f = T−1
T

∑
t=1

di f ft (45)
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S2 = (T − 1)−1
T

∑
t=1

(
di f ft − di f f

)2

(46)

However, efficient T-period forecasting has forecasting errors after the MA(T− 1)
process, so MDM is proposed to solve this problem with the assumption that “no observed”
lag has zero covariance. The DM statistic is compared with the cut-off value Zα/2. If
−Zα/2 ≤ DM ≤ Zα/2, accept the null hypothesis, indicating that there is no difference in
the forecasting effect of the two models; If DM > Zα/2 or DM < Zα/2, the null hypothesis
was rejected, indicating that the difference in forecasting performance between the two
models was not caused by accidental factors.

3. Results

This section includes three parts: data description, spatial feature capture, and model
comparison experiments. What is more, three sets of comparison experiments are es-
tablished to verify the validity of the forecasting of the proposed spatiotemporal mix-
ture model.

3.1. Study Area and Data Description

To verify the accuracy and effectiveness of the proposed model, the Beijing-Tianjin-
Hebei region was selected as the research object. The site of the study is shown in Figure 2.
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China’s major urban agglomerations with high levels of economic development are
Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta. Among them, the Beijing-
Tianjin-Hebei region is not only a representative area of China’s economic development but
also a typical area with serious air pollution [41]. Due to the high population density in the
region, the proportion of heavy industry [42], industrial transfer [43], and other factors, the
air environment problem has become increasingly prominent. While the Beijing-Tianjin-
Hebei region has coordinated economic development [44], air quality between different
cities also has a certain mutual influence [45]. The air pollution problem of the Beijing-
Tianjin-Hebei urban agglomeration has become a topic of general concern for the Chinese
government, the media, and the public. So, it is typical to select the Beijing-Tianjin-Hebei
region as the research object.

This study uses daily AQI data from 1 January 2017 to 31 August 2022, for 13 cities with
a total of 2069 observations. Daily AQI data were collected from http://www.tianqihoubao.
com (accessed on 10 September 2022). AQI is a comprehensive indicator of air quality [46],
and the higher the value, the more serious the pollution. It was calculated according to
the National Ambient Air Quality Standard of China (GB3095-2012) [47], including sulfur
dioxide (SO2), nitrogen dioxide (NO2), PM2.5, PM10 (particulate matter with particle size
less than or equal to 10 µm), ozone (O3), carbon monoxide (CO), and other six pollutants [18]
to comprehensively reflect the regional air quality and pollution degree. Comprehensive
AQI can emphasize the possible chronic health effects of air pollution and long-term damage
to the environment. Compared with the air pollution index (API) [48], the detection of
pollutants is more comprehensive, the grading restriction standards are stricter, and the
evaluation results are more objective. Specifically, the air pollution level is divided into
seven attribute categories according to the air quality index (AQI), as shown in Table 1.

Table 1. Air quality index scale.

AQI Level I Descriptions Color

0–50 I 0.155 Good Green
51–100 II 0.207 Moderate Yellow
101–150 III 0.176 Lightly polluted Orange
151–200 IV 0.095 Moderately polluted Red
201–300 V 0.066 Heavily polluted Purple

>300 VI 0.195 Severely polluted Maroon

When the air pollution index is less than 100, people can engage in normal activities.
When the air quality index reaches mild pollution (100~200), patients with heart disease
and respiratory diseases should reduce physical consumption and outdoor activities; when
the air quality index reaches 200~300, healthy people ought to reduce outdoor ac-tivities.
Additionally, the elderly and patients with heart disease and lung disease should stay
indoors and reduce physical activity; when heavy pollution (air quality index above 300) is
reached, healthy people should also avoid outdoor activities.

Statistical analysis of daily data is shown in Table 2.
From Table 2, in the Beijing-Tianjin-Hebei region, Shijiazhuang and Chengde have

the best air quality situation, with mean values of 59.69 and 59.34, respectively, and less
fluctuation, with variances of 31.2 and 36.17. In comparison, Handan has the worst air
quality and a larger variation, indicating that the air pollution level fluctuates more seri-
ously in the process of economic and social development.

http://www.tianqihoubao.com
http://www.tianqihoubao.com
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Table 2. Statistical analysis of raw data.

No. City Name Longitude Latitude Training Testing Max Min Mean Std

1 Shijiazhuang 114.502461 38.045474 1656 413 442 19 97.85 57.78
2 Hengshui 115.665993 37.735097 1656 413 377 16 89.68 50.88
3 Baoding 115.482331 38.867657 1656 413 476 17 92.46 56.39
4 Xingtai 114.508851 37.068256 1656 413 463 17 97.28 56.61
5 Handan 114.490686 36.612273 1656 413 389 16 99.81 56.43
6 Beijing 116.405285 39.904989 1656 413 454 11 72.05 47.77
7 Cangzhou 116.857461 38.310582 1656 413 346 16 81.99 45.15
8 Langfang 116.713873 39.529244 1656 413 413 13 78.05 46.25
9 Tianjin 117.190182 39.125596 1656 413 365 14 78.29 42.51

10 Tangshan 118.175393 39.635113 1656 413 399 16 84.83 45.85
11 Chengde 117.939152 40.976204 1656 413 409 17 59.69 31.20
12 Qinhuangdao 119.586579 39.942531 1656 413 364 16 66.22 35.44
13 Zhangjiakou 114.884091 40.811901 1656 413 488 19 59.34 36.17

3.2. Spatial Feature Extraction Results

For each city, the annual average of daily AQI data is taken as the data for Moran’s
index, and the geographical distance matrix is used to describe the static spatial correlation
between cities, so as to further use the model to summarize the neighborhood characteristics
of the target city for spatiotemporal forecasting.

3.2.1. Spatial Autocorrelation

Table 3 shows the calculation results of the global Moran index to verify whether it is
spatially correlated. The average daily data for one year was taken as the calculation data
for Moran’s index. Figure 3 is the Moran scatter plot, which visually shows the distribu-tion
of AQI clusters in various cities and further explores the degree of spatial correlation in a
specific area. Table 4 shows the distribution trend of the Moran index, from which there is
a temporal and spatial transfer process for the AQI.

Table 3. Moran index of the AQI for 2017 and 2022.

Year I E(I) Sd(I) z p-Value *

2017 0.155 −0.083 0.092 2.599 0.005
2018 0.207 −0.083 0.092 3.164 0.001
2019 0.176 −0.083 0.09 2.873 0.002
2020 0.095 −0.083 0.09 1.983 0.024
2021 0.066 −0.083 0.09 1.661 0.048
2022 0.195 −0.083 0.091 3.064 0.001

Note: I is Moran’s index, reflecting the spatial correlation. E(I) is the mean of I, Var(I) is the standard deviation
of I; Z is the standard score, reflecting the degree of dispersion of a data set; p-value rep-resents the probability.
When the probability value is small, the null hypothesis will be rejected. * represents 10 % confidence.
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Table 4. Spatial transition of Moran scatter of urban AQI (2017~2022).

Cities 2017 2018 2019 2020 2021 2022

1 LL LL LL LL LL LL
2 LL LL LL HL LL LL
3 HH HH HH HH HH HH
4 HL HL HL HL HL HL
5 LL LL LL LL LL LL
6 HH HH HH HH HH HH
7 HH HH HH HH HH HH
8 HH HH HH HH HL HH
9 LH LH LH LH LH LH

10 LL LL LL LL LL LL
11 HH HL HH HL LL HL
12 LL LL LL LL LL LL
13 HH HH HH HH HH HH

Note: HH: in the first quadrant, areas with high AQI are surrounded by other cities that also have high AQI; LH:
in the second quadrant, areas with a low AQI are surrounded by other cities with a high AQI; LL: in the third
quadrant, areas with a low AQI are surrounded by other cities with the same low AQI; HL: in the fourth quadrant,
areas with a high AQI are surrounded by other cities with a low AQI.

Table 3 shows the AQI of thirteen cities in the Beijing-Tianjin-Hebei region from 2017
to 2022. It can be seen from the table that the Moran index has passed the 5% confidence
test and is positive. The results showed that there was a positive spatial correlation, the
AQI tended to be agglomerated in space, and the distribution of the air quality index was
concentrated and encircled.

As shown in Figure 3, the Moran scatter plot set for each city’s AQI is distributed in
the first and third quadrants, indicating a significant positive contribution of each city’s air
quality in the local space. The total number of cities located in the 1,3-quadrant re-mained
unchanged at 0.77 in the total sample. Most cities maintain similar cluster charac-teristics
to their neighbors.

In addition, only three cities have experienced location migration of the Moran scat-
tering point, namely, Chengde, Langfang, and Hengshui. Among them, Hengshui and
Langfang return to their original spatial states after being influenced by the surrounding
environment, while Cangzhou, which was at low air pollution, completely changes its
original state and enters the HL region under the influence of high surrounding air pollu-
tion. This indicates that the air quality of Chinese urban agglomerations is highly spatially
correlated, that air pollution between urban agglomerations is interacting, and that the
magnitude of the effect is not the same.

3.2.2. Local Gravitational Clustering

As described in Section 3.2.1, the AQI is spatially dependent. Non-independent air
quality may affect clustered data with interdependent observations. Because the AQI is a
comprehensive index, it can reflect the air quality of the city. Therefore, the daily AQI data
of different cities are used as clustering variables to cluster cities.

It can be seen from Figure 4 that the cities are divided into three different classes of air
quality categories, showing good zonal differences and regional similarities.

Category I includes five cities: Shijiazhuang, Hengshui, Baoding, Xingtai, and Han-
dan. This type of urban agglomeration is in the plains and has poor air pollution dispel-sion
conditions. It is a heavy industrial city close to the inland, with many polluting industries
superimposed on the transmission of air pollution from western Lu and north-ern Yu,
where air pollution is most serious.
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Category II includes five cities: Beijing, Cangzhou, Langfang, Tianjin, and Tangshan.
Due to the large population and rapid economic development, in which the steel industry
in Tangshan, coal in Cangzhou, and cement in Langfang were coupled, pollution is serious
and air quality is deteriorating.

Category III includes three cities: Chengde, Qinhuangdao, and Zhangjiakou. Tour-
ism-driven economic development, a few polluting industries, and mountainous terrain
limit the flow and interaction of the atmosphere between the three cities and other cities,
thus keeping air quality low.

Therefore, in order to continuously improve the environmental benefits and air qual-
ity of the Beijing-Tianjin-Hebei region, the interaction between its cities cannot be ignored,
and it is necessary to establish an improvement mechanism according to its geographical
location, industrial structure, and economic development level to achieve the coordinated
development of the Beijing-Tianjin-Hebei region.

3.3. Model Comparison Results

Based on the above experimental purposes, this section establishes three comparative
experiments and uses the same evaluation index system to verify the forecasting performance.

3.3.1. Feature Extraction Strategy

Due to the variability and nonlinearity of AQI in time series changes, it is difficult
to accurately predict. In addition, there are many factors affecting air quality, including
pol-icy factors, natural factors, etc., which are prone to fluctuations and singular values.
Out-liers are data with significant deviations from most observations, which interfere with
the training efficiency of the model. Removing outliers can improve forecasting accuracy.
Therefore, before the experimental forecasting, it is necessary to test and correct the outli-ers
of the data.

To illustrate the excellence of the optimized Hempel filtering in detecting and cor-
recting outliers, comparative models based on different optimization algorithms were
de-veloped, including the dragonfly algorithm (DA), SSA, and the honey badger algorithm
(HBA). The comparison experiments were FCM and DHP-FCM, FCM and SHP-FCM, and
FCM and HHP-FCM. The specific results are shown in Table 5 and Figure 5.
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Table 5. Comparison of feature extraction strategies based on different optimization algorithms.

Cities Method MAPE RMSE MAE

Category I
Beijing

FCM 25.54 25.15 17.76
DHP-FCM 39.47 37.52 24.25
SHP-FCM 25.12 26.34 17.79
HHP-FCM 25.40 21.94 15.91

Category II
Shijiazhuang

FCM 40.51 37.73 21.18
DHP-FCM 31.96 24.38 15.43
SHP-FCM 36.27 21.02 15.36
HHP-FCM 36.25 21.08 15.40

Category III
Chengde

FCM 29.50 20.66 14.25
DHP-FCM 28.85 20.31 13.93
SHP-FCM 27.78 19.22 13.29
HHP-FCM 29.56 19.62 13.87

Note: HP: Hampel filtering; DHP: Hampel filtering optimized by dragonfly algorithm (DA); SHP: Hampel filtering
optimized squirrel search algorithm (SSA); HHP: Hampel filtering optimized honey badger algorithm (HBA).
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From Table 5, it can be seen that the SHP-FCM model has the best performance on
MAPE, RMSE, and MAE compared to other optimization models for Category I, Category
II, and Category III. In addition, the SSA algorithm has an outstanding advantage in find-
ing the best model parameters to build a better hybrid model. In the three urban clusters,
the MAPE metrics were reduced by 1.6%, 10.5%, and 5.8% compared to those optimized
using the SSA algorithm. This finding has been confirmed in several application scenarios.

Remark 1. SHP not only removes significantly deviated data and reduces interference with the
model training rate, but also reduces data variability and preserves original features. Furthermore,
from the residual sequence of the right diagram, it can be seen that the processed data and the original
data only change slightly, and only the median substitution in the data pane is performed on the
extreme data. Therefore, the data preprocessing in this paper will not cause information loss to
the data.

3.3.2. Probabilistic Hesitation Fuzzy Set Strategy

In the previous section, it was known that SHP is superior to DHP and HHP through
comparative experiments. In the setting of SHP to extract data features, in order to verify
the effectiveness of the HFCM prediction system constructed by combining the hesitant
fuzzy information set strategy, FCM and Gaussian smooth fuzzy cognitive maps (GFCM)
are also constructed for comparative experiments. The experimental results are shown in
Table 6, Figures 6 and 7.

Table 6. Comparison of forecasting effects based on different submodules of SHP.

Cities Method MAPE (%) RMSE MAE

Category I
Beijing

SHP-FCM 25.12 26.34 17.79
SHP-GFCM 20.66 18.45 12.85
SHP-HFCM 1.48 1.39 1.81

Category II
Shijiazhuang

SHP-FCM 36.27 21.02 15.36
SHP-GFCM 28.76 21.30 13.78
SHP-HFCM 1.12 4.33 0.69

Category III
Chengde

SHP-FCM 27.78 19.22 13.29
SHP-GFCM 24.14 1.11 9.75
SHP-HFCM 0.49 0.62 0.23

Note: FCM: fuzzy cognitive maps; HFCM: hesitant fuzzy cognitive maps. GFCM: Gaussian smoothed fuzzy
cognitive maps.
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The results in Table 6 showed that adaptive feature extraction using the Hampel
fil-tering algorithm on the original data significantly improved forecasting accuracy com-
pared to the direct use of fuzzy cognitive maps. In the comparison of the first type of model
to improve the forecasting effect of the original single model, in the case of MAPE, the
proposed model decreased by 94.1083% compared with FCM. And GFCM decreased by
17.7548% compared with FCM. In addition, MAE and RMSE also showed different degrees
of improvement in each type of urban cluster. Taking Beijing as an example, SHP-FCM and
SHP-GFCM are 24.95 and 17.06 higher than the RMSE of SHP-HFCM, respect-tively. The
proposed model SHP-HFCM in Shijiazhuang has MAPE, RMSE, and MAE of 1.12%, 4.33,
and 0.69, respectively, which are significantly less than the other two compar-ison models.

In particular, the third type of urban agglomeration has the best forecasting accuracy. In
all evaluation indicators, the feature extraction strategy based on SHP is significantly better
than the hybrid forecasting system based on ordinary fuzziness and Gaussian smoothing.

Remark 2. HFCM has non-negligible advantages over FCM and GFCM in data forecasting. The
proposed novel hesitant fuzzy cognitive maps can not only effectively eliminate uncertain infor-
mation and unstable elements in time series but also be a promising method for processing the
characteristics of time series forecast data itself.

3.3.3. Comparison of Mixed Models in Different Data Preprocessing Environments

In addition, to show the scalability of hesitant, ambiguous information, the third
comparison model is established. The FCM, HFCM, and GFCM data processing methods
in the SHP, DHP, and HHP cases were compared. The results are shown in Table 7 and
Figure 8.
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Table 7. Comparison of hybrid models based on various feature extraction strategies.

Cities Method MAPE (%) RMSE MAE

Category I
Beijing

DHP-FCM 39.47 37.52 24.25
DHP-GFCM 30.21 26.19 18.98
DHP-HFCM 21.45 21.74 13.48
HHP-FCM 25.40 21.94 15.91

HHP-GFCM 27.24 23.24 16.89
HHP-HFCM 25.00 21.48 15.58

SHP-FCM 25.12 26.34 17.79
SHP-GFCM 20.66 18.45 12.85
SHP-HFCM 1.48 1.39 1.81

Category II
Shijiazhuang

DHP-FCM 31.96 24.38 15.43
DHP-GFCM 32.64 19.40 13.66
DHP-HFCM 14.66 16.72 7.01
HHP-FCM 36.25 21.08 15.40

HHP-GFCM 38.97 22.18 16.30
HHP-HFCM 34.24 20.64 14.83

SHP-FCM 36.27 21.02 15.36
SHP-GFCM 28.76 21.30 13.78
SHP-HFCM 1.12 4.33 0.69

Category III
Chengde

DHP-FCM 28.85 20.31 13.93
DHP-GFCM 18.67 11.87 8.38
DHP-HFCM 0.53 0.47 0.25
HHP-FCM 29.56 19.62 13.87

HHP-GFCM 29.27 19.61 13.82
HHP-HFCM 29.46 19.63 13.87

SHP-FCM 27.78 19.22 13.29
SHP-GFCM 24.14 1.11 9.75
SHP-HFCM 0.49 0.62 0.23

Systems 2023, 11, x FOR PEER REVIEW 24 of 30 
 

 

 

Figure 8. Comparison of performance indicators of hybrid models based on different feature extrac-

tion strategies. 

4. Discussion 

4.1. Robustness of the Proposed Model 

The purpose of the robustness test is to investigate whether the daily data are non-

stationary when the air quality receives the impact of high pollution. At this time, whether 

the model can still work normally and whether the forecasting accuracy fluctuates greatly 

are evaluated in this test. In this experiment, the data of the training set increases the ran-

dom number in the range of (−2, 2), which is considered to be from random interference; 

then, observe the changes of each performance index; the comparison results are shown 

in Table 8. 

Table 8. The results of robustness test. 

 MAPE (%)  RMSE  MAE  

 Random Proposed Change Random Proposed Change Random Proposed Change 

Beijing          

FCM 32.15 25.54 6.61 30.15 25.15 5.00 20.26 17.76 2.5 

SHP-FCM 30.72 25.12 5.6 28.61 26.34 2.27 19.89 17.79 2.1 

SHP-HFCM 1.39 1.48 0.09 1.58 1.39 0.19 1.76 1.81 0.05 

Mean 21.42  17.38  4.04 20.11  17.63  2.49 13.97  12.45  1.52 

Std 17.36  13.77  3.59 16.07  14.07  1.99 10.58  9.22  1.36 

Shijiazhuang          

FCM 45.49 40.51 4.98 28.28 37.73 9.45 19.63 21.18 1.55 

SHP-FCM 45.71 36.27 9.44 28.16 21.02 7.14 19.57 15.36 4.21 

SHP-HFCM 0.83 1.12 0.29 4.17 4.33 0.16 0.52 0.69 0.17 

Mean 30.68  25.97  4.71  20.20  21.03  0.82  13.24  12.41  0.83  

Std 25.85  21.62  4.23  13.89  16.70  2.81  11.02  10.56  0.46  

Chengde          

FCM 32.26 29.50 2.76 20.34 20.66 0.32 13.81 14.25 0.44 

SHP-FCM 32.04 27.78 4.26 20.55 19.22 1.33 13.98 13.29 0.69 

SHP-HFCM 0.67 0.49 0.18 0.50 0.62 0.12 0.31 0.23 0.08 

Mean 21.66  19.26  2.40  13.80  13.50  0.30  9.37  9.26  0.11  

Std 18.18  16.28  1.90  11.52  11.18  0.34  7.84  7.83  0.01  

Note: Random represents adding random disturbance to simulate air situation. Proposed repre-

sents the original data. Change is the absolute value of the difference between the data after adding 

the disturbance and the accuracy data model, that is, the magnitude of the change. 

Before and after adding random disturbance, the MAPE values of Beijing were 1.39% 

and 1.48%, respectively; only 0.09% changed, and the same was true for other cities. After 

Figure 8. Comparison of performance indicators of hybrid models based on different feature extrac-
tion strategies.

Table 7 shows the performance indicator values for all submodules launched for the
three considered environments. Especially taking the third type of urban agglomeration as
an example, SHP − HFCMMAPE

Chengde = 0.49, SHP − HFCMRMSE
Chengde = 0.62,

SHP− HFCMMAE
Chengde = 0.23, so for the same data preprocessing environment, the model

using the HFCM method is better than the model using the FCM and the GFCM. In addition,
the MAPE values for various hybrid forecasting systems are SHP− HFCMMAPE

Beijing = 1.48,

SHP− HFCMMAPE
Shijiazhuang = 1.12, SHP− HFCMMAPE

Chengde = 0.62, thus it is concluded that
SSA plays an important role in HFCM forecasting. After comprehensive comparison, the
proposed model has a good effect in the forecasting of pollutant concentration series.
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Remark 3. In different data preprocessing scenarios, the submodule with the best predictive per-
formance is uniquely identified. The hybrid forecasting system based on HFCM constructed in
this paper achieves the best results of all evaluation indicators under different data processing
environ-ments. This property has been demonstrated in three different scenarios.

4. Discussion
4.1. Robustness of the Proposed Model

The purpose of the robustness test is to investigate whether the daily data are non-
stationary when the air quality receives the impact of high pollution. At this time, whether
the model can still work normally and whether the forecasting accuracy fluctuates greatly
are evaluated in this test. In this experiment, the data of the training set increases the ran-
dom number in the range of (−2, 2), which is considered to be from random interference;
then, observe the changes of each performance index; the comparison results are shown in
Table 8.

Table 8. The results of robustness test.

MAPE (%) RMSE MAE
Random Proposed Change Random Proposed Change Random Proposed Change

Beijing
FCM 32.15 25.54 6.61 30.15 25.15 5.00 20.26 17.76 2.5

SHP-FCM 30.72 25.12 5.6 28.61 26.34 2.27 19.89 17.79 2.1
SHP-HFCM 1.39 1.48 0.09 1.58 1.39 0.19 1.76 1.81 0.05

Mean 21.42 17.38 4.04 20.11 17.63 2.49 13.97 12.45 1.52
Std 17.36 13.77 3.59 16.07 14.07 1.99 10.58 9.22 1.36

Shijiazhuang
FCM 45.49 40.51 4.98 28.28 37.73 9.45 19.63 21.18 1.55

SHP-FCM 45.71 36.27 9.44 28.16 21.02 7.14 19.57 15.36 4.21
SHP-HFCM 0.83 1.12 0.29 4.17 4.33 0.16 0.52 0.69 0.17

Mean 30.68 25.97 4.71 20.20 21.03 0.82 13.24 12.41 0.83
Std 25.85 21.62 4.23 13.89 16.70 2.81 11.02 10.56 0.46

Chengde
FCM 32.26 29.50 2.76 20.34 20.66 0.32 13.81 14.25 0.44

SHP-FCM 32.04 27.78 4.26 20.55 19.22 1.33 13.98 13.29 0.69
SHP-HFCM 0.67 0.49 0.18 0.50 0.62 0.12 0.31 0.23 0.08

Mean 21.66 19.26 2.40 13.80 13.50 0.30 9.37 9.26 0.11
Std 18.18 16.28 1.90 11.52 11.18 0.34 7.84 7.83 0.01

Note: Random represents adding random disturbance to simulate air situation. Proposed represents the original
data. Change is the absolute value of the difference between the data after adding the disturbance and the
accuracy data model, that is, the magnitude of the change.

Before and after adding random disturbance, the MAPE values of Beijing were 1.39%
and 1.48%, respectively; only 0.09% changed, and the same was true for other cities. After
adding random disturbances, the forecasting accuracy of the proposed model changed
slightly: Shijiazhuang changed by 0.29%, and Chengde changed by 0.18%. It can also be
seen from Table 7 that the average RMSE of the three observation cities of the original data
model is 17.63, 21.03, and 13.50, respectively. Compared with the model with increased
disturbance, the values of MAPE change by 2.49, 0.82, and 0.3, respectively, which clarifies
that the random disturbance will not affect the forecasting performance. In addition, for
the original data model, taking the predicted value of Beijing as an example, the average
MAE is 12.45, and the standard deviation is 9.22. From the model, after increasing the
disturbance, the average MAE increases slightly, the standard deviation increases to 13.97,
the change range is 1.52, and the standard deviation change range is 1.36, which indicates
that the random disturbance is not significant.

In summary, by observing the fluctuation of the forecasting results of each city, the
forecasting performance of the model proposed in this paper has not changed significantly
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and still maintains an outstanding forecasting effect. Therefore, there is enough evidence to
prove that although the air quality will be affected by other factors, such as high pollu-tion
or other abnormal conditions, the proposed model can still have stability.

4.2. Differences of the Proposed Model

The discrepancy test of the forecasting system proposed in this paper will be further
discussed in this section. To test whether the forecasting performance of the proposed
hybrid forecasting model is significantly different from other forecasting models, the DM
test and the MDM test are used to perform statistical tests.

From the experimental results in Table 9, the loss series of the proposed hybrid fore-
casting system passed the significance test at the 5% confidence level. It denotes that the
proposed hybrid forecasting system has higher forecasting efficiency than other hybrid
strategies, and it is not a coincidence that the forecasting is significantly different.

Table 9. The results of testing model differences.

Category Method DM P MDM P

Category I
Beijing

DHP-FCM 15.2192 8.39 × 10−42 15.2007 1.01 × 10−41

DHP-GFCM 9.7186 3.11 × 10−20 9.7068 3.42 × 10−20

DHP-HFCM 8.0531 3.88 × 10−25 8.0423 2.63 × 10−25

HHP-FCM 13.6566 2.83 × 10−35 13.6401 3.31 × 10−35

HHP-GFCM 5.8835 8.34 × 10−9 5.8764 8.67 × 10−9

HHP-HFCM 5.1544 3.26 × 10−7 5.1478 3.19 × 10−7

SHP-FCM 5.7104 2.16 × 10−8 5.7034 2.25 × 10−8

SHP-GFCM 6.4946 2.41 × 10−10 6.4867 2.52 × 10−10

Category II
Shijiazhuang

DHP-FCM 16.4863 3.10 × 10−47 16.4663 3.78 × 10−47

DHP-GFCM 10.0901 1.55 × 10−21 10.0778 1.71 × 10−21

DHP-HFCM 5.9216 8.34 × 10−11 5.9148 8.34 × 10−11

HHP-FCM 15.9536 6.12 × 10−45 15.9342 7.42 × 10−45

HHP-GFCM 9.5553 1.14 × 10−19 9.5437 1.25 × 10−19

HHP-HFCM 9.1332 1.25 × 10−13 9.1277 1.36 × 10−13

SHP-FCM 10.5755 2.79 × 10−23 10.5626 3.11 × 10−23

SHP-GFCM 11.6521 2.63 × 10−27 11.6380 2.98 × 10−27

Category III
Chengde

DHP-FCM 13.0401 4.63 × 10−41 13.0242 5.54 × 10−41

DHP-GFCM 12.9219 8.93 × 10−34 12.9062 1.04 × 10−33

DHP-HFCM 1.4234 3.74 × 10−51 1.4217 4.62 × 10−51

HHP-FCM 10.3126 4.40 × 10−43 10.3001 5.30 × 10−43

HHP-GFCM 10.2920 1.39 × 10−39 10.2795 1.65 × 10−39

HHP-HFCM 10.3339 2.25 × 10−36 10.3214 2.64 × 10−36

SHP-FCM 13.4234 9.09 × 10−33 13.4071 1.05 × 10−32

SHP-GFCM 13.2622 2.72 × 10−32 13.2461 3.14 × 10−32

Note: The model SHP-HFCM proposed in this study is used for comparison with the above combinatorial strategy,
where the statistic p-value represents the probability.

Compared with other models, the model proposed in this paper has the best results
in any possible data environment. On the one hand, it performs spatial effect analysis
and data feature extraction before data forecasting, which can better utilize the spatial and
data features of the data for subsequent forecasting, and this is the excellence of the model.
On the other hand, the system continuously updates the output conceptual values after k
iterations by combining the geographic location of each data and does not directly output
the forecasting results, but it eliminates the uniqueness of the data itself through fuzzy time
series, and the forecasting results are more superior.

4.3. Application of the Proposed Model

The proposed model not only has outstanding forecasting performance but also has
potential functions in practical applications. The early warning system consists of three
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modules: spatial feature analysis module, data preprocessing module, and fuzzy infor-
mation prediction module. The following analyzes its practical significance from these
three modules.

1. Air pollution has spatial spillover effects, so the spatial feature analysis module can
comprehensively consider the interaction of urban agglomerations. In addition, it
also provides theoretical support for the formulation of pollution control policies
among urban agglomerations and facilitates coordinated governance among urban
agglomerations.

2. In fact, air quality is affected by many factors, including information ambiguity and
uncertainty. Through the data preprocessing module, it can remove the outliers and
noise from the data, making the data features more obvious and achieving better
forecasting performance.

3. Accurate AQI forecasting results can provide early warning information for actual
life and production activities. From the perspective of the public, the forecasting of
air quality can let the public understand the air quality, the scope of air quality dete-
rioration, the degree of deterioration, and the development trend; secondly, it guides
the daily activities and behaviors of residents, protects the physical and mental health
of the people, and reduces the incidence of diseases. From the perspective of social
economy, it can not only provide the theoretical basis for pollution control measures,
such as strict control of motor vehicle pollution, reduction of coal consumption,
shut-down of polluting enterprises, control of construction sites and road dust, and
super-vision of factories with large pollutant emissions.

5. Conclusions

In terms of application, it is profoundly important to make accurate forecasts of air
quality. The air environment is an important guarantee for people’s health and production
safety, and understanding real-time AQI can provide a theoretical basis for establishing
an early warning system on the one hand, and a tool for implementing pollution control
policies on the other. However, because AQI has the complexity and nonlinearity of time
series changes, and has spatial correlation among urban clusters, it is difficult to make
accurate forecasting. Coupled with the fact that it is influenced by many factors and prone
to fluctuations and singular values, it is even more challenging for the forecasting effect
of the model. Therefore, this paper proposes a novel spatiotemporal hybrid forecasting
system to realize the time series forecasting of AQI. Three comparative experiments were
established using the air quality indices of thirteen cities in the Beijing-Tianjin-Hebei re-gion
of China to analyze and demonstrate, and the results are as follows:

1. First, the spatial feature extraction module is built. The module successfully extracted
the spatial overflow features, captured the dynamic transition of air quality, and
per-formed cluster analysis with different sizes and weights for irregular data.

2. The adaptive Hampel filtering model improved by SSA is the best data processing
sub-module for comparison with FCM, DHP-FCM, and HHP-FCM.

3. The first proposed HFCM forecasting model plays an irreplaceable role in time series
forecasting in the same data preprocessing environment. The model reduced MAPE
by 94.1083%, 96.9120%, and 98.2361% for three different urban clusters.

4. In the environment of different data preprocessing methods, the model proposed
in this paper can still make accurate forecasts for data with large fluctuations and
mu-tations. MAPE, RMSE, and MAE reach the minimum values in the three urban
ag-glomerations.

In summary, the proposed air quality forecasting system has outstanding forecasting
performance in handling low-quality and large-noise data. Although the model makes
an accurate prediction by analyzing the spatial correlation between the target city and the
adjacent city and excavating its internal relationship, this study also has shortcomings, and
the stability needs to be improved when optimizing the Hampel parameter values for single
objectives. In future research, we can consider a multi-objective optimization algorithm
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and select other urban agglomerations for research to further verify the superiority of the
forecasting model proposed in this paper for air quality index forecasting.
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Nomenclature
The abbreviations for each name are as follows:

AR Auto-regressive model
ANN Artificial neural network
API Air pollution index
AQI Air quality index
ARMA Auto-regressive moving average model
CDF Cumulative distribution function
CE Centrality
CO Coordination
DA Dragonfly algorithm
DM Diebold–Mariano
FCM Fuzzy cognitive maps
FLG Fuzzy logic group
FLR Fuzzy logic relation
FTS Fuzzy time series
HBA Honey badger algorithm
HFCM Hesitant fuzzy cognitive maps
LGC Local gravitational clustering
LRF Local resultant force
MA Moving average model
MAD Median absolute difference
MAE Mean absolute error
MAPE Mean absolute percentage error
MDM Modified Diebold–Mariano
RF Random foresting
RMSE Root mean square error
RNN Recurrent neural network
SSA Squirrel search algorithm
SVM Support vector machine
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